Scientific Data Mining

Distilling Free-Form Natural Laws from Experimental Data

Hod Lipson, Cornell University

Lipson & Pollack, Nature 406, 2000

Adapting in simulation

Adapting in reality

Simulation & Reality

Morphological Estimation

Emergent Self-Model

With Josh Bongard and Victor Zykov, Science 2006

Damage Recovery

With Josh Bongard and Victor Zykov, Science 2006

System Identification

Photo: Floris van Breugel

1 1

Photo: Floris van Breugel

SPA Links

Static ID: Damage Diagnosis

With Wilkins Aquino

Discrete Dynamics Inference

Bongard J. C, Lipson H., (2005) "Active Coevolutionary Learning of Deterministic Finite Automata", Journal of Machine Learning research (JMLR), Vol. 6 No. 10, pp. 1651-1678

Circuit Building Blocks

Symbolic Regression

What function describes this data?

John Koza, 1992

Encoding Equations

Building Blocks: + - * / sin cos exp log ... etc

John Koza, 1992

Models: Expression trees Subject to mutation and selection

 $\{const, +, -, *, /, sin, cos, exp, log, abs\}$

Experiments: Data-points Subject to mutation and selection

Solution Accuracy

Solution Complexity

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Semi-empirical mass formula

Modeling the binding energy of an atomic nucleus

Inferred Formula:

$$E_B = 14.83 - 13.43A + 12.39A^{0.64} + \frac{0.39Z^2}{A^{0.26}} + \frac{17.29(N-Z)^2}{A} \longrightarrow \mathbb{R}^2 = 0.99944$$

Weizsäcker's Formula:

$$E_{B} = a_{V}A - a_{S}A^{2/3} - a_{C}\frac{Z(Z-1)}{A^{1/3}} - a_{A}\frac{(A-2Z)^{2}}{A} + \delta(A,Z) \longrightarrow \mathbb{R}^{2} = 0.999915$$

$$\delta(A,Z) = \begin{cases} +\delta_{0} & Z, N \text{ even} \\ 0 & A \text{ odd} \\ -\delta_{0} & Z, N \text{ odd} \end{cases} \delta_{0} = \frac{a_{P}}{A^{1/2}}$$

Systems of Differential Equations

• Regress on derivative

State Variables

Derivatives

<u>time</u>	<u>x</u> 1	<u>X</u> 2	•••	$\underline{dx_{1}}/\underline{dt} \underline{x_{2}}/\underline{dt} \dots$
0	3.4	-1.7		-2.0 8.0
0.1	3.2	-0.9		-1.0 8.0
0.2	3.1	-0.1		-4.0 1.3
0.3	2.7	1.2		-5.7 1.9

Inferring Biological Networks

Original Equations

Inferred Equations

With Michael Schmidt, John Wikswo (Vanderbilt), Jerry Jenkins (CFDRC)

Wet Data, Unknown System

Bacillus Bacteria

With Michael Schmidt (Cornell) and Gurol Suel (UT Southwestern)

Cell #3-60 ...

Symbolic Regression Inferred *Time-Delay* Model:

$$\frac{dK}{dt} = a_K + \frac{b_K + c_K S}{K}$$
$$\frac{dS}{dt} = a_S + \frac{b_S + c_S K}{S}$$

Biologist's Inferred Model: Gurol Suel, et. al., Science 2007

$$\frac{dK}{dt} = \alpha_k + \frac{\beta_K K^n}{k_0^n + K^n} - \frac{\delta_K K}{1 + K / \Gamma_K + S / \Gamma_S} - \lambda_K K$$
$$\frac{dS}{dt} = \alpha_S + \frac{\beta_S}{1 + (K / k_1)^p} - \frac{\delta_k S}{1 + K / \Gamma_K + S / \Gamma_S} - \lambda_S S$$

Withheld Test Set #1 Fit

$$\frac{dG_t}{dt} = \frac{1582.0 + 17.3214 \cdot S_{t-51}}{G_{t-18}} - 16.7423$$
$$\frac{dS_t}{dt} = \frac{114.922 + 0.3019 \cdot G_{t-25}}{S_{t-15}} - 3.05$$

Withheld Test Set #2 Fit

$$\frac{dG_t}{dt} = \frac{3526.92 - 21.312 \cdot S_{t-54}}{G_{t-17}} - 10.1355$$
$$\frac{dS_t}{dt} = \frac{132.271 - 0.0178 \cdot G_{t-57}}{S_{t-18}} - 2.9693$$

Withheld Test Set #3 Fit

$$\frac{dG_t}{dt} = \frac{5057.1 - 39.7452 \cdot S_{t-46}}{G_{t-21}} - 6.4406$$
$$\frac{dS_t}{dt} = \frac{295.426 - 0.2965 \cdot G_{t-54}}{S_{t-20}} - 3.871$$

Looking For Invariants

Data Mining

42

42+x-x

42+1/(1000+x²)

			Calculate nartial derivatives Numerically
x	У	•••	
0.1	2.3		
0.2	4.5		$\delta x \qquad \delta y$
0.3	9.7		$-$, $\frac{\cdot}{\circ}$,
0.4	5.1		$\partial y \qquad \partial x$
0.5	3.3		·
0.6	1.0		
	•••	•••	

Experiments

 $x^2 + y^2 - 16 = 0 \qquad x^3 + x - 16 = 0$

 $x^3 + x - y^2 - 1.5 = 0$

 $x^2 + y^2 + z^2 - 1 = 0$

$$H = 114.28 * \left(\frac{dx}{dt}\right)^2 + 692.322 * x^2$$
$$L = 61.591 * \left(\frac{dx}{dt}\right)^2 - 369.495 * x^2$$
.

• Coefficients may have different scales and offsets each run

$$\mathbf{H} = \left(\frac{d\theta}{dt}\right)^2 + 2.42847 * \cos(\theta)$$
$$\mathbf{L} = 3.52768 * \left(\frac{d\theta}{dt}\right)^2 - 9.43429 * \cos(\theta)$$

Double Linear Oscillator

С

Detected Invariance:

 $L_{1}^{2}(m_{1}+m_{2})\omega_{1}^{2}+m_{2}L_{2}^{2}\omega_{2}^{2}+m_{2}L_{1}L_{2}\omega_{1}\omega_{2}\cos(\theta_{1}-\theta_{2})-19.6L_{1}(m_{1}+m_{2})\cos\theta_{1}-19.6m_{2}L_{2}\cos\theta_{2}$

eq	9 Untitled - Eureqa 💶 🗖						- = X			
File	Edit Contr	ol Options	Tools View	Help						
	Enter Data	Smooth	Data $f(x)$	Pick Modeling	Task	Start Search	Solu	tion Statistics		
	A	В	С	D	E	F	G	Н	I.	J_
desc	some variable	some other variable	confidence in y							
var	x	у	w							
1	-3.00	-1.62	1.00					1		
2	-2.94	-1.48	0.56							
3	-2.88	-2.25	0.81							
4	-2.82	-1.98	0.81							
5	-2.76	-2.51	0.59							
6	-2.70	-2.88	0.52							
7	-2.64	-3.22	0.65							
8	-2.58	-2.83	0.90							
9	-2.52	-3.01	0.82							
10	-2.46	-3.14	0.75							
11	-2.40	-3.71	0.83							
12	-2.34	-2.98	0.86					1		
13	-2.28	-3.03	0.71							
14	-2.22	-3.09	0.51							
15	-2.16	-3.12	0.70							
16	-2.10	-3.19	0.99							
17	-2.04	-2.86	0.91							
18	-1.98	-2.31	0.64							
19	-1.92	-2.23	0.85							
20	-1.86	-1.90	0.83							
21	-1.80	-0.75	0.99							
,72	_1 74	.0 9R	0 55							

Eureqa

							Kraft		Moment
	Bauteil	Formel	nı	n ₂	n ₃				
Cw	Rohr	$C_W = n_1 \left(\beta + \gamma\right)^{n_2} \cdot \left(\tau + \frac{n_3 \tau \cdot \beta}{n_4 - \beta}\right)^{n_5}$	1,3034	0,9145	-0,168	x	-		
	Nocken	$C_W = n_1 \left(\tau \cdot \gamma + n_2 \tau^3 \cdot \beta^3 \gamma + n_3 \tau \cdot \beta \cdot \gamma \right)^{n_4}$	2,149	-0,1871	-0,523				
~	Rohr	$C_L = \tau \left(\gamma + n_1 \beta\right)^{n_2}$	1,729	0,5269					
ն	Nocken	$C_L = exp((\tau \cdot \gamma)^{n_1} - \beta^{\beta})$	0,237					Non-	
~	Rohr	$C_N = n_1 \ \tau \ \beta \ \gamma + n_2 \ \tau \ \beta^2 \ \gamma$	2,233	-1,789					
ч	Nocken	$C_{N}=\beta+n_{1}\ \beta\ \gamma+n_{2}\ \tau\ \beta\ \gamma-\tau\ \beta^{2}\ \gamma+n_{3}\ \beta^{2}\ \gamma$	0,486	1,2526	-0,388		-		
	Rohr	$C_{T}=n_{1}t\pm n_{2}b^{4}$	0,903	0,268		Y			
CT	Nocken	$C_{T} = n_{1} \exp\left(\frac{n_{2} \tau + n_{2} \beta}{1 + n_{4} \gamma}\right)$	0,910	0,2223	0,47 37			X 🕨	No.
	Bauteil	Formel	ոլ	nz	n ₃	z			
Bw	Rohr	$B_W = \exp(n_1 \mid \beta \mid \gamma + n_2) \cdot \tau^{n_x} \cdot \gamma^{n_x}$	3,5363	-1,4796	0,9551)			nungstaktoren tur	
	Nocken	$B_W = n_1 \left(\gamma - \tau\right)^{(n_2 \tau^{n_3})}$	0,6354	0,5072	0,26126			die Rundnocken in der EN 13480-3	
	Rohr	$B_L = \tau \cdot exp((n_1/\gamma)^{n_2} + n_1 \cdot (\beta \cdot \gamma)^{n_3})$	1,6629	-0,07132	-2,645	-0,7284		Kapitel11 für Memb-	
•	Nocken	$B_L = n_1 \cdot exp(n_2 \ \tau \ \gamma + n_3 \ \tau \ \beta^{n_4} + n_5 \ \beta)$	1,0141	0,02131	-0,1538	-0,7421	-0,04504	Table 3: Proposal	
	Rohr	$B_N = n_1 \cdot exp(n_2 \ \beta) \ \cdot \ (n_3 \ \tau \ \gamma)^{(n_4 exp(n_4/\beta))}$	5,2163	0,16729	0,01469	0,7907	0,10408	for new stress	
B _N	Nocken	$B_{N} = n_{1} \exp \left(\frac{n_{2'} \tau \beta + n_{3'} \tau / \gamma}{(\beta \cdot \tau + (n_{4} / \gamma)^{n_{4}})} \right)$	1,0523	1,7175	-7,1793	7,8903	1,4792	Intensification factor formulars for circular attachments in the EN 13480-3	
	Rohr	$B_T = n_1 \cdot \tau \cdot exp\left(\frac{n_2}{\gamma \cdot \beta^{\tau} \cdot (\tau \cdot \beta^2 - 1) - \beta \cdot \gamma \cdot (1 + n_3 \cdot \tau \cdot \beta)}\right)$	1,0646	2,008	0,02014			clause 11 for memb- rane stresses.	
Вт	Nocken	$B_{T} = n_{I} \left(\frac{\beta \cdot \gamma^{(n_{J}) \beta}}{\exp(n_{3} \tau)} \right)^{(1/(\gamma + n_{s} \beta)' \tau)}$	0,9369	2,594	2,0855	2,4033			

Von Thomas Hermanowski, Dr. Andreas Rick, Dr. Jochen Weber

Scalability

- Complexity
- Noise
- Hidden (unobservable) variables
- Justification

Approximations

Building Blocks	Detected Pendulum Law	Approximation			
*, +, -, cos(), sin()	$\omega^2 - 19.6 \cdot \cos(\theta)$	Exact Solution			
*, +, -, sin()	$\omega^2 - 19.5999 \cdot \sin(-1.57079 + \theta)$	Trigonometric identity			
*, +, -	$\omega^2 + 9.7108 \cdot \theta^2 - 0.7042 \cdot \theta^4$	Taylor series expansion (4 th order)			

Alphabet

Time to Regress

STOCHASTIC MODELS
10% Noise

30% Noise

70% Noise

Regressing Stochastic elements

Add a "noise" building block

-1

Likelihood Fitness

Find a model that maximizes the probability of seeing this data

Sample the Timespan

Short Time Gaps in Experimental Data:

Long Time Gaps in Experimental Data:

Concluding Remarks

Chris Anders

Correlation is enough. Faced with massive Jata, [the Scientific Method] in becoming obsolete. We can stop looking for models.

Wired 16.07

The data deluge accelerates our ability to hypothesize, model, and test.

The New York Eimes

Theoretical physicists are not yet obsolete, but scientists have taken steps toward replacing themselves

The end of insight

I am worried that we have enjoyed a brief window in human history where we could actually understand things, but that period may be coming to an end.

-- Steve Strogatz

 $k_{1}/k_{1} = 1$ $k_{2}/k_{1} = m_{2}L_{2}^{2}/(m_{1}L_{1}^{2} + m_{2}L_{1}^{2})$ $k_{3}/k_{1} = 2.00055m_{2}L_{2}/(m_{1}L_{1} + m_{2}L_{1})$ $k_{4}/k_{1} = 19.6/L_{1}$ $k_{5}/k_{1} = 19.6 \cdot m_{2}L_{2}/(m_{2}L_{1}^{2} + m_{1}L_{1}^{2})$ $L_{1}^{2}(m_{1} + m_{2})\omega_{1}^{2} + m_{2}L_{2}^{2}\omega_{2}^{2} + 2 \cdot m_{2}L_{1}L_{2}\omega_{1}\omega_{2}\cos\left(\theta_{1} - \theta_{2}\right)$ $-19.6 \cdot L_{1}(m_{1} + m_{2})\cos\theta_{1} - 19.6m_{2}L_{2}\cos\theta_{2}$