Semantic Knowledge Bases

from Web Sources

IJCAI 2011 Tutorial

Hady W. Lauw ${ }^{1}$, Ralf Schenkel ${ }^{2}$, Fabian Suchanek ${ }^{3}$, Martin Theobald ${ }^{4}$, and Gerhard Weikum ${ }^{4}$
${ }^{1}$ Institute for Infocomm Research, Singapore
${ }^{2}$ Saarland University, Saarbruecken
${ }^{3}$ INRIA Saclay, Paris
${ }^{4}$ Max Planck Institute for Informatics, Saarbruecken
http://www.mpi-inf.mpg.de/yago-naga/IJCAI11-tutorial/

Outline

- Part I
- Machine Knowledge \& Intelligent Applications
- Part II
- Knowledge Representation \& Public Knowledge Bases
- Part III
- Extracting Knowledge
- Part IV
- Ranking and Searching
- Part V
- Linked Data
- Part VI
- Conclusion and Outlook

Goal: Turn Web into Knowledge Base

Source:
G. Weikum, G., Kasneci, M. Ramanath, F. Suchanek:
DB \& IR methods for
knowledge discovery.
Communications of
the ACM 52(4), 2009
comprehensive DB of human knowledge

- everything that Wikipedia knows
- everything machine-readable
- capturing entities, classes, relationships

Approach: Knowledge Harvesting

Automatically Constructed Knowledge Bases:

- Mio's of individual entities
- 100 000's of classes/types
- 100 Mio's of facts
-100's of relation types

Сус
SUMO

WikiNet

DBLife TextRunner

> WikiTaxonomy

True Knowled?e

Carnegie Mellon

ReadTheWeb

Knowledge for Intelligence

- entity recognition \& disambiguation
- understanding natural language \& speech
- knowledge services \& reasoning for semantic apps (e.g. deep question answering)
- semantic search: precise answers to advanced queries (by scientists, students, journalists, analysts, etc.)

Swedish king's wife when Greta Garbo died?
FIFA 2010 finalists who played in a Champions League final?
Politicians who are also scientists?
Relationships between
Max Planck, Angela Merkel, Jim Gray, and the Dalai Lama?
Drugs for treating Alzheimer?
Influenza vaccines for teens with high blood pressure?

Application 1: Semantic Queries on Web

Square it Add to this Square
left-handed guitarists from America

	Item Name	V	Image	X	Description X	Genre	T X	Date Of Birth	X	Place Of Birth \quad, X	Date Of Death $\nabla \times$	Add columns	Add
x	Pete Townshend				Pure power designed for the modern left handed guitarist! What do Pete Townshend , Carlos Santana, and Tony lommi all have in common? Back in the '60s, each of these	Rock		19 May 1945		London, England	1995-06-19		
x	Kurt Cobain				So uncommon is the phenomenon, you can't help but be taken aback at the sight of a guitarist playing his instrument in left-hand fashion. ... Interestingly, Carlos Santana once	Rock		February 20, 1967		Aberdeen, Washington	1994-04-05		
X	Jimi Hendrix				James Marshall "Jimi" Hendrix (born Johnny Allen Hendrix, November 27, 1942 - September 18, 1970) was an American guitarist and singer-songwriter. \qquad Although very popular in	rock		November 27, 1942	- Aberdeen, Washington Place of birth for Kurt Cobain en.wikipedia.org - all 10 sources »				
X	Albert King				One of the "Three Kings of the Blues Guitar" (along with B. B. King and Freddie King), Albert King stood 6' '" $^{\prime \prime}$ (192 cm) (some reports say $6^{\prime} 7^{\prime \prime}$) and weighed $250 \mathrm{lbs}(118 \mathrm{~kg})$ and	Blues		April 25, 1923	Other possible values Aberdeen, Washington, United States h. List of famous star celebrity ... Place of Birth: Aberdeen, Washington, United States. momw.birthdayseek.com - all 3 sources\%				
X	Carlos Santana				BLAKE SCHWARZENBACH: American musician who was the singer and left handed guitarist of Jawbreaker from 1988-1996, Jets to Brazil 1997-2003, The Thorns of Life	Rock		July 20, 1947	Aberdeen, Washington, USA Place of Birth for Kurt Cobain mom.imdb.com - all 6 sources :				
X	Buddy Guy				BLAKE SCHWARZENBACH: American musician who was the singer and left handed guitarist of Jawbreaker from 1988-1996, Jets to Brazil 1997-2003, The Thorns of Life	Blues		1936-07-30	Hoquiam, Washington, USA Birth Place for Kurt Cobain wnw. aceshowbiz.com - all 5 sources» Search for more values \%				
x	Paul McCartney				Guitarists in this category pick with their left hand and have the strings in the correct order for a left-handed player (i.e. the low string on the top). They either have true left-handed	Rock		$18 . J$ June 1942		Liverpool, England	4 possible values		
X	Ramones				While Ritchie was left-handed, he was so eager to learn the guitar that he mastered the traditionally right-handed version of the instrument. ... Valens was an accomplished	Punk rock		December 03, 1961		4 possible values	3 possible values		
X	Tony lommi				Francis Anthony Melby "Tony" lommi(born 19 February 1948, in Aston, Birmingham, England) is an English guitarist and songwriter best known as the ... He plays guitar	Rock		1948-02-19		Birmingham, England	Still Strumming		

Application 1: Semantic Queries on Web

?OOQ Squared drugs for treating Alzheimer

Square it
Add to this Square

Did you mean: drugs for treating Alzheimer's

drugs for treating Alzheimer

Description
Tacrine is the first FDA approved drug for the treatment of Alzheimer's disease as safe and effective. The fear of toxicity has been exaggerated. Liver function testing could be
The Food and Drug Administration (FDA) has declied to approve Memantine (namenda) to treat mild Alzheimer's. Olanzapine (Zyprexa) Olanzapine (Zyprexa). Atypical Antipsychotic

Treating the symptoms of Alzheimer's can provide patients with comfort, dignity, and independence for a longer period of time and can encourage ... Medications called
Phosphatidylserine might increase a chemical 8002-43-5
in the body called acetylcholine. Medications for Alzheimer's disease called
acetylcholinesterase inhibitors also increase What should I avoid while taking Reminyl (galantamine)? Galantamine can cause side effects that may impair your thinking or reactions. ... Reminyl (galantamine) side
While current medications cannot stop the damage Alzheimer's causes to brain cells, they may help lessen or stabilize symptoms for a limited time by affecting certain chemicals

Exelon will not be available in generic form until 123441-03-2
Novartis' patent expires in 2014. Sources:
About Exelon for mild to moderate Alzheimer's dementia. Novartis Pharmaceuticals. 2008. It's important to remember that while ARICEPT treats the symptoms of Alzheimer's disease, it is not a cure. ... Before starting on ARICEPT $23 \mathrm{mg} /$ day. patients should be on ARICEPT 10

Cas Number	V X	Formula	T X	Half Life	VX	Pubchem	V\|
321-64-2		C13H14N2		2-4 hours		CID 1935	
132539-06-1		C17H20N4S		21-54 hours		CID 4585	
51-84-3		C7H16NO2		approximately 2 minutes		187	
8002-43-5		C13H24NO10P				445141	
357-70-0		C17H21NO3		7 hours		1 possible value	
59-02-9		C 29 H 50 O 2					
123441-03-2		3 possible values		1.5 hours		77991	
120011-70-3				70 hours			

70 hours

Application 1：Faceted Search

CompleteSearch
 by MPII AG1－IR

deutsch English Options
german football club
zoomed in on 7576 documents

＾Refine by WORD	》＊＊
club	（5848）
clubs	（3651）
clubnumber	（899）
clube	（179）
［top 4］［top 50］［all 74］	
＾Refine by CATEGORY	》＊＊
Living people	（2197）
German footballers	（537）
First Bundesliga footballers	（467）
German football clubs	（335）
［top 4］［top 50］［top 250］［top 1000］	
＾Refine by INSTANCE（2148）	》＊＊
Manchester United F．C．，the CLUB	（685）
FC Bayern Munich，the CLUB	（676）
Arsenal F．C．，the CLUB	（552）
Liverpool F．C．，the CLUB	（507）
［top 4］［top 50］［top 250］［top 1000］	

Hits 1－20 of 7576 for german football club（PageUp \triangle／PageDown next／previous hits）

Timeline of English football

This is a timeline of English football which contains notable football－rel have occurred both on and off the field \qquad NOTOC \qquad 1840s－1850s
however he could not beat Mark Hughes＇record for the most fir one player．The victory by Chelsea stopped Manchester United from v Double ．＊Leeds United A F C entered administration on 4th May after years struggling with the debt incurred by previous ．．．．．．．formation to their way from Division Three（now League Two ）to the top flight． 200 lose 1－0 to Germany in their opening qualifier for the 2002 World Cup which is also the last game at Wembley Stadium before it ．．．．．．．［there matches］
http：／／en．wikipedia．org／wiki／Timeline＿of＿English＿football

History of German football

The History of German football is one that has seen many changes popular game from early on，and the German sports landscape was purge of Jews from their organisations as ordered by the regime．A fe as Alemannia Aachen and Bayern Munich，moved to support or prote members in the face of these actions．Football was re－organised into
［there are more matches］
http：／／en．wikipedia．org／wiki／History＿of＿German＿football

Timeline of English football

This is a timeline of English football which contains notable football－rel have occurred both on and off the field．＿＿NOTOC＿1840s－ 1850 s

H．Bast et al．：ESTER：Efficient Search on Text，Entities，and relations，SIGIR＇07

Application 2: Question Answering (QA)

- KB from Wikipedia and user edits
- translation of natural-language questions into KB queries

```
\(\Leftrightarrow\) Using closest Wolfram/Alpha interpretation: professors
```

```
Assuming "professors" is an occupation | Use as a word instead
```

Assuming any type of postsecondary teachers Use
postsecondary arts, communications, and humanities teachers or more instead

Input interpretation:

postsecondary teachers people employed United States

Result:
1.391 million people (2008)

Employment history:
Show wage history

(from 2001 to 2008) (in millions of people)

- KB of curated, structured data
- not just facts, but also algorithms \& models

Application 2: Deep QA in NL

William Wilkinson's "An Account of the Principalities of Wallachia and Moldavia" inspired this author's most famous novel

This town is known as "Sin City" \& its downtown is "Glitter Gulch"

As of 2010, this is the only former Yugoslav republic in the EU

99 cents got me a 4-pack of Ytterlig coasters from this Swedish chain

question classification \& decomposition

knowledge back-ends
D. Ferrucci et al.: Building Watson: An Overview of the DeepQA Project. Al Magazine, Fall 2010.

Application 3: Machine Reading

It's about the disappearance forty years ago of Harriet Vanger, a young scion of one of the wealthiest families in Sweden and about her uncle, determined to know the truth about what he believes was her murder. Blomkvist visits Henrik Vanger at same te onthr same and of Hedeby. The old man 3loyinvist in hy samemuling solid evidence against Wennerström. Blomkvist As same pend a year writino the Vanger family history as a cover for the real assignment: the disappearance of V OWhs niece Harriet some 40 years earlier. Hedeby is home to several generations of Vangers, all part owners in Vanger Enterprises. Blomkvist beco uncleOf inted with the men hires the extended Vanger family, most of whom resent his presence. He does, however, stant a short lived affriiwith Cecilia, the njece Af same seri enemyOf overing that Salandern_orsuad same assist him wiph resear h. They even 1 affairWith elovers, Da Blomkvist has trquire getting close to Lisbeth who treats virtually everyone sne meets with hostility. Ultimately the two discover that Harriet's brother Martin, CEO $\&$ Vanger Industries secretly a serial killer. A 24-year-old computer hacker sporting an arontment of tattoos and body piercings surmom+a herself by doing deep backgrou head Of zations for Dragan Armansky, who, in tul same ies that Lisbeth Salander is "the perfect victim for anyone who wished her ill."
O. Etzioni, M. Banko, M.J. Cafarella: Machine Reading, AAAI'06 T. Mitchell et al.: Populating the Semantic Web by Macro-Reading Internet Text, ISWC’09

Named-Entity Disambiguation

Three NLP tasks:

1) named-entity detection: segment \& label by HMM or CRF (e.g. Stanford NER tagger)
2) co-reference resolution: link to preceding NP (trained classifier over linguistic features)
3) named-entity disambiguation:
map each mention (name) to canonical entity (entry in KB)

Mentions, Meanings, Mappings

Agnetha,

Agnetha Qvarnström

Mentions (surface names)

Bor,

Benny
and Anni-Frid

Agnetha Fältskog
Benny Goodman
Benny Andersson

Entities

(meanings)

Mention-Entity Graph

weighted undirected graph with two types of nodes

Popularity Similarity (m, e):

- freq(m,e|m)
- length(e)
- \#links(e) (m, e):
- cos/Dice/KL (context(m), context(e))

Agnetha Q.
Agnetha F.
Benny G.
Benny A.
B. Waterloo

Waterloo St.
Waterloo (s)

Mention-Entity Graph

 weighted undirected graph with two types of nodes

Popularity Similarity (m,e):

- freq(m,e|m)
- length(e)
- \#links(e)
(m, e):
- cos/Dice/KL (context(m), context(e))

Coherence (e, é):

- dist(types)
- overlap(links)
- overlap
(anchor words)

Mention-Entity Graph

 weighted undirected graph with two types of nodes| Agnetha, | Agnetha Q. | Swedish female singers people from Jönköping |
| :---: | :---: | :---: |
| Björn, singers | | |
| Benny. Agnetha F. musicians | | |
| and Anni-Frid \quad Benny G. | | Swedis |
| were Sweden's | | people from Stockholm |
| most successful | Benny A. | composers musicians |
| pop music group. | B. Waterloo | |
| heir greatest hits | Waterloo St. | ABBA songs \#1 chart singles |
| Waterloo | | songs |
| and Mamma Mia. | Waterloo (s) | artifacts |

Popularity Similarity (m,e):

- freq(m,e|m)
- length(e)
-\#links(e)
(m, e):
- cos/Dice/KL (context(m), context(e))

Coherence (e, é):

- dist(types)
- overlap(links)
- overlap
(anchor words)

Mention-Entity Graph

 weighted undirected graph with two types of nodes

Popularity Similarity (m, e):

- freq(m,e|m)
- length(e)
-\#links(e)
(m, e):
- cos/Dice/KL (context(m), context(e))

Coherence (e, e'):

- dist(types)
- overlap(links)
- overlap
(anchor words)

Mention-Entity Graph

 weighted undirected graph with two types of nodes

Popularity Similarity (m,e):

- freq(m,e|m)
- length(e)
-\#links(e)
(m, e):
- cos/Dice/KL (context(m), context(e))

Coherence (e, e'):

- dist(types)
- overlap(links)
- overlap
(anchor words)

Joint Mapping

- Build mention-entity graph or joint-inference factor graph from knowledge and statistics in KB
- Compute high-likelihood mapping (ML or MAP) or dense subgraph such that: each m is connected to exactly one e (or at most one e)
K. Kulkarni et al.: Collective Annotation of Wikipedia Entities in Web Text, KDD‘09
J. Hoffart et al.: Robust Disambiguation of Named Entities in Text, EMNLP'11

AIDA Accurate Online Disambiguation

http://www.mpi-inf.mpg.de/yago-naga/aida/

Disambiguation Method:

prior	prior+sim	prior+sim+coherence (graph)

Parameters: (default should be OK)

```
Similarity Impact: 0.9
```

-

Ambiquity degree 5

Coherence threshold: 0.9

Mention Extraction:

Stanford NER Manual

You can manually tag the mentions by putting them between [[manual mode.

Agnetha, Björn, Benny, and Anr successful pop music group. The and SOS.

Input Type:TEXT
[Agnetha Fältskog] Agnetha, [Björn Ulvaeus] Björn, [Benny Andersson]Benny, and [Anni-Frid Lyngstad]Anni-Frid formed [Sweden]Sweden's most successful pop music group. Their greatest hits were [Waterloo (ABBA song)] Waterloo and SOS.

al Steps

VE Similarity

Weighted Degree -497821536934663 0.052519420551120015 \begin{tabular}{|l|l|l|}
\hline $278548264326 \mathrm{E}-5$ \& 0.011433304988143484

\hline

\hline $37274091523 E-5$ \& 0.009133432457122746

\hline
\end{tabular}

$37580795959 \mathrm{E}-4 \quad 0.005835433432846912$ | $37580795959 E-4$ | 0.005835433432846912 |
| :--- | :--- |
| $192167752377 \mathrm{E}-5$ | 0.005348033055157968 |
| | 0.0047467918338561935 |

AIDA Accurate Online Disambiguation

http://www.mpi-inf.mpg.de/yago-naga/aida/

Disambiguation Method:

Parameters: (default should be OK)

Mention Extraction:

Stanford NER Manual

You can manually tag the mentions by putting them between [[and manual mode.

Tottenham	Crouch
Bayern	Robben
Shakhtar	Adriano
ManU	Beckham
Chelsea	Ballack
Real	Raul
Milano	Basten

Input Type:TABLE
[Tottenham Hotspur F.C.] Tottenham [Peter Crouch]Crouch [FC Bayern Munich]Bayern [Arjen Robben] Robben [FC Shakhtar Donetsk]Shakhtar [Adriano Leite Ribeiro] Adriano [Manchester United F.C.]ManU [David Beckham]Beckham [Chelsea F.C.]Chelsea [Michael Ballack]Ballack [Real Madrid C.F.]Real [Raúl González] Raul [A.C. Milan]Milano [John Basten] Basten

Application 4: Annotation of Web Data

Given a Web table (in HTML, XML, ...)

- annotate column with entity type
- annotate pair of columns with relationship type
- annotate table cell with entity ID

Relation label

G. Limaye, S. Sarawagi, S. Chakrabarti: Annotating and Searching Web Tables

Using Entities, Types and Relationships, PVLDB 2010

Application 4: Map Annotation

- Determine geo entities (landmarks) in vicinity, via GPS
- Show information about these entities, obtained from KB
- Smartphone and Augmented-Reality applications

C. Becker , C. Bizer: Exploring the Geospatial Semantic Web with DBpedia Mobile, J. Web Sem. 2009

Spectrum of Machine Knowledge（1）

factual：

 bornIn（GretaGarbo，Stockholm），hasWon（GretaGarbo，AcademyAward）， playedRole（GretaGarbo，MataHari），livedIn（GretaGarbo，Klosters）
taxonomic（ontology）：

instanceOf（GretaGarbo，actress），subclassOf（actress，artist）

lexical（terminology）：

means（＂Big Apple＂，NewYorkCity），means（＂Apple＂，AppleComputerCorp） means（＂MS＂，Microsoft），means（＂MS＂，MultipleSclerosis）

multi－lingual：

meansInChinese（，，乔戈里峰＂，K2），meansInUrdu（，，＂，K2） meansInFrench（，，école＂，school（institution））， meansInFrench（，，banc＂，school（of fish））

Spectrum of Machine Knowledge (2)

ephemeral (dynamic services):

wsdl:getSongs (musician ?x, song ?y), wsdl:getWeather (city?x, temp ?y)

common-sense (properties):

hasAbility (Fish, swim), hasAbility (Human, write), hasShape (Apple, round), hasProperty (Apple, juicy),
hasMaxHeight (Human, 2.5 m)

common-sense (rules):

$\forall x$: human $(x) \Rightarrow$ male $(x) \vee$ female (x)
$\forall x$: (male $(x) \Rightarrow \neg$ female $(x)) \wedge$ (female $(x)) \Rightarrow \neg$ male $(x))$
$\forall x$: animal $(x) \Rightarrow(h a s L e g s(x) \Rightarrow$ isEven(numberOfLegs(x))

temporal (fluents):

hasWon (GretaGarbo, AcademyAward)@1955
marriedTo (AlbertEinstein, MilevaMaric)@[6-Jan-1903, 14-Feb-1919]

Spectrum of Machine Knowledge (3)

free-form (open IE):

hasWon (NataliePortman, AcademyAward)
occurs („Natalie Portman", „celebrated for", „Oscar Award")
occurs („Jeff Bridges", „nominated for", „Oscar")

multimodal (photos, videos):

StuartRussell
JamesBruceFalls

social (opinions):
admires (maleTeen, LadyGaga), supports (AngelaMerkel, HelpForGreece)
epistemic ((un-)trusted beliefs):
believe(Ptolemy,hasCenter(world,earth)), believe(Copernicus,hasCenter(world,sun)) believe (peopleFromTexas, bornIn(BarackObama,Kenya))

This Tutorial

In this tutorial, we will explain:

- how a knowledge base is organized
- which knowledge bases are publicly available
- how we can automatically construct knowledge bases
- how we can query a knowledge base and rank the results
- how we can deal with inter-linked knowledge bases

We discuss:

- fundamental models \& methods
- state-of-the-art techniques
- open problems \& research challenges

Readings for Part I

- D.B. Lenat: CYC: A Large-Scale Investment in Knowledge Infrastructure. Commun. ACM 38(11): 32-38, 1995
- C. Fellbaum, G. Miller (Eds.): WordNet: An Electronic Lexical Database, MIT Press, 1998
- O. Etzioni, M. Banko, S. Soderland, D.S. Weld: Open information extraction from the web. Commun. ACM 51(12): 68-74, 2008
- G. Weikum, G. Kasneci, M. Ramanath, F.M. Suchanek: Database and information-retrieval methods for knowledge discovery. Commun. ACM 52(4): 56-64, 2009
- A. Doan, L. Gravano, R. Ramakrishnan, S. Vaithyanathan (Eds.): Special Issue on Managing Information Extraction, SIGMOD Record 37(4), 2008
- G. Weikum, M. Theobald: From information to knowledge: harvesting entities and relationships from web sources. PODS 2010
- First Int. Workshop on Automated Knowledge Base Construction (AKBC), Grenoble, 2010, http://akbc.xrce.xerox.com/
- D.A. Ferrucci, Building Watson: An Overview of the DeepQA Project.

AI Magazine 31(3): 59-79, 2010

- T.M. Mitchell, J.Betteridge, A. Carlson, E.R. Hruschka Jr., R.C. Wang:

Populating the Semantic Web by Macro-Reading Internet Text. ISWC 2009

- Roberto Navigli: Word sense disambiguation: A survey. ACM Comput. Surv. 41(2), 2009
- Stefano Ceri, Marco Brambilla: Search Computing: Challenges and Directions, Springer, 2010

Outline

- Part I V
- Machine Knowledge \& Intelligent Applications
- Part II
- Knowledge Representation \& Public Knowledge Bases
- Part III
- Extracting Knowledge
- Part IV
- Ranking and Searching
- Part V
- Linked Data
- Part VI
- Conclusion and Outlook

Outline for Part II

- Knowledge Representation
- Public Knowledge Bases:
- Manually constructed knowledge bases
- Knowledge bases from Wikipedia
- Knowledge bases beyond Wikipedia

RDFS-Ontologies

An RDFS-ontology can be seen as a directed labeled multi-graph, where the nodes are entities and the edges relations.

Labels

Event Entities

Event entities allow representing arbitrary relational data as binary graphs

Classes

Entailment

RDFS specifies entailment rules of the form

If the KB contains triples of this form
then add this triple
Example:

$$
\begin{aligned}
& \text { <X, type, C> } \\
& \text { <C, subclassOf,D> }
\end{aligned}
$$

<X,type,D>

This computation terminates in polynomial time (If n o blank nodes are present). $^{\text {. }}$

Relations

The Web Ontology Language (OWL) is a set of predicates with special additional semantic rules.

OWL Undecidability

OWL defines so powerful predicates that it is undecidable.

OWL-DL

There are several decideable fragments of OWL, e.g., OWL-DL.
hasElement

Parent
hasElement
list
owl:IntersectionOf

OWL-DL mirrors the Description Logic $\operatorname{SHOI} \mathcal{F}^{(D)}$.
father $=$ parent Π man

Reification

Reification is the method of creating an entity that represents a fact.

RDFS: Summary

The Resource Description Format (RDF(S)) is a W3C standard that provides a standard vocabulary to model ontologies.

An RDFS ontology can be seen as a directed labeled multi-graph where

- the nodes are entities
- the edges are labeled with relations

Edges (facts) are commonly written
 bornIn(Elvis, Tupelo)

Outline for Part II

- Knowledge Representation
- Public Knowledge Bases:
- Manually constructed knowledge bases
- Knowledge bases from Wikipedia
- Knowledge bases beyond Wikipedia

Douglas Lenat
Cyc is a knowledge base about common sense knowledge

- started in 1984
- driven by cYcorp
- staff of 20
- goal: formalize knowledge manually

Сyc: Language

CycL is the formal language that Cyc uses to represent knowledge. (Semantics based on First Order Logic, syntax based on LISP)
(\#\$forall ?A
(\#\$implies
(\#\$isa ? $\#$ \#\$Animal)
(\#\$thereExists ?M
(\#\$mother ? ? ?M))))
(\#\$arity \#\$GovernmentFn 1)
(\#\$arg1Isa \#\$GovernmentFn \#\$GeopoliticalEntity) (\#\$resultIsa \#\$GovernmentFn \#\$RegionalGovernment)
(\#\$governs (\#\$GovernmentFn \#\$Canada) \#\$Canada)

Cyc: Example of Content

\#\$Love

Strong affection for another agent arising out of kinship or personal ties.
guid: bd589433-9c29-11b1-9dad-c379636f7270 direct instance of: \#\$FeelingType direct specialization of: \#\$Affection direct generalization of: \#\$Love-Romantic

Facts and axioms about: Transportation, Ecology, everyday life, chemistry, healthcare, animals, law, computer science...

If a computer network implements IEEE 802.11 Wireless LAN Protocol and some computer is a node in that computer network, then that computer is vulnerable to decryption.

Cyc: Summary

	Cyc	SUMO
Content	Common sense knowledge, axioms	Common sense knowledge, axioms
Main strength	Huge ontology, with tools	Free research project
Technique	Manual	Manual
License	proprietary, OpenCyc is Apache License V2.0	GNU GPL
Entities	500k	SUMO is a
research		
Assertions	5 m	20k
Relations	15k	70k
Tools	Reasoner, NL tool	similar spirit, driven by Adam Pease.
URL	http://cyc.com	Reasoner
References	[Lenat, Comm. ACM 1995]	http://ontologyportal.org

WordNet

WordNet is a lexicon of the English language

- started in 1985
- driven by the Cognitive Science Laboratory, Princeton University
- written by lexicographers
- goal: formalize the English language

WordNet: Content

Synonymous words for the concept

Gloss describing the concept

\{ camera, television camera\}
"television equipment consisting of a lens system that focuses an image on a photosensitive mosaic"

WordNet: Semantic Relations

Relation	Meaning	Examples
Synonymy (N, V, Adj, Adv)	Same sense	(camera, photographic camera) (mountain climbing, mountaineering) (fast, speedy)
Antonymy (Adj, Adv)	Opposite	(fast, slow) (buy, sell)
Hypernymy (N)	subclassOf	(camera, photographic equipment) (mountain climbing, climb)
Meronymy (N)	Part	(camera, optical lens) (camera, view finder)
Troponymy (V)	Manner	(buy, subscribe) (sell, retail)
Entailment (V)	X must mean doing Y	(buy, pay) (sell, give)

WordNet: Summary

WordNet: A lexicon of the English language.

Content	Adjectives, verbs, nouns and adverbs of the English language
Format	Visualization tool data downloadable in Prolog-like format
Main strength	High quality lexicon for English
Technique	Manual
Size	Words: 155k
	Senses: 117k
License	Proprietary, free use
Reference	[Miller, Comm ACM 1995]
URL	http://wordnet.princeton.edu

Wikipedia

Wikipedia is a free online encyclopedia

- started in 2001
- driven by Wikimedia Foundation, and a large number of volunteers
- goal: build world's largest encyclopedia

Wikipedia: Articles and Attributes

Elvis Presley 1 Article $==1$ Page $==1$ Entity

Elvis Aaron Presley (January 8, 1935 - August 16, 1977) was one of the most popular American singers of the 20th century.

Full text information

Infobox:
Tabular information in the form Attribute: Value

A page is in one or multiple categories. Categories form a hierarchy

Elvis Presley

Publicity photo for Jailhouse Rock (1957)
Background information
Birth name Elvis Aaron Presley
Born
January 8, 1935
Tupelo, Mississippi,
United States
August 16, 1977 (aged 42) Memphis, Tennessee, United States
Genres
Rock and roll, pop, rockabilly,
country, blues, gospel, R\&B
Occupations Musician, actor
Instruments Vocals, guitar, piano
Years active 1954-77

Categories: American Rock singers

Wikipedia: Summary

Wikipedia: A free online encyclopedia.

Content	Entities of public interest (people, geography, music...)
Format	Full text, downloadable in XML
Main strength	Good quality, large coverage, free
Technique	Manual creation by the community
Size	Articles: $18 \mathrm{~m}(3.6 \mathrm{~m}$ in English)
	Languages: 281
License	Creative Commons Attribution-ShareAlike (CC-BY-SA)
URL	http://download.wikimedia.org/

Outline for Part II

- Knowledge Representation
- Public Knowledge Bases:
- Manually constructed knowledge bases
- Knowledge bases from Wikipedia
- Knowledge bases beyond Wikipedia

Knowledge Bases from Wikipedia

Basic idea

WikiNet started in 2010 and is driven by the
Heidelberg Institute for Theoretical studies (HITS)

Main idea: Categories and infobox attributes cross-fertilize

WikiNet: Summary

Content	Entities of public interest
Format	inverted index as plain text
Sources	Wikipedia
Main strength	Focus on multilinguality
Technique	Extraction from Wikipedia, propagation of category and infobox attributes
Size	Entities: 3 m Facts: 50 m Relations: 500 Creative Commons BY-SA
License	http://www.h-its.org/english/research/nlp/download/wikinet.php
URL	[Nastase, LREC 2010]
References	

DBpedia

DBpedia

Started in 2007, driven by Free U. Berlin, U. Leipzig, OpenLink

Main idea: Build a community of people who can define and curate the extraction patterns.

\{\{infobox Singer

birthDate: 1935
"birthDate" \rightarrow born
born

DBpedia

DBpedia

The community constructs the taxonomy manually

Currently:

- 280 classes
- covers 50% of all entities

DBpedia

Complemented by the YAGO taxonomy

DBpedia

Content	Entities of public interest		
Format	RDF, API, SPARQL		
Sources	Wikipedia, YAGO/WordNet		
Main strengths	Focus on coverage, interlinking with other data sets		
Technique	Extraction from Wikipedia + manual supervision by the community		
Size	Entities: 3.5 m (in manual taxonomy: 1.7m) Facts: 670 m		
	Attributes: 9k (manually defined: 1k) Manual Classes: 280		
License	CC-BY-SA \& GNU FDL	URL \quad	http://dbpedia.org
:---	:---	\quad	[Auer, ISWC 2007], [Bizer09, JWS 2009]
:---			

YAGO
YAGO (Yet Another Great Ontology) started as PhD thesis in 2007, now major project at the Max Planck Institute for Informatics in Germany

\{\{infobox Singer

birthDate: 1935

manually defined patterns

Main idea: Let the ontology check itself for precision.

YAGO: Consistency Checks

Check uniqueness of functional arguments Check domains and ranges of relations
Check type coherence

YAGO: Annotations

Adding in GeoNames

and some rule-based fact deduction
Adding in the Universal WordNet

YAGO: Summary

Content	Entities of public interest
Format	TSV, RDF, XML, N3, Web Interface
Sources	Wikipedia, WordNet, Geonames
Main strength	Focus on precision, geotemporal annotations, multilingual
Precision	95%
Technique	 Geonames + consistency checks
Size	Entities: 3 m (+ geonames -> 10m) Facts: 120m (+geonames -> 460m) Relations: 100, Classes: 200k, Languages: 200
License	Creative Commons BY-SA
URL	http://mpii.de/yago
References	[Suchanek, WWW 2007] [Hoffart, WWW 2011]
	[deMelo, CIKM 2010]

Freebase

Freebase started in 2000, driven by Metaweb, part of Google since 2010

Imports data from Wikipedia and other sources (e.g., ChefMoz, NNDB, and MusicBrainz).

Main idea:
In Wikipedia, people edit articles.
In Freebase, people edit facts.

Freebase

People

Person /people/person

Freebase: User Contribution

Edit Entities

- create new entities
- assign a new class to an entity
- add/change attributes
- connect to other entities
- upload/edit images

Review

- flag vandalism
- flag entities to be deleted
- vote on flagged content
(3 unanimous vote, or expert as tie-breaker)

Edit Schema

- define new class
- specify attributes of the class
- only by creator/admin
- class is peer-reviewed \& promoted by staff/admin

Data Game

- find aliases in Wikipedia
- extract dates of events from

Wikipedia articles

- use Yahoo image search API

Freebase: Community

Experts

- act as tie breakers
- split entities
- "rewind" changes

Inducted by current experts.

Admins - Members

- create new classes and attributes
- respond to community
suggestions

Promoted by staff or other admins.

- edit
- review,
- vote

Anyone can be a member.

Freebase: Summary

Freebase is a large collaborative knowledge base owned by Google.

Content	Entities with public information
Format	API, RDF
Construction	by the community data import from public sources
Sources	Wikipedia, Libraries, WordNet, MusicBrainz...
Main strength	free and large
Size	Facts: several millions
License	Entities: 20 m
Creative Commons Attribution (CC-BY)	

Outline for Part II

- Knowledge Representation
- Public Knowledge Bases:
- Manually constructed knowledge bases
- Knowledge bases from Wikipedia
- Knowledge bases beyond Wikipedia

Read the Web/NELL

"Read the Web/NELL" is a project at the
Carnegie Mellon University in Pittsburgh, PA, since 2009.

Type Check
If I coach, am I a coach?

+ regular human feedback

Read the Web/NELL

NELL Knou

CMU Read the We

- arthropod (100.0\%)
- Seed
- CPL @156 (100.0\%) on 30-sep-2010 ["hind wings of _" "invertebrates, such as _" "_ swarm from" "other insects, including _" "_ marching home" "honeydew produc like _" "other insects, such as _" "_ do not eat wood" "many legs as _" "_ produce s have complete metamorphosis" "I do n't see anymore _ " "ants, so _" "insecticide fo "such insects as _" "_ are the only insects" "red imported _" "insects like _ " "social it , such as _" "arthropods include _" "insect pests including _" "meaty foods like _" " pests, such as _" "other insects such as _" "insects , in particular _" "_ release a ph like _" "many insects, including _" "_ are social insects" "insect pests such as _" "_ pests \bar{s}, including _" "arthropods , including _" "_ are beneficial insects" "_ are comm "arthropods, such as _"]
- SEAL @151 (50.0\%) on 26-sep-2010 [1]
- politic
- fung
- plar
- arch
- bac
color
- language
- programminglanguage
- dateliteral
- gamescore
- nonneginteger
- politicsissue
- Ilcoordinate
- agent
- animal
- invertebrate
- arthropod
- arachnid
- insect
- crustacean
- mollusk
- vertebrate
- amphibian
- bird
- fish
kateretes (Seed)
mosquito (Seed)
peppered moth (Seed)
sap beetle (Seed)
tettigoniidae (Seed)
triatoma protracta (Seed)
honeylocust spider mite
grape flea beetle
blueberry leaf beetle
sugarcane moth borer
psychoda moth flies
bagworm moth
carpenterworm moths
leafcurl plum aphid
http://rtw.ml.cmu.edu/rtw/
merchant grain beetle

Read the Web/NELL

NELL is an information extraction system that runs continuously.

Content	Entities mentioned on Web pages
Format	TSV
Construction	by a perpetual extractor
Sources	The Web
Main strength	Not limited to a specific source
Size	Facts: 800k
	Categories \& relations: 633
Reference	[Carlson, AAAI 2010]
URL	http://rtw.ml.cmu.edu/

Wolfram Alpha

Wolfram Alpha is a question answering system

- started in 2009
- driven by Wolfram Research
- goal: provide answers instead of Web pages

Stephen Wolfram

Wolfram Alpha: Content

Do professors have above average income?

```
Assuming "professors" is an occupation Use as a word instead
Assuming any type of postsecondary teachers Use
```

 postsecondary arts, communications, and humanities teachers

Result:
1.391 million people (2008)

Employment history:

(from 2001 to 2008
(in millions of peop

- computes answers from an internal knowledge base of curated, structured data.
- stores not just facts, but also algorithms and models

True Knowledge

True Knowledge is a project similar in spirit, driven by William Tunstall-Pedoe’s company.

```
Who was the us president when elvis died?
```

? answer

True Knowled?e

Wolfram Alpha \& TrueKnowledge

	Wolfram Alpha	TrueKnowledge
Content	Facts, Algorithms, Models, Data	Entities of public interest
Sources	Public data	Wikipedia
Main strength	Computational NL queries on public data	Natural Language Query answering on public data
Technique	built-in data and algorithms, curated by experts	Extraction from Wikipedia + user feedback + consistency checks
Size	Facts: 10 trillion Algorithms: 50k	Entities: $25 m$ Facts: 600m
License	Proprietary, access by Web form	Proprietary, access by API
URL	http://wolframalpha.com	$\underline{\text { http://trueknowledge.com }}$

Outline for Part II

- Knowledge Representation
- Public Knowledge Bases:
- Manually constructed knowledge bases
- Knowledge bases from Wikipedia
- Knowledge bases beyond Wikipedia

References for Part II

- Soeren Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak and Zachary G. Ives: "DBpedia: A Nucleus for a Web of Open Data", ISWC 2007
- Christian Bizer, Jens Lehmann, Georgi Kobilarov, Soeren Auer, Christian Becker, Richard Cyganiak and Sebastian Hellmann: "DBpedia - A Crystallization Point for the Web of Data", Journal of Web Semantics, 2009
- Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam R. Hruschka Jr. and Tom M. Mitchell: "Toward an Architecture for Never-Ending Language Learning\}\}, AAAI, 2010
- Gerard de Melo and Gerhard Weikum: "Towards a Universal Wordnet by Learning from Combined Evidence", CIKM, 2009
- Johannes Hoffart, Fabian M. Suchanek, Klaus Berberich, Edwin Lewis-Kelham, Gerard de Melo, and Gerhard Weikum: "YAGO2: Exploring and Querying World Knowledge in Space, Context, and Many Languages", demo at WWW 2011
- D. Lenat: "CYC: A large-scale investment in knowledge infrastructure", Communications of the ACM, 1995
- G. A. Miller: "WordNet: A Lexical Database for English", Communications of the ACM Vol. 38, No. 11: 39-41, 1995
- Vivi Nastase, Michael Strube, Benjamin Boerschinger, Caecilia Zirn, and Anas Elghafari: "WikiNet: A Very Large Scale Multi-Lingual Concept Network", LREC, 2010
- I. Niles, and A. Pease: "Towards a Standard Upper Ontology", FOIS, 2001.
- F. M. Suchanek, G. Kasneci and G. Weikum: "Yago - A Core of Semantic Knowledge", WWW, 2007.
- World Wide Web Consortium: "RDF Primer. W3C Recommendation", 2004. http://www.w3.org/TR/rdf-primer/

Outline

- Part I V
- Machine Knowledge \& Intelligent Applications
- Part II
- Knowledge Representation \& Public Knowledge Bases
- Part III
- Extracting Knowledge
- Part IV
- Ranking and Searching
- Part V
- Linked Data
- Part VI
- Conclusion and Outlook

Outline for Part III

- Domain-oriented IE vs. Open-domain IE
- What to extract: entities, classes, binary \& higher-arity relations
- Entities, Classes \& Subsumptions
- WordNet concepts, Wikipedia categories, entity disambiguation
- Pattern-based Knowledge Harvesting
- Wrapper induction, WebTables, statistical pattern mining
- Probabilistic Extraction Models
- HMMs, MEMMs, CRFs
- Constraints \& Reasoning
- MLNs, CCMs, FactorIE, SOFIE/PROSPERA
- Open-domain IE
- ReadTheWeb, TextRunner, Omnivore, REVERB
- Advanced reasoning
- Temporal/spatial annotations of facts

Two Paradigms in Information Extraction (IE)

| Surajit
 obtained his
 PhD in CS from source-
 sentric IE
 Stanford University
 under the supervision
 of Prof. Jeff.
 He later joined HP and
 worked closely with
 Umesh ... 1) recall !
 2) precision
 one or few sources |
| :--- | :--- |

$$
\begin{aligned}
& \text { <Surajit> „obtained his" <PhD> } \\
& \text { <Surajit> „PhD in" <CS> } \\
& \text { <Surajit> "under supervision" <Jeff> } \\
& \text { <Surajit> „PhD from" <Stanford> } \\
& \text { <Surajit> „joined" <HP> } \\
& \text { <Surajit> „works with" <Umesh> }
\end{aligned}
$$

near-human
quality!
hasAdvisor
Advisor

hasAdvisor	near-huma quality!
Student	Advisor
Surajit	Jeff
Alon	Jeff
Jim	Mike
...	

Alon Jeff
Jim Mike

almaMater	
Student	University
Surajit	Stanford U
Alon	Stanford U
Jim	UC Berkeley

Open-domain IE

1) precision !
2) recall

Entities \& Classes

Which entity types (classes, unary predicates) are there?
scientists, doctoral students, computer scientists, ... female humans, male humans, married humans, ...

Which subsumptions should hold
(subclass/superclass, hyponym/hypernym, inclusion dependencies)?
subclassOf (computer scientists, scientists), subclassOf (scientists, humans), ...

Which individual entities belong to which classes?
instanceOf (Surajit Chaudhuri, computer scientists), instanceOf (BarbaraLiskov, computer scientists), instanceOf (Barbara Liskov, female humans), ...

Which names denote which entities?

```
means ("Lady Di", Diana Spencer),
means ("Diana Frances Mountbatten-Windsor", Diana Spencer), ...
means ("Madonna", Madonna Louise Ciccone),
means ("Madonna", Madonna(painting by Edward Munch)), ...
```


Binary Relations

Which instances (pairs of individual entities) are there for given binary relations with specific type signatures?

```
hasAdvisor (JimGray, MikeHarrison)
hasAdvisor (HectorGarcia-Molina, Gio Wiederhold)
hasAdvisor (Susan Davidson, Hector Garcia-Molina)
graduatedAt (JimGray, Berkeley)
graduatedAt (HectorGarcia-Molina, Stanford)
hasWonPrize (JimGray, TuringAward)
bornOn (JohnLennon, 9-Oct-1940)
diedOn (JohnLennon, 8-Dec-1980)
marriedTo (JohnLennon, YokoOno)
```

Which additional \& interesting relation types are there between given classes of entities?
competedWith(x, y), nominatedForPrize(x, y), ... divorcedFrom (x, y), affairWith $(x, y), \ldots$ assassinated (x, y), rescued (x, y), admired $(x, y), \ldots$

Higher-arity Relations \& Reasoning

- Time, location \& provenance annotations
- Knowledge representation - how do we model \& store these?
- Consistency reasoning - how do we filter out inconsistent facts that the extractor produced? how do we quantify \& manage uncertainty?

Facts (RDF triples):

1: (JimGray, hasAdvisor, MikeHarrison)
2: (SurajitSurajit, hasAdvisor, JeffJeff)
3: (Madonna, marriedTo, GuyRitchie)
4: (NicolasSarkozy, marriedTo, CarlaBruni)
5: (ManchesterU, wonCup, ChampionsLeague)

Reification:
"Facts about Facts":
6: (1, inYear, 1968)
7: (2, inYear, 2006)
8: (3, validFrom, 22-Dec-2000)
9: (3, validUntil, Nov-2008)
10: (4, validFrom, 2-Feb-2008)
11: (2, source, SigmodRecord)
12: (5, inYear, 1999)
13: (5, location, CampNou)
14: (5, source, Wikipedia)

Outline for Part III

- Domain-oriented IE vs. Open-domain IE
- What to extract: entities, classes, binary \& higher-arity relations
- Entities, Classes \& Subsumptions
- WordNet concepts, Wikipedia categories, entity disambiguation
- Pattern-based Knowledge Harvesting
- Wrapper induction, WebTables, statistical pattern mining
- Probabilistic Extraction Models
- HMMs, MEMMs, CRFs
- Constraints \& Reasoning
- MLNs, CCMs, FactorIE, SOFIE/PROSPERA
- Open-domain IE
- ReadTheWeb, TextRunner, Omnivore, REVERB
- Advanced reasoning
- Temporal/spatial annotations of facts

Unary Relations - Classes, Instances, Subsumptions

- Taxonomy construction
- Mapping Wikipedia categories onto Wordnet
- Subsumption \& consistency checks
- Long tail of entities and classes
- Entity disambiguation
- Individual vs. joint disambiguation

WordNet Thesaurus [miller/fellbuy 1998]

WordNet Search - 3.0 - WordNet home page - Glossary - Help

Verb

- $\underline{\text { S (v) partner (provide with a partner) }}$
- S: (v) partner (act as a partner) "Astaire partnered Rogers"

WordNet Thesaurus [milerferelbasum 198s]

Noun

- \underline{S} : (n) spouse, partner, married person, mate, better half (a person's partner in marriage)
- direct hyponym / full hyponym
- S: (n) bigamist (someone who marrifs one person while already legally m
- $\underline{S}:(\mathrm{n})$ consort (the husband or wife of a reigning monarch)
- \underline{S} : (n) helpmate, helpmeet (a helpfil . artner)

subclasses

- $\underline{\text { S: (}}$ (n) husband, hubby, married man (a marrie mant a woman's partner in marriage)
- \underline{S} : (n) monogamist, monogynist (som one who practices monogamy (one spouse at a time))
- \underline{S} : (n) newlywed, honeymooner (someone recently married)
- \underline{S} : (n) polygamist (someone who is married to two or more people at th
- S: (n) wife, married woman (a marri. d woman; a man's partner in marr

superclasses

member holonym
\circ direct hypernym / inherited hypernym / sister tom

- \underline{S} : (n) relative, relation (a person related by blood or marriage) "police are sear-hing for relatives of the deceased"; "he has distant relations back in New Jersey"
- $\underline{\text { S: (}} \mathrm{n}$) domestic partner, significant other, spousal equivalent, spouse equivalent (a person (not necessarily a spouse) with whom you cohabit and share a long-term sexual relationship)
- derivationally related form
- \underline{S} : (n) collaborator, cooperator, partner, pardner (an associate in an activity or endeavor or sphere of common interest) "the musician and the librettist were collaborators"; "sexual partners"
- \underline{S} : (n) partner (a person who is a member of a partnership)

Moranet Thesaurus [Miller \& Fellbaum 1998]

> 100,000 classes and lexical relations;

 can be cast into- description logics or
- graph, with weights for relation strengths (derived from co-occurrence statistics)

but:
 only few individual entities (instances of classes)

scientist, man of science - (a person with advanced knowledge of
=> cosmographer, cosmographist -- (a scientist knowledgeable
$=>$ bibliotist - (someone who engages in bibliotics)
$=>$ biologist, life scientist $-($ (biology) a scientist who studies it
=> chemist - (a scientist who specializes in chemistry)
$=>$ cognitive scientist - (a scientist who studies cognitive proct
\Rightarrow computer scientist - (a scientist who specializes in the theos
$=>$ geologist - (a specialist in geology)
\Rightarrow linguist, linguistic scientist -- (a specialist in linguistics)
$\Rightarrow>$ mathematician -- (a person skilled in mathematics)
\Rightarrow medical scientist - - (a scientist who studies disease processe
=> microscopist - - (a scientist who specializes in research with
\Rightarrow mineralogist -- (a scientist trained in mineralogy)
\Rightarrow oceanographer - (a scientist who studies physical and biolo
\Rightarrow paleontologist, palaeontologist, fossilist - (a specialist in palt
\Rightarrow physicist - (a scientist. trained in physics)
\Rightarrow principal investigator, PI - (the scientist in charge of an exp
=> psychologist - (a scientist trained in psychology)
\Rightarrow radiologic technologist - (a scientist trained in radiological ti
\Rightarrow research worker, researcher, investigator - (a scientist who
\Rightarrow social scientist - (someone expert in the study of human so
HAS INSTANCE $=>$ Bacon, Roger Bacon - - English scientist at combustion and first used lenses to correct vision (122
HAS INSTANCE \Rightarrow Franklin, Benjamin Franklin -- (printer who the Constitution, he played a major role in the Americar his research in electricity ($1706-1790$))
HAS INSTANCE $=>$ Galton, Francis Galton, Sir Francis Galton psychology, anthropology, founder of eugenics and fir

[^0] oxum produced by the female of the species (1578-1657))

HAS INSTANCE => Bacon, Roger Bacon
scientist, man of science
(a person with advanced knowledge)
=> cosmographer, cosmographist
=> biologist, life scientist
=> chemist
=> cognitive scientist
=> computer scientist
=> principal investigator, PI
...)

Tapping on Wikipedia Categories

Jim Gray (computer scientist)

From Wikipedia, the free encyclopedia
James Nicholas "Jim" Gray (born 12 January 1944, lost at sea 28 January 2007) was an American computer scientist who received the Turing Award in 1998 "for seminal contributions to database and transaction processing research and technical leadership in system implementation."
\quad Contents [hide]
1 Family and education
2 Work
3 Disappearance at sea and search
4 Books
5 See also
6 References
7 External links

James Nicholas "Jim" Gray	
Born	January $12,1944^{[1]}$ San Francisco, California ${ }^{[2]}$
Died	(lost at sea) January 28,2007
Hationality	American
Fields	Computer Science
Institutions	IBM, Tandern Computers, DEC, Microsoft
Alma mater	University of California, Berkeley
Doctoral advisor	Michael Harrison ${ }^{[2]}$
Known for	Work on database and transaction processing systems
Notable awards	Turing Award

Categories: Members of the National Academy of Sciences |American computer scientists | Fellows of the Association for Computing Machinery | Microsoft employees | DEC people | Database researchers | SIGMOD Edgar F. Codd Innovations Award winners | Turing Award laureates | 1944 births | 2007 deaths | People lost at sea | University of California, Berkeley alumni

Tapping on Wikipedia Categories

Max Planck

From Wikipedia, the free encyclopedia
"Planck" redirects here. For other uses, see Planck (disambiguation)
Max Planck (April 23, 1858 - October 4, 1947) was a German physicist. He is considered to be the founder of the quantum theory, and thus one of the most important physicists of the twentieth century. Planck was awarded the Nobel Prize in Physics in 1918.

Contents [hide]

1 Life and career
1.1 Academic career
1.2 Family
1.3 Professor at Berlin University
1.4 Black-body radiation
1.5 Einstein and the theory of relativity
1.6 World War and Weimar Republic
1.7 Quantum mechanics
1.8 Nazi dictatorship and The Second World War 2 Religious view

Categories: German Nobel laureates | German physicists | Members of the Pontifical Academy of Sciences | Members of the Prussian Academy of Sciences |Nobel laureates in Physics | Recipients of the Copley Medal | People from Kiel | People from the Province of Schleswig-Holstein | Quantum physicists | Recipients of the Pour le Mérite (civil class) | Theoretical physicists | Thermodynamicists | University of Munich alumni | University of Munich faculty | Humboldt University of Berlin alumni | Humboldt University of Berlin faculty | University of Kiel faculty | German Christians | Religion and science | Fellows of the Leopoldina | 1858 births | 1947 deaths

Tapping on Wikipedia Categories

Madonna (entertainer)

From Wikipedia, the free encyclopedia

Madonna (born Madonna Louise Ciccone; August 16, 1958) is an American recording artist, actress and entrepreneur. Born in Bay City, Michigan, and raised in Rochester Hills, Michigan, she moved to New York City in 1977, for a career in modern dance. After performing as a member of the pop groups Breakfast Club and Emmy, she released her debut album, Madonna, in 1983 on Sire Records.

Madonna

Background information

Birth name	Madonna Louise Ciccone Also known as
	Madonna Ciccone, Madonna Louise Veronica Ciccone
Born	August 16, 1958 (age 51) Bay City, Michigan, United States
Origin	New York, New York
Genres	Pop, dance
Occupations	Singer, songwriter, record producer, dancer, actress, film

Categories: Madonna (entertainer) | 1958 births | 1980s singers | 1990s singers | 2000s singers | 2010s singers | Actors from Michigan | American businesspeople | American dance musicians | American dancers | American expatriates in the United Kingdom | American female singers | American film actors | American film producers | American musicians of Italian descent | American people of French-Canadian descent | American people of Italian descent | American philanthropists | American pop singers | American record producers | Converts to Judaism | American singer-songwriters | American writers | Best Musical or Comedy Actress Golden Globe (film) winners | BRIT Award winners | Electronica musicians | English-language singers | Female rock singers | Feminist artists | Grammy Award winners | lvor Novello Award winners | Juno Award winners | Living people | MTV Europe Music Awards winners | MTV Video Music Awards winners | MTV Video Vanguard Award winners | Musicians from Michigan | People from Bay City, Michigan | People from Corona, Queens | People from Queens | People from Staten Island | Rock and Roll Hall of Fame inductees | University of Michigan alumni | Warner Bros. Records artists | World Music Awards winners | World record holders | Worst Actress Golden Raspberry Award winners | Worst Supporting Actress Golden Raspberry Award winners | Worst Screen Couple Golden Raspberry Award winners

Mapping: Wikipedia \rightarrow WordNet

Mapping: Wikipedia \rightarrow WordNet

[Suchanek et al: WWW 07; Ponzetto \& Strube: AA

Jim Gray (computer specialist)

Computer Scientists by Nation
name similarity (edit dist., n-gram overlap) ? context similarity (word/phrase level) ? machine learning ?

Mapping: Wikipedia \rightarrow WordNet

[Suchanek et al: WWW 07; Ponzetto \& Strube: AAAI 07]
Given: entity e in Wikipedia categories $\mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{k}}$
Wanted: type(e,c) and subclassOf($\mathrm{c}_{\mathrm{i}}, \mathrm{c}$) for WordNet class c
Problem: vagueness \& ambiguity of names $\mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{k}}$

Analyzing category names \rightarrow noun group parser:

Head word is key, should be in plural for instanceOf

Mapping: Wikipedia \rightarrow WordNet

[Suchanek et al: WWW 07; Ponzetto \& Strube: AAAI 07]
Given: entity e in Wikipedia categories $\mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{k}}$
Wanted: type(e,c) and subclassOf($\mathrm{c}_{\mathrm{i}}, \mathrm{c}$) for WordNet class c
Problem: vagueness \& ambiguity of names $\mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{k}}$
Heuristic Method:
for each c_{i} do
if head word w of category name c_{i} is plural

1) find WordNet classes $c, c^{\prime}, c^{\prime \prime}, \ldots$ with
synsets that contain a match of w
2) choose best class c (from polysemous c, c', c", ...)
and set $\mathrm{e} \in \mathrm{c}$
3) expand w by pre-modifier from name c_{i}, returning w^{+}, and set $\mathrm{c}_{\mathrm{i}} \subseteq \mathrm{w}^{+} \subseteq \mathrm{c}$

- can also derive features this way
- feed into supervised classifier

YAGO Concept Mappings

WordNet

[Suchanek,Kasneci,Weikum: WWW 07, SIGMOD Rec. 08]

YAGO Consistency Checks

[Suchanek,Kasneci,Weikum: WWW 07, SIGMOD Rec. 08]

Check uniqueness of entities and functional arguments Check domains and ranges of relations Check type coherence

Learning More Mappings

[Wu \& Weld: CIKM 07, WWW 08]

Kylin Ontology Generator (KOG):

learn classifier for subclassOf across Wikipedia \& WordNet using

- YAGO as training data
- advanced ML methods (MLN‘s, SVM‘s)
- rich features from various sources
- Category/class name similarity measures
- Category instances and their infobox templates:
template names, attribute names (e.g. knownFor)

- Wikipedia edit history:
refinement of categories
- Hearst patterns:
C such as X, X and Y and other C 's, ...
- Other search-engine statistics:
co-occurrence frequencies

Goal: Comprehensive \& Consistent !

Goal: Comprehensive \& Consistent !

Long Tail of Class Instances

Predicted Items	georgetown
penn state	michigan
stanford	arizona
princeton	washington
ucla	dartmouth
harvard	oregon
mit	nyu california
USC	brown
yale	chicago
columbia	northwestern
cornell	caltech
berkeley	virginia
duke	penn

Long Tail of Class Instances

[Etzioni et al. 2004; Cohen et al. 2008; Mitchell et al. 2010]

State-of-the-Art Approach (e.g. SEAL):

- Start with seeds: a few class instances
- Find lists, tables, text snippets ("for example: ..."), ... that contain one or more seeds
- Extract candidates: noun phrases from vicinity
- Gather co-occurrence stats (seed\&cand, cand\&className pairs)
- Rank candidates
- point-wise mutual information, ...
- random walk (PR-style) on seed-cand graph

```
But:
Precision drops for classes with sparse statistics (DB profs, ...)
Harvested items are names, not entities
Canonicalization (de-duplication) unsolved
```


Entity Disambiguation

Names

Entities

- III-defined with zero context
- Known as record linkage for names in record fields
- Wikipedia offers rich candidate mappings:
disambiguation pages, re-directs, inter-wiki links, anchor texts of href links

Individual Entity Disambiguation

Typical approaches:
name similarity: edit distances, n-gram overlap, ...
context similarity: record level
context similarity: words/phrases level
context similarity:
text around names, classes \& facts around entities

Challenge: efficiency \& scalability

Joint Disambiguation

[Doan et al: AAAI 05; Singla,Domingos: ICDM 07; Chakrabarti et al: KDD 09, ...]

- Consider a set of names $\left\{n_{1}, n_{2}, \ldots\right\}$ in same context and sets of candidate entities
$E 1=\left\{e_{11}, e_{12}, \ldots\right\}, E 2=\left\{e_{21}, e_{22}, \ldots\right\}, \ldots$
- Define joint objective function (e.g. likelihood for prob. model) that rewards coherence of mappings

$$
\mu\left(\mathrm{n}_{1}\right)=\mathrm{x}_{1} \in \mathrm{E}_{1}, \mu\left(\mathrm{n}_{2}\right)=\mathrm{x}_{2} \in \mathrm{E}_{2}, \ldots
$$

- Solve optimization problem

AIDA - Disambiguating Names in YAGO2

[Hoffart,Yosef,Weikum et al.: VLDB 11, EMNLP 11]

Mississippi, one of Bob's later songs, was first recorded by Sheryl on her album.

Features for Disambiguation

- Bob Hope
- Hurricane Bob
- Bob Quick
- ...

Coherence
Hurricane Bob

Mississippi, one of Bob's later songs, was first recorded by Sheryl on her album.

- Bob Dylan songs
- Sheryl Crow songs
- 1997 songs

How often did "Mississippi" link to this entity in Wikipedia?

entities related?

Objective Function

- Input
- Mentions
- context of mention ctx(m)
- entity candidates $\boldsymbol{e}+\boldsymbol{c t x}(\boldsymbol{e})$
- Features

Prior	prior (m, e)
Similarity	$\operatorname{sim}(c x t(m), \operatorname{cxt}(e))$
Coherence	$\operatorname{coh}(e 1, e 2)$

- Goal

$$
\begin{array}{r}
\alpha \cdot \sum_{i=1}^{k} \operatorname{prior}\left(m_{i}, e_{j_{i}}\right) \\
+\beta \cdot \sum_{i=1}^{k} \operatorname{sim}\left(\operatorname{cxt}\left(m_{i}\right), \operatorname{cxt}\left(e_{j_{i}}\right)\right) \\
+\gamma \cdot \operatorname{coh}\left(e_{j_{1}}, e_{j_{2}}, \ldots e_{j_{k}}\right) \\
=\max !
\end{array}
$$

Joint Disambiguation as Graph Problem

Graph Algorithm

Mentions of Entities
Entity Candidates
Mississippi (Song)

Mississippi (River)

Bob Dylan Songs

Sheryl Cruz

Sheryl Lee

Sheryl Crow
Objective: Maximize the minimum weighted degree
Constraint: Keep at least one entity per mention

Outline for Part III

- Domain-oriented IE vs. Open-domain IE
- What to extract: entities, classes, binary \& higher-arity relations
- Entities, Classes \& Subsumptions
- WordNet concepts, Wikipedia categories, entity disambiguation
- Pattern-based Knowledge Harvesting
- Wrapper induction, WebTables, statistical pattern mining
- Probabilistic Extraction Models
- HMMs, MEMMs, CRFs
- Constraints \& Reasoning
- MLNs, CCMs, FactorIE, SOFIE/PROSPERA
- Open-domain IE
- ReadTheWeb, TextRunner, Omnivore, REVERB
- Advanced reasoning
- Temporal/spatial annotations of facts

Binary Relations - Which Sources to Pick?

- Semi-structured data

The "Low-Hanging Fruit"

- Wikipedia infoboxes \& categories
- HMTL lists \& tables, etc.
- Free text
- Hearst-patterns, clustering by verbal phrases
- Natural-language processing
- Advanced patterns \& iterative bootstrapping ("Dual Iterative Pattern Relation Extraction")

Picking Low-Hanging Fruit (First)

Héctor García-Molina
No free image
Do you own one?
If so, please click here

Born	Monterrey, Nuevo León, Mexico
Residence	United States
Hationality	Mexican
Fields	Computer Science
Institutions	Stanford University
Alma mater	ITESM
Doctoral advisor	Gio Wiederhold [1]
Doctoral students	Robert Abbott, Boris Kogan,
Known for	Distributed databases
Hotable	1999 ACM SIGMOD Edgar F. Codd
awards	Innovations Award

Citizenship	French
Hationality	French
Fields	Computer Science
Institutions $\mathbb{N R} \mid \mathrm{A}$ Alma mater University of Southern California	

Fields

Institutions

Alma mater
Doctoral advisor

Computer Science
University of California, Berkeley University of Mísconsin-Madison Jeffrey Naughton, Michael Stonebraker

Jeffrey Uliman

Born November 22, 1942 (age 67)
Citizenship American
Nationality American
Alma Columbia University,
mater Princeton University
Doctoral advisor

Doctoral students

Alexander Birman,

Surajit Chaudhuri, Evan Cohn, Alan Demers, Marcia Derr, Nahed El Djabri, Amelia Fong Lochowsky, Deepak Goyal, Ashish Gupta, Himanshu Gupta, Udaiprakash Gupta, Venkatesh Harinarayan, Taher Haveliwala, Matthew Hecht, Daniel Hirschberg, Peter Hochschild, Peter Honeyman, Edward Horvath, Gregory Hunter, Nam (Pierre) Huyn, Hakan Jakobsson, John Kam, Marc

Deterministic Pattern Matching

[Kushmerick 97; Califf \& Mooney 99; Gottlob 01, ...]

Spouse(s) Nicolas Sarkozy

Children Aurélien Enthoven (with
Raphaël Enthoven)
Spouse Charles, Prince of Wales
(29. July 1981-28 August 1996) ${ }^{[1]}$

Wrapper Induction

[Gottlob et al: VLDB 01, PODS 04,...]

Spouse(s)

Children

Marie-Dominique Culioli (1982-1996)
Cécilia Ciganer-Albéniz (1996-2007)
Carla Bruni-Sarkozy (2008-present)

- Wrapper induction:

- Hierarchical document structure, XHTML, XML
- Pattern learning for restricted regular languages (ELog, combining concepts of XPath \& FOL)
- Visual interfaces
- See e.g. http://www.lixto.com/, http://w4f.sourceforge.net/

Tapping on Web Tables

Academy Awards

[Cafarella et al: PVLDB 08; Sarawagi et al: PVLDB 09]
(Reference:- ${ }^{[1]}$)

Tapping on Web Tables

Academy Awards (Reference: ${ }^{[1]}$)

Nominated

- Best Orig
- Best Ori
- Best For

Problem:

Discover interesting relations wonAward: Person \times Award nominatedForAward: Person \times Award

From many table headers and co-occurring cells

[Cafarella et al: PVLDB 08; Sarawagi et al: PVLDB 09]

Recovering the Semantics of Web Tables

http://www.hcforest.sailorsite.net/Elkhorn.html
[Venetis,Halevy et al: PVLDB 11]

Automatically enrich Web tables with semantic annotations

- Extract instances of classes using Hearst patterns
- Assign most likely class labels to columns
- Identify binary relations among pairs of columns \rightarrow Open IE tools (TextRunner)

Large-scale statistics

- 100 Mio Web documents
- 50 Mio queries (for entity boundaries)
$\rightarrow 60,000$ classes with >10 instances

Relational Fact Extraction From Plain Text

- Hearst patterns [Hearst: COLING‘92]
- POS-enhanced regular expression matching in natural-language text

```
NNP
<NP O {,}{NP }\mp@subsup{\mp@code{1}}{1}{\prime}N\mp@subsup{P}{2}{},\ldotsN\mp@subsup{P}{n-1}{}}{,}\mathrm{ or other NP 
```

"The bow lute, such as the Bambara ndang, is plucked and has an individual curved neck for each string."
\rightarrow isA("Bambara ndang", "bow lute")

- Noun classification from predicate-argument structures [Hindle: ACL'90]
- Clustering of nouns by similar verbal phrases
- Similarity based on co-occurrence frequencies (mutual information)

	beer	wine
drink	9.34	10.20
sell	4.21	3.75
have	0.84	1.38

Relational Fact Extraction From Plain Text

- Hearst patterns [Hearst: COLING‘92]
- POS-enhanced regular expression matching in natural-language text

```
<NP { {} such as {NP 
```


"The bow lute, such as the Bambara ndang, is plucked and has an individual curved neck for each string."

Problem:

Low recall
out of 8.6 M words only 152
occurrences of „such as" with matching noun conjugations Difficult to extend to generic relations (other than isA, partOf, etc.)
frequencies (mutual information)

DIPRE/Snowball

[Brin: WebDB 98; Agichtein/Gravano: ACL 00, ...]

- Dual Iterative Pattern Relation Extraction (DIPRE)

- Semi-supervised, iterative gathering of facts and patterns
- Positive \& negative examples as seeds for a given target relation e.g. +(Hillary, Bill) +(Carla, Nicolas) -(Larry, Google)
- Various tuning parameters for pruning low-confidence patterns and facts
(Hillary, Bill)
(Carla, Nicolas)
(Angelina, Brad)
(Victoria, David)
(Hillary, Bill)
(Carla, Nicolas)
(Larry, Google)

DIPRE/Snowball/QXtract

[Brin: WebDB 98; Agichtein,Gravano: SIGMOD 01+03]

- Dual Iterative Pattern Relation Extraction (DIPRE)
- Semi-supervised, iterative gathering of facts and patterns
- Positive \& negative examples as seeds for a given target relation e.g. +(Hillary, Bill) +(Carla, Nicolas) -(Larry, Google)
- Various tuning parameters for pruning low-confidence patterns and facts
- Snowball/QXtract [Agichtein,Gravano: DL 00, SIGMOD 01+03]
- Refined patterns and statistical measures
$->80 \%$ recall at $\mathbf{> 8 5 \%}$ precision over a large news corpus
- Qxtract allows for user feedback in the iteration loop

Help from NLP: Dependency Parsing!

- Analyze lexico-syntactic structure of sentences
- Part-Of-Speech (POS) tagging: HMMs, CRFs
- Dependency Parsing (DP): probabilistic grammars
- Semantic Role Labeling (SRL): map constituents onto semantic frames

Prefer shorter dependency paths for fact candidates

Software tools:
CMU Link Parser: http://www.link.cs.cmu.edu/link/
Stanford Lex Parser: http://nlp.stanford.edu/software/lex-parser.shtml
Open NLP Tools: http://opennlp.sourceforge.net/
ANNIE Open-Source IE: http://www.aktors.org/technologies/annie/
LingPipe: http://alias-i.com/lingpipe/ (commercial license)
FrameNet: http://framenet.icsi.berkeley.edu/

\square Part-of-Speech Tagger Demo Result...


```
Part-of-Speech Tagger Demo Results
(Views)
The Part-of-Speech tagger has automatically labeled the input in the following way.
NNP/Carla VBZ/has VBN/ been VBN/ seen VBG/dating IN/with NNP/Ben
```

- \# - Pound sign
- \$ - Dollar sign
- " - Close double quote
- ․ - Open double quote
- ' - Close single quote
- - Open single quote
- , Comma
- - Final punctuation
- : - Colon, semi-colon
- -LRB- - Left bracket
- -RRB- - Right bracket
- CC - Coordinating conjunction
- CD - Cardinal number
- DT - Determiner
- EX - Existential there
- FW - Foreign word
- IN - Preposition
- JJ - Adjective
- JJR - Comparative adjective
- JJS - Superlative adjective
- LS - List Item Marker
- MD - Modal
- NN - Singular noun
- NNS - Plural noun
- NNP - Proper singular noun
- NNPS - Proper plural noun
- PDT - Predeterminer
- POS - Possesive ending
- PRP - Personal pronoun
- PP\$ - Possesive pronoun
- RB - Adverb
- RBR - Comparative adverb
- RBS - Superlative Adverb
- RP - Particle
- SYM - Symbol
- TO - to
- UH - Interjection
- VB - Verb, base form
- VBD - Verb, past tense

VBG - Verb, gerund/present participle
VBN - Verb, past participle

- VBP - Verb, non 3rd ps. sing. present
- VBZ - Verb, 3rd ps. sing. present
- WDT - wh-determiner
- WP - wh-pronoun
- WP\$ - Possesive wh-pronoun
- WRB - wh-adverb
http://cogcomp.

Your query
Carla has been seen dating with Ben．

Tagging

```
Carla/NNP has/VBZ been/VBN seen/VBN dating/VBG with/IN Ben/NNP ./.
```

Parse

```
(ROOT
    (S
(NP (NNP Carla))
(VP (VBZ has)
                (VP (VBN been)
                    (VP (VBN seen)
                        (S
                                (VP (VBG dating)
                                (PP (IN with)
                                (NP (NNP Ben))))))))
        (. .)))
```

Typed dependencies

```
nsubjpass(seen-4, Carla-1)
aux(seen-4, has-2)
auxpass(seen-4, been-3)
xcomp (seen-4, dating-5)
prep (dating-5, with-6)
pobj (with-6, Ben-7)
```

http://nlp.stanford.edu:8080/parser/

Open-Domain Gathering of Facts

[Etzioni,Cafarella et al: WWW 04, IJCAI 07; Weld,Hoffman,Wu: SIGMOD-Rec 08]
Analyze verbal phrases between entities for new relation types

- unsupervised bootstrapping with short dependency paths

- self-supervised classifier for (noun, verb-phrase, noun) triples
... seen dating with ... (Carla, Ben), (Carla, Sofie), ...
... partying with ... (Carla, Ben), (Paris, Heidi), ...
- build statistics \& prune sparse candidates
- group/cluster candidat But: Result often is noisy
\{datesWith, partiesWit
Clusters are not canonicalized relations High recall at (relatively) low precision

Declarative Extraction Frameworks

- IBM's SystemT [Krishnamurthy et al: SIGMOD Rec. 08, ICDE 08]
- Declarative IE in a database engine
- SQL-style operators, cost models, full optimizer support
- DBLife/Cimple [DeRose, Doan et al: CIDR 07, VLDB 07]
- Online community portal centered around the DB domain (regular crawls of DBLP, conferences, homepages, etc.)

DBLife JenniferWic

Bing Citeseet DBLP Google Google Scholar Kosmix Wikipedia Yahool
Bing Citeseer DBLP Google Google Scholar Kosmix Wikipedia Yahool

Change Detection in Hierarchically Structured Information cited 1 time - details
Lore: A Database Management System for Semistructured Data cited 10 times - details
The TSIMMIS Approach to Mediation: Data Models and Languages cited 8 times - details
Memory-Limited Execution of Windowed Stream Joins cited 5 times - details
A First Course in Database Systems cited 5 times - details Research Problems in Data Warehousing cited 7 times - details Continuous Queries over Data Streams cited 1 time - details
News Archive

DBWorld/DBLP /Google Scholar

- 1ocation
- data streams
- streams
continuous queries
nore

Services

- SIGMOD 2010 (SIGMOD New Initiatives Committee) ${ }^{[1]}$
- CIDR 2007 (PC) ${ }^{[2]}$
- CIDR 2007 ((Chair) ${ }^{\text {Bl }}$
- CIDR 2005 (Organization Committee) ${ }^{[4]}$ maze

Related Organizations

- Stanford University
- Purdue University
- Microsoft
- INRIA
mare

taks

- Stanford University ${ }^{[5]}$
- Stony Brook University ${ }^{\text {[6 }}$
- University of Arizona ${ }^{[7]}$

Tutorials

- SIGMOL $2005^{[8]}$

Homepages/ DBLP/ DBWorld/ Google Scholar

wher
(nence-Aware Join Algorithms. Parag Agrawal, Jennifer Widom. ICDE 2009, 628-639. Web
BioTeX Download
Representing uncertain data: models, properties, and algorithms. Anish Das Sarma, Omar Benjelloun, Alon Y.
156 Halevy, Shubha U. Nabar, Jennifer Widom. VLDB J. (18): 989-1019 (2009). Cited by 1 Web Search BibTeX Download
Swoosh: a generic approach to entity resolution. Omar Benjelloun, Hector Garcia-Molina, David Menestrina, Oi
15 Su, Steven Euijong Whang, Jennifer Widom. VLDB J. (18): 255-276 (2009). Cited by 67 Web

Pattern-Based Harvesting Summary

Facts \& Fact Candidates
(Hillary, Bill)
(Carla, Nicolas)
(Angelina, Brad) (Victoria, David) (Hillary, Bill)
(Carla, Nicolas)
(Yoko, John)
(Kate, Pete)
(Carla, Benjamin)
(Larry, Google)
(Angelina, Brad)
(Victoria, David)

Patterns

X and her husband Y
X and Y on their honeymoon
X and Y and their children
X has been dating with Y
X loves Y

- good for recall, but often noisy/drifting
- not robust enough for high precision

Outline for Part III

- Domain-oriented IE vs. Open-domain IE
- What to extract: entities, classes, binary \& higher-arity relations
- Entities, Classes \& Subsumptions
- WordNet concepts, Wikipedia categories, entity disambiguation
- Pattern-based Knowledge Harvesting
- Wrapper induction, WebTables, statistical pattern mining
- Probabilistic Extraction Models
- HMMs, MEMMs, CRFs
- Constraints \& Reasoning:
- MLNs, CCMs, FactorIE, SOFIE/PROSPERA
- Open-domain IE
- ReadTheWeb, TextRunner, Omnivore, REVERB
- Advanced reasoning
- Temporal/spatial annotations of facts

Applications for Sequence Labeling

- Part-of-Speech (POS) tagging
- Named Entity Recognition (NER)
- Various specialized labeling tasks
- e.g. Blogs, emails, tweets
- lists and fields with regular structures: news articles, citations, HTML tables, etc.

Probabilistic Extraction Models

- Hidden Markov Models (HMMs)
[Rabiner: IEEE 89; Sutton,McCallum: MIT Press 06]
- Markov Chain (directed)
- Generatively trained based on $\mathbf{P}(\mathbf{X}, \mathbf{Y})$
- Maximum (Log-)likelihood principle for training
- Maximum Entropy Markov Models (MEMMs)
[McCallum,Freitag,Pereira: ICML 00]
- Markov Chain (directed)
- Discriminatively trained using $\mathrm{P}(\mathrm{Y} \mid \mathrm{X})$
- Maximum Entropy principle for training
- Conditional Random Fields (CRFs)
[Lafferty,McCallum,Pereira: ML 01; Sarawagi,Cohen: NIPS 04]
- Markov Random Field (undirected)
- Discriminatively trained using $\mathrm{P}(\mathrm{Y} \mid \mathrm{X})$
- Maximum (Log-)likelihood principle for training

X: Observations (tokens)
Y: Labels (POS, NE, etc.)

Probabilistic Models for Sequence Labeling

Hidden Markov Model (HMM)

Maximum Entropy Markov Model (MEMM)

Conditional Random Field (CRF)

Hidden Markov Models - HMMs

- Part-Of-Speech tagging example with an HMM
- How to find the best sequence of POS tags for "We can buy a can" efficiently?

HMMs: Inference \& Learning

[Lawrence L. Rabiner, Proc. IEEE 88]

Given: observations X, labels Y, transition probabilities $P\left(y_{i} \mid y_{i-1}\right)$ and $P\left(x_{i} \mid y_{i}\right)$
Compute inductively:

$$
\begin{aligned}
\alpha_{1}(i) & =\pi_{i} b_{i}\left(x_{1}\right), \quad 1 \leq i \leq N \\
\alpha_{t+1}(j) & =\left[\sum_{i=1}^{N} \alpha_{t}(i) a_{i j}\right] b_{j}\left(x_{t+1}\right), \begin{array}{l}
1 \leq t \leq T-1, \\
1 \leq j \leq N
\end{array} \\
P(X \mid \lambda) & =\sum_{i=1}^{N} \alpha_{T}(i)
\end{aligned}
$$

(initial state probabilities π_{i}, transition probabilities a_{ij},
observation probabilities $\boldsymbol{b}_{i}\left(\mathbf{x}_{\mathrm{t}}\right)$ usually estimated
from a large annotated training corpus)

Probability of an observation:

Forward/backward algorithm
Most likely sequence:
Trellis diagram/Viterbi

Weight learning:

Baum-Welch/
Expectation Maximization (EM)

Maximum Entropy Markov Models - MEMMs

[McCallum,Freitag,Pereira: ICML 00]

Given: Observations X, labels Y , transition probabilities $\mathrm{P}_{\mathrm{y}^{\prime}}(\mathrm{y} \mid \mathrm{x})$

normalizing constant

Maximum Entropy Markov Models - MEMMs

[McCallum,Freitag,Pereira: ICML 00]

Given: Observations X, labels Y, transition probabilities $\mathrm{P}_{\mathrm{y}^{\prime}}(\mathrm{y} \mid \mathrm{x})$

$$
P_{y^{\prime}}(y \mid x)=\frac{1}{Z\left(x, y^{\prime}\right)} \exp \left(\sum_{i} \lambda_{i} f_{i}(x, y)\right)
$$

Feature functions f_{i}

$$
\begin{aligned}
& f_{1}(x, y)=\left\{\begin{array}{l}
1 \text { if } \operatorname{suffix}(x)=\text { "ing" and } y=\mathrm{VB} \\
0 \text { otherwise }
\end{array}\right. \\
& f_{2}(x, y)=\left\{\begin{array}{l}
1 \text { if } \operatorname{UpperCase}(x) \text { and } y=\mathrm{NN} \\
0 \text { otherwise }
\end{array}\right.
\end{aligned}
$$

begins-with-number begins-with-ordinal begins-with-punctuation begins-with-question-word begins-with-subject blank
contains-alphanum
contains-bracketed-number
contains-http
contains-non-space
contains-number
contains-pipe
contains-question-mark contains-question-word ends-with-question-mark first-alpha-is-capitalized indented indented-1-to-4 indented-5-to-10 more-than-one-third-space only-punctuation prev-is-blank prev-begins-with-ordinal shorter-than-30

Features used for Blog post segmentation

Directed Models and Label Bias

- Top path and bottom paths are almost equally likely
- Difference only at initial transition
\rightarrow States with low-entropy transitions (in the extreme case: a single transition) effectively ignore their observations

Conditional Random Fields - CRFs

[Lafferty,McCallum,Pereira: ML 01]

Given:
Factor graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ with

- Random variables $\mathrm{V}=(\mathrm{X} \cup \mathrm{Y})$
- Factors E U V (potential functions)
$P_{\theta}(\mathbf{y} \mid \mathbf{x})=\frac{1}{Z} \exp \left(\sum_{e \in E, i} \lambda_{i} f_{i}\left(e, \mathbf{x},\left.\mathbf{y}\right|_{e}\right)+\sum_{v \in V, i} \lambda_{i} g_{i}\left(v, \mathbf{x},\left.\mathbf{y}\right|_{v}\right)\right)$
- Exact inference, e.g., via forward/backward, Viterbi, or variable elimination
- Various EM techniques for training

- Plots of 2×2 error rates for synthetic data runs

CRF Extensions

- Semi-Markov CRFs
[Sarawagi,Cohen: NIPS 04]
- Identify entire subsequences with the same label
- Additional cost for inference remains linear in the maximum label length
- Joint Training over "Fusion Graphs"
[Gupta,Sarawagi: CoRR 10, WSDM 11]
- Merge overlapping sequences from multiple sources into a single graph structure
- Train individual CRFs using features from the merged graph
- Can learn CRFs from very few training examples (~ 4)

Outline for Part III

- Domain-oriented IE vs. Open-domain IE
- What to extract: entities, classes, binary \& higher-arity relations
- Entities, Classes \& Subsumptions
- WordNet concepts, Wikipedia categories, entity disambiguation
- Pattern-based Knowledge Harvesting
- Wrapper induction, WebTables, statistical pattern mining
- Probabilistic Extraction Models
- HMMs, MEMMs, CRFs
- Constraints \& Reasoning
- MLNs, CCMs, FactorIE, SOFIE/PROSPERA
- Open-domain IE
- ReadTheWeb, TextRunner, Omnivore, REVERB
- Advanced reasoning
- Temporal/spatial annotations of facts

More Ontological Rigor!

- Reasoning for pattern/fact consistency using first-order logical constraints
- Markov Logic Networks
- Constrained Conditional Models
- FactorlE
- SOFIE/PROSPERA
\rightarrow Canonical entities \& typed relations

French Marriage Problem

Wife of the President of the French Republic

Incumbent

Assumed office

2 February 2008
President Nicolas Sarkozy
Preceded by Cécilia Ciganer-Albéniz

Born	23 December 1967 (age 42)
	Turin, Haly
Birth name	Carla Gilberta Bruni Tedeschi
Hationality	Halian, French ${ }^{[1]}$
Spouse(s)	Nicolas Sarkozy
Children	Aurélien Enthoven (with Raphaël
	Enthoven)
Residence	Paris

French Marriage Problem

New facts or fact candidates:

> married (Cecilia, Nicolas) married (Carla, Benjamin) married (Carla, Mick) married (Michelle, Barack) married (Yoko, John) married (Kate, Leonardo) married (Carla, Sofie) married (Larry, Google)

1) for recall: pattern-based harvesting
2) for precision: consistency constraints/reasoning

Reasoning about Fact Candidates

Use consistency constraints to prune false candidates

First-order-logic rules (restricted):
spouse $(x, y) \wedge \operatorname{diff}(y, z) \Rightarrow \neg$ spouse (x, z)
spouse $(x, y) \wedge \operatorname{diff}(w, y) \Rightarrow \neg$ spouse (w, y)
spouse $(x, y) \Rightarrow f(x)$
spouse $(x, y) \Rightarrow m(y)$

Rules reveal inconsistencies
Find consistent subset(s) of atoms
("possible world(s)", "the truth")

Grounded atoms:

```
spouse(Hillary,Bill)
spouse(Carla,Nicolas)
spouse(Cecilia,Nicolas)
spouse(Carla,Ben)
spouse(Carla,Mick)
spouse(Carla, Sofie)
```

f(Hillary) m(Bill)
f(Carla) m(Nicolas)
f(Cecilia) m(Ben)
f(Sofie) m(Mick)

Rules can be weighted
(e.g. by fraction of ground atoms that satisfy a rule, or by learning)
\rightarrow uncertain / probabilistic data
\rightarrow compute marginal probabilities of grounded atoms being "true"

Markov Logic Networks

Map logical constraints \& fact candidates
[Richardson, Domingos: ML 2006] into probabilistic graphical model: Markov Random Field (MRF)

FOL rules w/ weights:

$s(x, y) \wedge \operatorname{diff}(y, z) \Rightarrow \neg s(x, z)_{5.9} \quad s(x, y) \Rightarrow f(x)_{100}$
$s(x, y) \wedge \operatorname{diff}(w, y) \Rightarrow \neg s(w, y)_{7.5} \quad s(x, y) \Rightarrow m(y)_{100}$
$\mathrm{f}(\mathrm{x}) \Rightarrow \neg \mathrm{m}(\mathrm{x})_{100}$
$\mathrm{m}(\mathrm{x}) \Rightarrow \neg \mathrm{f}(\mathrm{x})_{100}$

Grounding:

$$
\begin{aligned}
& -s(\mathrm{Ca}, \mathrm{Nic}) \vee-\mathrm{s}(\mathrm{Ce}, \mathrm{Nic}) \\
& -s(\mathrm{Ca}, \mathrm{Nic}) \\
& \vee-\mathrm{s}(\mathrm{Ca}, \mathrm{Ben}) \\
& -\mathrm{s}(\mathrm{Ca}, \mathrm{Nic}) \\
& -\mathrm{s}(\mathrm{Ca}, \mathrm{So}) \\
& -\mathrm{s}(\mathrm{Ca}, \mathrm{Ben}) \\
& -\mathrm{s}(\mathrm{Ca}, \mathrm{So}) \\
& -\mathrm{s}(\mathrm{Ca}, \mathrm{Ben})
\end{aligned} \mathrm{s}(\mathrm{Ca}, \mathrm{So}
$$

Facts/entities:

s(Carla,Nicolas) s(Cecilia,Nicolas) s(Carla,Ben) s(Carla,Sofie)

Markov Logic Networks

Map logical constraints \& fact candidates
[Richardson, Domingos: ML 2006] into probabilistic graphical model: Markov Random Field (MRF)
$s(x, y) \wedge \operatorname{diff}(y, z) \Rightarrow \neg s(x, z)_{5.9} \quad s(x, y) \Rightarrow f(x)_{100} \quad f(x) \Rightarrow \neg m(x)_{100}$
$s(x, y) \wedge \operatorname{diff}(w, y) \Rightarrow \neg s(w, y)_{7.5} \quad s(x, y) \Rightarrow m(y)_{100} \quad m(x) \Rightarrow \neg f(x)_{100}$

MRF assumption:
$\mathrm{P}\left[\mathrm{X}_{\mathrm{i}} \mid \mathrm{X}_{1} . . \mathrm{X}_{\mathrm{n}}\right]=\mathrm{P}\left[\mathrm{X}_{\mathrm{i}} \mid \mathrm{MB}\left(\mathrm{X}_{\mathrm{i}}\right)\right]$ joint distribution has product form over all cliques

Markov Logic Networks

$$
P(X=x)=\frac{1}{7} \exp \left(\sum_{i} w_{i} n_{i}(x)\right)=\frac{1}{7} \prod_{i} \phi_{i}\left(x_{\{i\}}\right)^{n_{i}(x)}
$$

Markov Logic Networks

Map logical constraints \& fact candidates
[Richardson, Domingos: ML 2006] into probabilistic graphical model: Markov Random Field (MRF)
$s(x, y) \wedge \operatorname{diff}(y, z) \Rightarrow \neg s(x, z)_{5.9} \quad s(x, y) \Rightarrow f(x)_{100} \quad f(x) \Rightarrow \neg m(x)_{100}$
$s(x, y) \wedge \operatorname{diff}(w, y) \Rightarrow \neg s(w, y)_{7.5} \quad s(x, y) \Rightarrow m(y)_{100} \quad m(x) \Rightarrow \neg f(x)_{100}$

Variety of algorithms for joint inference: MCMC (Gibbs sampling, MC-SAT), belief propagation, stochastic MaxSat, ...

s(Carla,Nicolas)
s(Cecilia,Nicolas)
s(Carla,Ben)
s(Carla,Sofie)
\ldots

RVs coupled by MRF edge if they appear in same clause

MRF assumption:
$\mathrm{P}\left[\mathrm{X}_{\mathrm{i}} \mid \mathrm{X}_{1} . . \mathrm{X}_{\mathrm{n}}\right]=\mathrm{P}\left[\mathrm{X}_{\mathrm{i}} \mid \mathrm{MB}\left(\mathrm{X}_{\mathrm{i}}\right)\right]$ joint distribution has product form over all cliques

Markov Logic Networks

Map logical constraints \& fact candidates
[Richardson, Domingos: ML 2006] into probabilistic graphical model: Markov Random Field (MRF)
$s(x, y) \wedge \operatorname{diff}(y, z) \Rightarrow \neg s(x, z)_{5.9} \quad s(x, y) \Rightarrow f(x)_{100} \quad f(x) \Rightarrow \neg m(x)_{100}$
$s(x, y) \wedge \operatorname{diff}(w, y) \Rightarrow \neg s(w, y)_{7.5} \quad s(x, y) \Rightarrow m(y)_{100} \quad m(x) \Rightarrow \neg f(x)_{100}$

Consistency reasoning: prune low-confidence facts StatSnowball [Zhu et al: WWW'09], BioSnowball [Liu et al: KDD‘10] EntityCube, MSR Asia: http://entitycube.research.microsoft.com/

Related Alternative Probabilistic Models

Constrained Conditional Models [Roth et al. 2007]
log-linear classifiers with constraint-violation penalty
mapped into Integer Linear Programs

Factor Graphs with Imperative Variable Coordination

[McCallum et al. 2008]
RV's share "factors" (joint feature functions) generalizes MRF, BN, CRF, ... inference via advanced MCMC flexible coupling \& constraining of RV's

Software tools:
alchemy.cs.washington.edu code.google.com/p/factorie/ research.microsoft.com/en-us/um/cambridge/projects/infernet/

FactorlE

[McCallum et al.: NIPS 08, ECML/PKDD 09, VLDB 10]

- Imperatively Defined Factor graphs (IDF)
- Object-oriented, imperative programming language (Scala)
- Open-source toolsuite for deployable probabilistic modeling
- Markov Logic, CRFs, MCMC, weight learning, etc.
- Scalable DB backend

http://code.google.com Lp/factorie/

```
object LogicDemo1 {
def main(args:Array[String]): Unit = {
// Define entity, attribute and relation types
class Person (val name:String)
    extends ItemizedObservation[Person] with Entity[Person] {
    object smokes extends BooleanVariable with Attribute
    object cancer extends BooleanVariable with Attribute
    ...}
object Friends extends Relation[Person,Person];
// Define the model
val model = new Model(
Forany[Person] { p => p.cancer } * 0.1,
Forany[Person] {p => p.smokes ==> p.cancer } * 2.0
Forany[Person] {p => p.friends.smokes <==> p->Smokes } * 1.5 )
// Create the data
val amy = new Person("Amy"); amy.smokes := true
val bob = new Person("Bob");
Friends(amy,bob); Friends(bob,amy)
// Do 2000 iterations of sampling, gathering sample counts every 20 iterations
val inferencer = new VariableSamplingInferencer(
    new VariableSettingsSampler[BooleanVariable](model))
inferencer.burnIn = 100; inferencer.iterations = 2000; inferencer.thinning = 20
val marginals = inferencer.infer(List(bob.cancer, bob.smokes)) }}
```


Bidirectional Joint Segmentation \& Disambiguation

[Singh,Schultz,McCallum: ECML 09; Poon,Domingos: AAAI 07]

SOFIE: Reasoning for KB Growth

Direct approach:

- KB facts are true; fact candidates \& patterns \rightarrow hypotheses
- known entities and typed relations
- grounded constraints \rightarrow clauses with hypotheses as vars
- cast into Weighted Max-Sat with weights from pattern stats
- customized approximation algorithm
- unifies: fact/candidate consistency, pattern goodness, entity disambiguation www.mpi-inf.mpg.de/yago-naga/sofie/

SOFIE: Facts \& Patterns Consistency

Constraints to connect facts, fact candidates \& patterns pattern-fact duality:

$$
\begin{aligned}
& \operatorname{occurs}(p, x, y) \wedge \operatorname{expresses}(p, R) \Rightarrow R(x, y) \\
& \operatorname{occurs}(p, x, y) \wedge R(x, y) \Rightarrow \operatorname{expresses}(p, R)
\end{aligned}
$$

name(-in-context)-to-entity mapping:
\neg means $(\mathrm{n}, \mathrm{e} 1) \vee \neg$ means $(\mathrm{n}, \mathrm{e} 2) \vee \ldots$
functional dependencies:
spouse $(x, y): x \rightarrow y, y \rightarrow x$ type constraints, inclusion dependencies:
spouse \subseteq Person \times Person capitalOfCountry \subseteq cityOfCountry domain-specific constraints:
born $\ln Y e a r(x)+10 y e a r s \leq$ graduatedlnYear(x)
hasAdvisor $(\mathrm{x}, \mathrm{y}) \wedge$ graduatedlnYear $(\mathrm{x}, \mathrm{t}) \wedge$ graduatedlnYear $(\mathrm{y}, \mathrm{s}) \Rightarrow \mathrm{s}<\mathrm{t}$ www.mpi-inf.mpg.de/yago-naga/sofie/

SOFIE: Facts \& Patterns Consistency

[Suchanek,Sozio,Weikum: WWW 09]
Constraints to connect facts, fact candidates \& patterns pattern-fact duality:

- Grounded into large propositional
$\operatorname{occurs}(p, x, y) \wedge \operatorname{expresses}(p, R) \Rightarrow$
$\operatorname{occurs}(p, x, y) \wedge R(x, y) \Rightarrow$ expresse • name(-in-context)-to-entity mapping:
\neg means $(\mathrm{n}, \mathrm{e} 1) \vee \neg$ means $(\mathrm{n}, \mathrm{e} 2) \vee$
functional dependencies:
spouse $(x, y): x \rightarrow y, y \rightarrow x$ type constraints, inclusion dependencies:
spouse \subseteq Person \times Person capitalOfCountry \subseteq cityOfCountry domain-specific constraints:
bornInYear $(x)+10$ years \leq graduated $\ln Y e a r(x)$
hasAdvisor $(x, y) \wedge$ graduated $\ln Y e a r(x, t) \wedge$ graduated $\ln Y e a r(y, s) \Rightarrow s<t$

SOFIE Example

occurs (X and herhusband Y, Hillary, Bill) occurs)(X Y and their children, Hillary, BiN) occurs (X and her husbahd Y, Victoria, David) occurs (X dating with Y, Rebecca, David) occurs (X dating with Y, Victoria, Tom)

 ... \Rightarrow Spouse (Victoria, David)

\Rightarrow Spouse (Rebecca, David)

\Rightarrow expresses (husband, Spouse)

Soft Rules vs. Hard Constraints

Enforce FD's (mutual exclusion) as hard constraints:
hasAdvisor $(\mathrm{x}, \mathrm{y}) \wedge \operatorname{diff}(\mathrm{y}, \mathrm{z}) \Rightarrow \neg$ hasAdvisor($\mathrm{x}, \mathrm{z})$
Combine with weighted constraints
No longer regular MaxSat
Constrained \& weighted MaxSat
Generalize to other forms of constraints:

Hard constraint

hasAdvisor(x, y) ^ graduatedlnYear(x,t) ^ graduatedInYear(y, s)
$\Rightarrow \mathrm{s}<\mathrm{t}$

Soft constraint

```
firstPaper(x,p) ^ firstPaper(y,q) ^
author(p,x)^ author(p,y))^
inYear(p) > inYear(q) + 5years
=> hasAdvisor(x,y) [0.6]
```

Open issue for arbitrary constraints
(e.g., Datalog-style deductive grounding
vs. „open-world" Markov Logic)
\rightarrow Rethink reasoning!

Pattern Harvesting, Revisited

[Suchanek et al: KDD 06; Nakashole et al: WebDB 10, WSDM 11]
narrow / nasty / noisy patterns:

X and his famous advisor Y

X jointly developed the method with Y
X carried out his doctoral research in math under the supervision of Y

POS-lifted n-gram itemsets as patterns: X \{ PRP ADJ advisor\} Y
$X\{$ ADJ developed method $\}$
$X\{$ carried out PRP doctoral research [IN NP] [DET] supervision [IN] \} Y
confidence \& support weights, using seeds and counter-seeds: seeds: (MosheVardi, CatrielBeeri), (JimGray, MikeHarrison) counter-seeds: (MosheVardi, RonFagin), (AlonHalevy, LarryPage)
\rightarrow confidence of pattern p^{\sim} (\#p with seeds - \#p with counter-seeds)
\rightarrow support of pattern $p \sim$ frequency of p

PROSPERA Architecture

[Nakashole,Theobald,Weikum: WebDB 10; WSDM 11]

- Gathering: Enhanced Hearst patterns
- POS-enriched n-grams
- Pattern-fact duality
- Disambiguation of entities based on "means" and "type" in YAGO
- Analysis: Refined pattern weights
- Carefully chosen seeds and counter seeds (closed set of target relations)
- Thresholds for confidence \& support
- Reasoning: Scalable (distributed) extraction \& consistency reasoning
- MapReduce functions for extraction \& gathering of statistics
- SOFIE-based, distributed MaxSat solver + graph partitioning
- Experiments on large Web corpus w/500 Mio documents

Trivially Parallel: Pattern Mining

1. FUNCTION $\operatorname{map}\left(i, P_{i}\right)$
2. \quad List $N \leftarrow$ generateNgrams $\left(P_{i}\right)$
3. \quad FOR $n_{i} \in N$ DO
4. $\operatorname{emit}\left(n_{i}, 1\right)$
5. FUNCTION reduce $\left(n_{i},[v 1, v 2, v 3, \ldots]\right)$
6. support $\leftarrow 0$
7. FOR $v_{i} \in[v 1, v 2, v 3, \ldots]$ DO
8. \quad support \leftarrow support $+v_{i}$
9. IF support \geq MINSUPPORT
10. emit (n_{i}, support)
11. FUNCTION $\operatorname{map}\left(i,\left[e_{1}, p, e_{2}\right]\right)$
12. IF isSeedPattern (p)
13. \quad FOR $r \in R$ DO
14. \quad SeedOccurrence $O \leftarrow\left[r, e_{1}, e_{2}\right]$
emit(p.id, O)
15. FUNCTION reduce(p.id, $[O 1, O 2, O 3, \ldots]$)
16. List $L \leftarrow\}$
17. FOR $O \in[O 1, O 2, O 3, \ldots]$ DO
18. $\quad L$.append (O)
19. emit(p.id, L)

- Frequent n-gram patterns
- Seed pattern occurrences \& confidences

Harder to Parallelize: Consistency Reasoning

- Distributed reasoning is non-trivial!
- Constraints impose dependencies
- Facts and pattern candidates are vertices
- Literals in a grounded constraint form cliques
- Min-cut two-phase algorithm
- Randomized approximation [Karypis et al. 98, Karger 96]
1: coarsen graph
2: partition the coarser graph
\rightarrow minimize the weight of the cut edges
\rightarrow keep partitions balanced

PROSPERA Results

[Nakashole et al : WSDM 11]

Relation	\# Extractions			Precision			Precision@1000 PROSPERA-6
	PROSPERA-6	NELL-6	NELL-66	PROSPERA-6	NELL-6	NELL-66	
AthletePlaysForTeam	14,685	29	456	82\%	100\%	100\%	100\%
CoachCoachesTeam	1,013	57	329	88\%	100\%	100\%	n / a
TeamPlaysAgainstTeam	15,170	83	1,068	89\%	96\%	99\%	100\%
TeamWonTrophy	98	29	397	94\%	88\%	68\%	n / a
AthletePlaysInLeague	3,920	2	641	94\%	n / a	n / a	n / a
TeamPlaysInLeague	1,920	62	288	89\%	n / a	n / a	n/a
AthleteWonTrophy	10	n / a	n / a	90\%	n / a	n / a	n / a
CoachCoachesInLeague	676	n / a	n / a	99\%	n / a	n / a	n/a
TeamMate	19,666	n / a	n / a	86\%	n / a	n / a	100\%

Table 1: Performance comparison between PROSPERA and NELL on sports relations

ClueWeb-2009 corpus: ~500 Mio English Web documents

Outline for Part III

- Domain-oriented IE vs. Open-domain IE
- What to extract: entities, classes, binary \& higher-arity relations
- Entities, Classes \& Subsumptions
- WordNet concepts, Wikipedia categories, entity disambiguation
- Pattern-based Knowledge Harvesting
- Wrapper induction, WebTables, statistical pattern mining
- Probabilistic Extraction Models
- HMMs, MEMMs, CRFs
- Constraints \& Reasoning
- MLNs, CCMs, FactorIE, SOFIE/PROSPERA
- Open-domain IE
- ReadTheWeb, TextRunner, Omnivore, REVERB
- Advanced reasoning
- Temporal/spatial annotations of facts

Open-Domain IE, History

- KnowltAll (Web), Kylin/Kog (Wikipedia-centric)
[Etzioni,Cafarella et al: WWW 04; Wu,Weld et al: CIKM 07, SIGMOD-Rec. 08, WWW 2008]
- TextRunner, Omnivore, REVERB
[Cafarella,Banko,Etzioni,Soderland et al: AAAI 06, NAACL-HLT 07, SIGMOD Rec. 07, IJCAI 07, CIDR 09, NAACL 10, EMNLP 11]
- ReadTheWeb, NELL
[Carlson,Cohen,Mitchell et al: NAACL-HLT Ws. 09, AAAI 10, WSDM 10]

Open-domain IE, Methodology

- Information extraction from free text with limited or no assumptions about domain knowledge
- NLP techniques: POS, DP, SRL
- Unsupervised clustering or semi-supervised classifiers
- Bootstrapping loops: pattern/fact duality
- No or limited (periodic) human supervision
- Extract a large number of "beliefs" or "assertions"

ReadTheWeb

- Coupled Semi-Supervised Learning for Information Extraction
- Ontological backbone
- Closed set of categories \& typed relations
- Seeds/counter seeds
- Open set of predicate arguments
- Coupled learners
- Coupled pattern/relation extractor
- Coupled SEAL
athletePlaysForTeam
(Athlete, SportsTeam)
athletePlaysForTeam
(Alex Rodriguez, Yankees)
athletePlaysForTeam
(Alexander_Ovechkin, Penguins)
- NELL
- Constantly running over a large Web corpus since January 2010 (200 Mio pages Web crawl)
- Periodic human supervision

ReadTheWeb

[Carlson,Mitchell et al: NAACL-HLT Ws. 09, WSDM 10, AAAI 10]

- Coupled Semi-Supervised Learning for Information Extraction
- Coupled output constraints
- For $\mathrm{f}_{1}\left(\mathrm{x}_{1}\right) \rightarrow \mathrm{y}_{1}$ and $\mathrm{f}_{2}\left(\mathrm{x}_{1}\right) \rightarrow \mathrm{y}_{2}$
- Restrict output y_{1} and y_{2} (e.g. $f_{1}(x) \rightarrow f_{2}(x)$ for functional dependencies, mut.-ex.)
- Compositional constraints
- For $\mathrm{f}_{1}\left(\mathrm{x}_{1}\right) \rightarrow \mathrm{y}_{1}$ and $\mathrm{f}_{2}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \rightarrow \mathrm{y}_{2}$
- Restrict y_{1}, y_{2} to valid pairs (special case: type checking)
- Multi-view agreement
- Co-training classifiers $\mathrm{f}_{1}\left(\mathrm{x}_{1}\right) \rightarrow \mathrm{y}$ and $\mathrm{f}_{2}\left(\mathrm{x}_{2}\right) \rightarrow \mathrm{y}$
- Constraints employed for experiments
- Mutual-exclusiveness predicates
- Type checking
- Label-agreement

Coupled Pattern Learner (CPL)

For $\mathrm{i}=1, . ., \infty$ do

- For each predicate p do
- Extract new candidates instances/contextual patterns of p using recently promoted instances
- Filter candidates that violate constraints
- Rank candidate instances/patterns
- Promote top candidates for next round

Meta-Boostrap Learner (MBL)

For $\mathrm{i}=1, . ., \infty$ do

- For each predicate p do
- For each extractor e do

Extract new candidates for p using e with recently promoted instances

- Filter candidates that violate mutual-exclusion or type constraints
- Promote candidates that were extracted by all extractors

ReadTheWeb

[Carlson,Mitchell et al: WSDM 10]

Predicate	Precision (\%)					Promoted Instances (\#)				
	CPL	UPL	CSEAL	SEAL	MBL	CPL	UPL	CSEAL	SEAL	MBL
CompanyAcquiredCompany	97	77	-	-	-	93	230	0	0	0
AthletePlaysForTeam	100	93	100	76	100	9	269	4	17	96
AthletePlaysInLeague	-	78	100	57	-	0	18	14	82	0
AthletePlaysSport	100	47	100	100	100	83	258	1	1	109
CEOOfCompany	100	100	-	100	100	18	18	0	1	1
CityLocatedInCountry	93	57	100	100	100	185	787	9	577	136
CityLocatedInState	100	70	100	93	100	76	194	34	537	54
CoachCoachesInLeague	-	-	0	-	-	0	0	1	0	0
CoachCoachesTeam	100	100	-	-	100	324	668	0	0	6
CompanyIsInEconomicSector	93	97	-	-	-	583	889	0	0	0
CompanyCompetesWithCompany	100	67	-	-	-	28	123	0	0	0
CompanyHasOfficeInCity	-	63	-	100	-	0	526	0	4	0
CompanyHasOfficeInCountry	-	90	-	-	-	0	195	0	0	0
CompanyHeadquarteredInCity	50	53	100	100	-	2	532	1	2	0
LeaguePlaysGamesInStadium	-	-	-	100	-	0	0	0	177	0
CompanyProducesProduct	97	93	-	-	100	54	215	0	0	8
ProductInstanceOfProductType	73	67	-	-	-	153	484	0	0	0
SportUsesSportsEquipment	33	3	100	87	33	15	1330	5	15	6
StadiumLocatedInCity	100	20	77	70	90	7	600	200	554	56
StateHasCapitalCity	60	70	-	73	-	266	188	0	495	0
StateLocatedInCountry	97	40	100	97	100	194	1299	46	653	61
TeamHasHomeStadium	100	87	100	100	100	97	208	179	106	92
TeamPlaysAgainstTeam	100	80	-	-	-	238	2088	0	0	0
TeamHasHomeCity	-	57	-	93	100	0	680	0	29	11
TeamPlaysInLeague	100	67	100	100	100	7	255	104	749	23
TeamPlaysSport	-	70	100	100	100	0	177	30	30	37
TeamWonAwardTrophyTournament	90	70	-	-	-	128	262	0	0	0
Average	89	69	91	91	95	95	463	23	149	26
Weighted Average	91	61	92	90	99					

Beliefs learned over a 200 million pages Web corpus after 10 iterations

NELL: Never-Ending Language Learning

[Carlson,Mitchell et al: AAAI 10]

- Constantly online since January 2010
- Many hundreds of iterations
- More Coupled Learners
- Coupled Pattern Learner e.g., mayor of X, X plays for Y
- Coupled SEAL

Set expansion \& wrapper induction algorithm

- Coupled Morphological Classifier

Regression model for morphological features of noun phrases

- First-order Rule Learner (based on FOIL)
e.g., athleteInLeague(X, NBA) \Rightarrow athletePlaysSport(X, basketbal)
- More mutual-exclusion constraints using seeds/counter seeds and "mutex-relations"

NELL: Never-Ending Language Learning

[Carlson,Mitchell et al: AAAI 10]

Predicate	Web URL	Extraction Template
academicField	http://scholendow.ais.msu.edu/student/ScholSearch.Asp	\ [X] -
athlete	http://www.quotes-search.com/d_occupation.aspx?o=+athlete	-
bird	http://www.michaelforsberg.com/stock.html	<option> \(X X]\) </option>
bookAuthor	http://lifebehindthecurve.com/	 $[X]$ by [Y] \&\#8211;

SEAL wrappers

Probability	Consequent	Antecedents
0.95	athletePlaysSport(X, basketball)	\Leftarrow athleteInLeague(X, NBA)
0.91	teamPlaysInLeague (X, NHL)	\Leftarrow teamWonTrophy (X, Stanley Cup)
0.90	athleteInLeague (X, Y)	\Leftarrow athletePlaysForTeam (X, Z), teamPlaysInLeague (Z, Y)
0.88	cityInState (X, Y)	\Leftarrow cityCapitalOfState(X, Y), city InCountry (X, USA)
$\dagger 0.62$	newspaperInCity (X, New York)	\Leftarrow companyEconomicSector(X, media), generalizations(X, blog)

Deduction rules

Predicate	Feature	Weight
mountain	LAST=peak	1.791
mountain	LAST=mountain	1.093
mountain	FIRST=mountain	-0.875
musicArtist	LAST=band	1.853
musicArtist	POS=DT_NNS	1.412
musicArtist	POS=DT_JJ_NN	-0.807
newspaper	LAST=sun	1.330
newspaper	LAST=press	1.276
newspaper	LAST=university	-0.318
university	LAST=college	2.076
university	PREFIX=uc	1.999
university	LAST=university	1.745
university	FIRST=college	-1.381
visualArtMovement	SUFFIX=ism	1.282
visualArtMovement	PREFIX=journ	-0.234
visualArtMovement	PREFIX=budd	-0.253

Morphological features
 \& weights

Predicate	Pattern
emotion	hearts full of X
beverage	cup of aromatic X
newspaper	op-ed page of X
teamPlaysInLeague	X ranks second in Y
bookAuthor	Y classic X

Extraction patterns

citycapitalofcountry

citysportsteams

- citystadiums
leaderofcountry
- agentrepresentsorganization
agentleadsorganization
- personleadsorganization - ceoof
proxyof
- countrycapital
countryleader
- stadiumlocatedincity
statehascapitar
statenascapital
teamplaysincity
organizationrepresentedbyagent
- organizationleadbyagent
- organizationleadbyperson - companyceo
synonymfor
- organizationnamehasacronym
organizationacronymhasname
teamalsoknownas
companyalsoknownas
cityalsoknownas
athletealsoknownas
coachalsoknownas
stadiumalsoknownas
stadiumalsoknownas
teamplayssport
tearnwontrophy
- trophywonbycoaches
- trophywonbytearn
- visualartformartist
visualartmovementartist
visualartistartform
visualartistartmovement
politicianholdsoffice
politicianusholdsoffice
atlocation
locationlocatedwithinlocation
citylocatedincountry citylocatedincountry - citycapitalofcount cilyocateannstate citycapitaluistate attractionofcity stadiumlocatedincity museumincity zooincity parkincity
citycapitalofcountry
(relation: domain city, range country)
See metadata for citycapitalofcountry
55 instances, 1 page

instance	iteration	date learned	confidence
bratislava, slovakia	247	12-may-2011	100.0
cardiff_airport, wales	304	19-jun-2011	100.0
edinburgh_airport, scotland	328	02-jul-2011	100.0
windhoek, namibia	304	19-jun-2011	100.0
santo, dominican_republic	333	04-jul-2011	100.0
damascus, syria	319	27-jun-2011	100.0
monrovia, republic_of_liberia	332	04-jul-2011	100.0
west_seneca, jamaica	304	19-jun-2011	100.0
bamako, mali	333	04-jul-2011	100.0
ouagadougou, burkina_faso	326	01-jul-2011	100.0
lome, togo	333	04-jul-2011	100.0
reykjavik, iceland001	333	04-jul-2011	100.0
chicago, midwest	318	27-jun-2011	100.0
kyiv, ukraine	253	18-may-2011	100.0
london_luton, united_kingdom	333	04-jul-2011	100.0
san_juan_bautista, commonwealth_of_puerto_rico	333	04-jul-2011	100.0
ashgabat, turkmenistan	210	17-feb-2011	99.9
hamilton, bermuda	326	01-jul-2011	99.9
dublin, republic	302	18-jun-2011	99.8
panama001, panama	333	04-jul-2011	99.8
port_vila, vanuatu	333	04-jul-2011	99.8
abidjan, ivory_coast	302	18-jun-2011	99.6
barcelona, catalonia	162	13-nov-2010	99.6
rarotonga, colony_of the falkland_islands	333	04-jul-2011	99.6
kaunas, lithuania001	333	04-jul-2011	99.2
fort_de_france, martinique	317	27-jun-2011	98.4
hargeisa, somaliland	210	17-feb-2011	98.4
mogadishu, somalia	210	17-feb-2011	98.4
nineveh, assyria	212	20-feb-2011	98.4
paramaribo, suriname	331	04-jul-2011	98.4
stanley, falkland islands	333	04-jul-2011	98.4
st_tropez, reunion	332	04-jul-2011	98.4
tripoli, libya	162	13-nov-2010	98.4
castries, saint_lucia	210	17-feb-2011	96.9
funafuti, tuvalu	210	17-feb-2011	96.9
oranjestad, aruba	222	21-mar-2011	96.9
pristina, kosovo	210	17-feb-2011	96.9
taunggyi, shan_state	300	17-jun-9n11	96a

Example Output

Browse by concepts \& relations

CityCapitalOfCountry

- 55 high-confidence instances

TextRunner

[Cafarella,Banko,Etzioni,Soderland et al: AAAI 06, NAACL-HLT 07, SIGMOD Rec. 07, IJCAI 07]

Machine Reading

- Automatic, unsupervised understanding of text
- Open set of entities and relations (\rightarrow assertions)
- Single-pass extractor
- POS tagging, extract triplets of NP x VP x NP

- Self-supervised classifier
- Trained on POS sequences from trustworthy sentences
- Synonym resolution
- Unsupervised clustering of nouns and verbal phrases
- Query interface
- Issue structured keyword over triplet patterns
- REVERB
- Syntactic \& lexical constraints on verbs and nouns; open-source release [Fader,Soderland,Eztioni: EMNLP 11]
- Deep NLP: semantic role labeling for Open-IE [Christensen,Mausam,Soderland,Eztioni: NAACL 10]

TextRunner

Example Ouput

Triplets grouped by
Arg1 X Pred X Arg2

- Entity names \& predicates matched but not canonicalized

Angela Merkel (19 results)

Angela Merkel is chancellor of Germany (12)
Angela Merkel is Germany 's Chancellor (4). German chancellor (2), no Margaret Thatcher (5)
Angela Merkel became Germany 's first female chancellor (10), first woman chancellor of Germany (2)
Angela Merkel was elected Chancellor of Germany (5)
Angela Merkel was elected in 2005 (2)
Angela Merkel has the full confidence and support of the CD U and CSU (2), East German roots (2)
Angela Merkel was elected Chancellor in Germany (2)
Angela Merkel is head of the CDU. (2)
Angela Merkel is not a fawning head of state (2)
Angela Merkel was sworn in as Germany 's chancellor (3)
Angela Merkel apparently has a fear of dogs (2)
Angela Merkel was born in Hamburg (3)
Angela Merkel comes from East Germany (2)
Angela Merkel aimed this salvo (2)
Angela Merkel is the new chancellor in Germany (2)

German Chancellor Angela Merkel (23 results)

German Chancellor Angela Merkel said Thursday (3), Friday (2), all African leaders (2). Tuesday (3)
German Chancellor Angela Merkel will address the conference (2)
German Chancellor Angela Merkel is calling on fellow heads of government (2)
German Chancellor Angela Merkel warned of "big risks (3)
German Chancellor Angela Merkel defended the German-born pope (4)
German Chancellor Angela Merkel currently holds the presidency of the EU (2)
German Chancellor Angela Merkel topped the list (2)
??? German Chancellor Angela Merkel arrived in Ethiopia (3)
German Chancellor Angela Merkel listens to a parliamentary debate (2)
German Chancellor Angela Merkel gets a suprise (2)
German Chancellor Angela Merkel met with the Dalai Lama (3)
German Chancellor Angela Merkel currently holds the EU presidency (3)
German Chancellor Angela Merkel traveled to the crash scene (2)
German Chancellor Angela Merkel arrives for a meeting (2)
German Chancellor Angela Merkel is hosting the meeting (3)
German Chancellor Angela Merkel condemned the attack (2)
German Chancellor Angela Merkel faced tough questions after her conservatives (2)
German Chancellor Angela Merkel gives a speech as she campaigns (3)

Search again:

Argument 1
Angela Merkel
Predicate

Argument 2
Search Again
Jump to:
Angela Merkel (19)
German Chancellor Angela Merkel (23)
Chancellor Angela Merkel (5) future Angela Merkel government (1)

Angela Merkel 's six-month presidency of the European Union (1)

ReVerb took 39 seconds.
Retrieved $\mathbf{7 4}$ results for Predicate containing "is located in" and Argument 2 containing "India", Returned 16 results by filtering Argument 1 using 3 FreeBase types matching "City" - 58 discarded results Grouping results by argument 1. Group by: predicate | argument 2

Delhi (3 results)
Delhi is located in northern India (6), the northern part of India (2), the northern planes of India (2)

```
Bangalore (3 results)
Bangalore is located in the southern part of India (4), India (4), South India (2)
centers (1 results)
centers are located in India (8)
Pune (2 results)
Pune is located in western India (3), the western part of India (2)
Nagpur (1 results)
Nagpur is located in the centre of India (3)
Bengal (1 results)
Bengal is situated in East India (2)
Institute (1 results)
Institute is located in the premises of the Servants of India Society (2)
jobs (1 results)
jobs are located in India (2)
```

Search again:
Argument 1
City
Predicate
is located in
Argument 2
India
Search Again
Jump to:
Delhi (3)
Bangalore (3)
centers (1)
Pune (2)
Nagpur (1)
Bengal (1)
Institute (1)
jobs (1)
Ranthambore National Park (1)
reserves (1)
$\frac{\text { Vendors (1) }}{}$

TextRunner

 Example OuputCan filter arguments by FreeBase concepts

Omnivore

Extract and query a comprehensive Web database

- Combines extractors from
- KnowltAll
- TextRunner
- WebTables
- Weak associations (unknown relations) e.g., Mike_Cafarella < ? > Alon_Halevy
- SQL query interface
- Individual sources unified into a relational schema for on-the-fly querying

Outline for Part III

- Domain-oriented IE vs. Open-domain IE
- What to extract: entities, classes, binary \& higher-arity relations
- Entities, Classes \& Subsumptions
- WordNet concepts, Wikipedia categories, entity disambiguation
- Pattern-based Knowledge Harvesting
- Wrapper induction, WebTables, statistical pattern mining
- Probabilistic Extraction Models
- HMMs, MEMMs, CRFs
- Constraints \& Reasoning
- MLNs, CCMs, FactorIE, SOFIE/PROSPERA
- Open-domain IE
- ReadTheWeb, TextRunner, Omnivore, REVERB
- Advanced reasoning
- Temporal/spatial annotations of facts

Higher-arity Relations - Space \& Time

- YAGO2 Numbers

	Just Wikipedia	Incl. Gazetteer Data
\#Relations	104	114
\#Classes	364,740	364,740
\#Entities	$2,641,040$	$9,804,102$
\#Facts	$\mathbf{6 0 1 , 9 8 4 , 2 3 6}$	$\mathbf{2 , 2 3 1 , 6 9 9 , 9 8 9}$
- base relations	$120,639,022$	$461,893,127$
- types \& classes	$8,649,652$	$15,716,697$
- space, time \& proven.	$\mathbf{4 7 2 , 6 9 5 , 5 6 2}$	$\mathbf{1 , 7 5 4 , 0 9 0 , 1 6 5}$
Size (CSV format)	$\mathbf{2 3 . 4} \mathbf{~ G B}$	$\mathbf{1 2 1 ~ G B}$

estimated precision > 95\%
(for basic relations excl. space, time \& provenance)
www.mpi-inf.mpg.de/yago-naga/

French Marriage Problem (Revisited)

FEB

APR MAY JUN JUL AUG SEP OCT NOV DEC

Facts in KB:

1: married
(Hillary, Bill)
2: married
(Carla, Nicolas)
3: married
(Angelina, Brad)
validFrom $(2,2008)$

New fact candidates:
4: married (Cecilia, Nicolas)
5: married (Carla, Benjamin)
6: married (Carla, Mick)
7: divorced (Madonna, Guy)
8: domPartner (Angelina, Brad)
validFrom $(4,1996) \quad$ validUntil $(4,2007)$
validFrom $(5,2010)$
validFrom $(6,2006)$
validFrom $(7,2008)$

Challenge: Temporal Knowledge Harvesting

For all people in Wikipedia (100,000's) gather all spouses, incl. divorced \& widowed, and corresponding time periods!
>95\% accuracy, >95\% coverage, in one night

Nicolas Sarkozy

28 January 1955 (age 53) Paris, France
Nicolas Paul Stéphane Sarközy

Consistency constraints are potentially helpful:

- functional dependencies: \{husband, time\} \rightarrow \{wife, time\}
\bullet inclusion dependencies: marriedPerson \subseteq adultPerson
- age/time/gender restrictions: birthdate + Δ < marriage < divorce

Difficult Dating

President of France

> Incumbent

Assumed office

28 January 1955 (age 55) Paris, France

Political party

Other political
affiliations
Spouse(s) Union for a Popular Movement (2002-present) Rally for the Republic (1976-2002)
Marie-Dominique Culioli (1982-1996)

Cécilia Ciganer-Albéniz (1996-2007)
Carla Bruni-Sarkozy (2008present)

Pierre Sarkozy (by Culioli) Jean Sarkozy (by Culioli) Louis Sarkozy (by CiganerAbéniz)

Élysée Palace
Paris X University Nanterre Lawyer Roman Catholicism

Wife of the President of the French Republic Incumbent
Assumed office
2 February 2008
President Nicolas Sarkozy
Preceded by Cécilia Ciganer-A.Abéniz
$\left.\begin{array}{|ll|}\hline \text { Born } & 23 \text { December 1967 (age 42) } \\ \text { Turin, Haly }\end{array}\right\}$

Issue
Prince William of Wales Prince Harry of Wales

Full name

Charles Philip Arthur George
House Maternal: House of Windsor Paternal: House of Schleswig-Holstein-Sonderburg-Glücksburg
Father Prince Philip, Duke of Edinburgh
Mother Elizabeth II
Born 14 November 1948 (age 61) Buckingham Palace, London

Signature

Religion Christian (Church of England)

Prince William of Wales Prince Henry of Wales

Full name

Diana Frances Spencer ${ }^{[N 1]}$
House House of Mindsor
Father John Spencer, 8th Earl Spencer
Mother Frances Shand Kydd
Born 1 July 1961
Park House, Sandringham, Norfolk
Died
31 August 1997 (aged 36) Pitié-Salpêtrière Hospital, Paris, France
Burial Althorp, Northamptonshire

Madonna at the premiere of 1 Am Secause he Are in 2008.

Background information
Birth name Madonna Louise Ciccone

Born
10 Septernber 1968 (age 41) Hatfield, Hertfordshire, England

Occupation Filmmaker, Screenwriter
Years 1995-present
active
Spouse(s) Madonna (2000-2008) (divorced)

(Even More Difficult) Implicit Dating

ame, see Sárk̈̈zi (surname

explicit dates vs. implicit dates relative to other dates

kozi] (help./hfo)), born Nicolas Paul Stéphane Sarközy de Nagy-Bocsa on resident of the French Republi and ex officio Co-Prince of Andorra. He efeating So fialist Party candidate Sédolène Royal 10 days earlier.
Union for a Popular Mpvement (UMP). Under Jacques Chirac's presidency he erre Raffarin's (UMP) first two governments (from May 2002 to March 2004), Raffarin's last government (March 2004 to May 2005) and again Minister of nment (2005-2007).
council of the Hauts-de-Seine department from 2004 to 2007 and mayor of mmunes of France from 1983 to 2002. He was Minister of the Budget in the decessor of the UMP) during François Mitterrand's last term.
he French economy. ${ }^{[1][2][3]}$ He has pledged to revive the work ethic, promote reign affairs he has promised a strengthening of the entente cordiale with the with the United States. ${ }^{[5]}$ He married Carla Bruni-Sarkozy on 2 February 2008

(Even More Difficult) Implicit Dating

Early life

vague dates
 relative dates

During Sarkozy's childhood, his father refused to give his wife's family any financial help, evernviverne rau nutrueu his own advertising agency and had become wealthy. The family lived in a small mansion owned by Sarkozy's grandfather, Benedict Mallah, in the 17th Arrondissement. The family later moved to Neuilly-sur-Seine, one of the wealthiest communes of the Ille-de-France région immediately west of the 17th Arrondissement just outside of Paris. According to Sarkozy, his staunchly Gaullist grandfather was more of an influence on him than his father, whom he rarely saw. Sarkozy was, accordingly, raised Catholic. [18]
Sarkozy said that being abandoned by his father shaped much of who he is today. He also has said that, in his early years, he felt inferior in relation to his wealthier classmates. ${ }^{[19]}$ "What made me who I am now is the sum of all the humiliations suffered during childhood", he said later. ${ }^{[19]}$

Education

narrative text relative order

Sarkozy was enrolled in the Lycée Chaptal a state-funded public middle and high school in ranrs otr arrondissement, where he failed his sixième. His family thensent him to the Cours Saint-Louis de Monceau a private Catholic school in the 17th arrondissement, where he was reportedly a mediocre student, ${ }^{-\cdots-}$ but where he nonetheless obtained his baccalauréat in 1973. He enrolled at the Université Paris X Nanterre where he graduated with a Master in Private law, and later with a DEA degree in Business law. Paris X Nanterre had been the starting place for the May ' 68 student movement and was still a stronghold of leftist students. Described as a quiet student, Sarkozy soon joined the right-wing student organization, in which he was very active. He completed his military service as a part time Air Force cleaner ${ }^{[21}$ After graduating, he entered the Institut d'Etudes Politiques de Paris (1979-1981) but failed to graduate due to an insufticlent command of the English language ${ }^{[22]}$ After passing the bar, he became a lawyer specializing in business and family law, ${ }^{[23]}$ and was one of Silvio Berlusconi's top French advocates. ${ }^{[24] \mid[25][28]}$

TARSQI: Extracting Time Annotations

http://www.timeml.org/site/tarsqi/

[Verhagen et al: ACL’05]
Hong Kong is poised to hold the first election in more than half <TIMEX3 tid="t3" TYPE="DURATION" VAL="P100Y">a century</TIMEX3> that includes a democracy advocate seeking high office in territory controlled by the Chinese government in Beijing. A prodemocracy politician, Alan Leong, announced <TIMEX3 tid="t4" TYPE="DATE" VAL="20070131">Wednesday</TIMEX3> that he had obtained en appear on the ballot to become the territory's next chief executive. But h extraction he had no chance of beating the Beijing-backed incumbent, Donald Tsan election. Under electoral rules imposed by Chinese officials, only 796 pe

errors!

 committee - the bulk of them with close ties to mainland China - will be allowed to vote in the <TIMEX3 tid="t5" TYPE="DATE" VAL="20070325">March 25</TIMEX3> election. It will be the first contested election for chief executive since Britain returned Hong Kong to China in <TIMEX3 tid="t6" TYPE="DATE" VAL="1997">1997</TIMEX3>. Mr. Tsang, an able administrator who took office during the early stages of a sharp economic upturn in <TIMEX3 tid="t7" TYPE="DATE" VAL="2005">2005</TIMEX3>, is popular with the general public. Polls consistently indicate that three-fifths of Hong Kong's people approve of the job he has been doing. It is of course a foregone conclusion - Donald Tsang will be elected and will hold office for <TIMEX3 tid="t9" beginPoint="t0" endPoint="t8" TYPE="DURATION" VAL="P5Y">another five years </TIMEX3>, said Mr. Leong, the former chairman of the Hong Kong Bar Association.
13 Relations between Time Intervals

[Allen, 1984; Allen \& Hayes 1989]

A Before B	B After A	A	B
A Meets B	B MetBy A	A	
A Overlaps B	B OverlappedBy A	A	B
A Starts B	B StartedBy A	A	
A During B	B Contains A	B	
A Finishes B	B FinishedBy A	A	
A Equal B		B	

Possible Worlds in Time

[Wang,Yahya,Theobald: MUD Ws. 10]

Derived Facts

teamMates(Beckham, \leftarrow playsFor(Beckham, Real, T1)
Ronaldo)
State Relation
^ playsFor(Ronaldo, Real, T2) ^ overlaps(T1,T2)

Base Facts

Non-independent Independent

Possible Worlds in Time

Derived Facts
[Wang,Yahya,Theobald: MUD Ws. 10]

- Closed and complete representation model (incl. lineage)
\rightarrow Stanford Trio project [Widom: CIDR'05, Benjelloun et al: VLDB'06]
- Interval computation remains linear in the number of bins

B - Confidence computation per bin is \#P-complete
F: • In general requires possible-worlds-based sampling techniques (Luby-Karp for DNF, MCMC-style sampling, etc.)

Outline for Part III

- Domain-oriented IE vs. Open-domain IE
- What to extract: entities, classes, binary \& higher-arity relations
- Entities, Classes \& Subsumptions
- WordNet concepts, Wikipedia categories, entity disambiguation
- Pattern-based Knowledge Harvesting
- Wrapper induction, WebTables, statistical pattern mining
- Probabilistic Extraction Models
- HMMs, MEMMs, CRFs
- Constraints \& Reasoning
- MLNs, CCMs, FactorIE, SOFIE/PROSPERA
- Open-domain IE
- ReadTheWeb, TextRunner, Omnivore, REVERB
- Advanced reasoning
- Temporal/spatial annotations of facts

Open Problems and Challenges in IE (I)

High precision \& high recall at affordable cost

robust, statistical pattern mining \& analysis
parallel processing and distributed reasoning, lazy / lifted inference, ...

Types and constraints

soft rules \& hard constraints, rich DL, beyond CWA
explore \& understand different families of constraints

Declarative, self-optimizing workflows

incorporate pattern \& reasoning steps into IE queries/programs
Scale, dynamics, life-cycle
grow \& maintain KB with near-human-quality over long periods
Open-domain knowledge harvesting
turn names, phrases \& table cells into entities \& relations

Open Problems and Challenges in IE (II)

Temporal Querying (Revived)

temporal query language (T-SPARQL?)
confidence weights \& ranking

Gathering Implicit and Relative Time Annotations

biographies \& news, relative orderings
aggregate \& reconcile observations

Incomplete and Uncertain Temporal Scopes

incorrect, incomplete, unknown begin/end dates
vague dating

Scalable Consistency Reasoning
extended MaxSat, probabilistic Datalog, graphical models, scale-up Markov Logic, etc.
for resolving inconsistencies on uncertain facts \& uncertain time

Readings for Part III

- E. Agichtein, L. Gravano, J. Pavel, V. Sokolova, A. Voskoboynik. Snowball: a prototype system for extracting relations from large text collections. SIGMOD, 2001.
- E. Alfonseca, M. Pasca, E. Robledo-Arnuncio: Acquisition of instance attributes via labeled and related instances. SIGIR 2010.
- James Allen. Towards a general theory of action and time. Artif.Intell., 23(2), 1984.
- M. Banko, M. J. Cafarella, S. Soderland, M. Broadhead, O. Etzioni. Open information extraction from the web. IJCAI, 2007.
- R. Baumgartner, S. Flesca, G. Gottlob. Visual web information extraction with Lixto. VLDB, 2001.
- S. Brin. Extracting patterns and relations from the World Wide Web. WebDB, 1998.
- M. J. Cafarella: Extracting and Querying a Comprehensive Web Database. CIDR 2009.
- M. J. Cafarella, A. Halevy, D. Z. Wang, E. Wu, Y. Zhang. WebTables: exploring the power of tables on the web. PVLDB, 1(1), 2008.
- M. E. Califf, R. J. Mooney. Relational learning of pattern-match rules for information extraction. AAAI, 1999.
- A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. Hruschka Jr., T. M. Mitchell: Toward an Architecture for Never-Ending Language Learning. AAAI 2010
- A. Carlson, J. Betteridge, R. C. Wang, E. R. Hruschka Jr., T. M. Mitchell. Coupled semi-supervised learning for information extraction. WSDM, 2010
- J.Christensen, Mausam, S. Soderland, O. Etzioni: Semantic Role Labeling for Open Information Extraction. NAACL 2010.
- P. DeRose, W. Shen, F. Chen, Y. Lee, D. Burdick, A. Doan, R. Ramakrishnan. DBLife: A community information management platform for the database research community. CIDR, 2007.
- A. Doan, L. Gravano, R. Ramakrishnan, S. Vaithyanathan. (Eds.). Special issue on information extraction. SIGMOD Record, 37(4), 2008.
- O. Etzioni, Mi.Banko, M. J. Cafarella: Machine Reading. AAAI 2006.
- O. Etzioni, M. Cafarella, D. Downey, S. Kok, A.-M. Popescu, T. Shaked, S. Soderland, D. S. Weld, A. Yates. Web-scale information extraction in KnowItAll. WWW, 2004.
- G. Gottlob, C. Koch, R. Baumgartner, M. Herzog, S. Flesca. The Lixto data extraction project - back and forth between theory and practice. PODS, 2004.
- R. Gupta, S. Sarawagi: Answering Table Augmentation Queries from Unstructured Lists on the Web. PVLDB, 2(1), 2009.
- R. Gupta, S. Sarawagi: Joint training for open-domain extraction on the web: exploiting overlap when supervision is limited. WSDM 2011.
- M. A. Hearst. Automatic acquisition of hyponyms from large text corpora. COLING, 1992.
- D. Hindle. Noun classification from predicate-argument structures. ACL, 1990.

Readings for Part III

- J. Hoffart, M. A. Yosef, I. Bordino, H. Fürstenau, M. Pinkal, M. Spaniol, Bi. Taneva, S. Thater, G. Weikum. Robust Disambiguation of Named Entities in Text. EMNLP 2011.
- R. Krishnamurthy, Y. Li, S. Raghavan, F. Reiss, S. Vaithyanathan, H. Zhu. SystemT: a system for declarative information extraction. SIGMOD Record, 37(4), 2008.
- S. Kulkarni, A. Singh, G. Ramakrishnan, S. Chakrabarti. Collective Annotation of Wikipedia Entities in Web Text. KDD, 2009.
- N. Kushmerick. Wrapper induction: efficiency and expressiveness. Artif. Intell., 118(1-2), 2000.
- J. Lafferty, A. McCallum, F. Pereira. Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data. ML, 2001.
- X. Liu, Z. Nie, N. Yu, J.-R. Wen. BioSnowball: automated population of Wikis. KDD, 2010.
- A. McCallum, D. Freitag, F. Pereira. Maximum Entropy Markov Models for Information Extraction and Segmentation. ICML 2000.
- A. McCallum, K. Schultz, S. Singh. FACTORIE: Probabilistic Programming via Imperatively Defined Factor Graphs. NIPS, 2009.
- N. Nakashole, M. Theobald, G. Weikum. Find your Advisor: Robust Knowledge Gathering from the Web. WebDB, 2010.
- S.P. Ponzetto, M. Strube: Deriving a Large-Scale Taxonomy from Wikipedia. AAAI 2007.
- H. Poon, P. Domingos: Joint Inference in Information Extraction. AAAI 2007.
- L.R. Rabiner. A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE, 1989.
- M. Richardson and P. Domingos. Markov Logic Networks. ML, 2006.
- D. Roth, W. Yih. Global Inference for Entity and Relation Identification via a Linear Programming Formulation. MIT Press, 2007.
- S. Sarawagi. Information extraction. Foundations and Trends in Databases, 1(3), 2008.
- S. Sarawagi, W. W. Cohen. Semi-Markov conditional random fields for information extraction. NIPS, 2004.
- W. Shen, X. Li, A. Doan. Constraint-Based Entity Matching. AAAI, 2005.
- S. Singh, K. Schultz, A. McCallum: Bi-directional Joint Inference for Entity Resolution and Segmentation Using Imperatively-Defined Factor Graphs. ECML/PKDD (2) 2009.
- P. Singla, P. Domingos. Entity resolution with Markov Logic. ICDM, 2006.
- P. P. Talukdar, F. Pereira. Experiments in Graph-based Semi-Supervised Learning Methods for Class-Instance Acquisition. ACL 2010.
- Y. Song, H. Wang, Z. Wang, H. Li, W. Chen. Short Text Conceptualization using a Probabilistic Knowledgebase. IJCAI 2011.
- F. M. Suchanek, M. Sozio, G. Weikum. SOFIE: a self-organizing framework for information extraction. WWW, 2009.
- F. M. Suchanek, G. Ifrim, G. Weikum. Combining linguistic and statistical analysis to extract relations from web documents. KDD, 2006.

Readings for Part III

- C. Sutton, A. McCallum. An Introduction to Conditional Random Fields for Relational Learning. MIT Press, 2006.
- P. Venetis, A.Y. Halevy, J. Madhavan, M. Pasca, W. Shen, F. Wu, G. Miao, C. Wu: Recovering Semantics of Tables on the Web. PVLDB 4(9), 2011.
- R. C. Wang, W. W. Cohen. Language-independent set expansion of named entities using the web. ICDM, 2007.
- R. C. Wang, Wi. W. Cohen: Iterative Set Expansion of Named Entities Using the Web. ICDM 2008.
- Y. Wang, M. Yahya, M. Theobald. Time-aware Reasoning in Uncertain Knowledge Bases. VDLB/MUD, 2010.
- D. S. Weld, R. Hoffmann, F. Wu. Using Wikipedia to bootstrap open information extraction. SIGMOD Record, 37(4), 2008.
- M. L. Wick, A. McCallum, G. Miklau: Scalable Probabilistic Databases with Factor Graphs and MCMC. PVLDB 3(1).
- F. Wu, D. S. Weld. Autonomously semantifying Wikipedia. CIKM, 2007.
- F. Wu, D. S. Weld. Automatically refining the Wikipedia infobox ontology. WWW, 2008.
- A. Yates, M. Banko, M. Broadhead, M. J. Cafarella, O. Etzioni, S. Soderland. TextRunner: Open information extraction on the web. HLTNAACL, 2007.
- M. A. Yosef, J. Hoffart, I. Bordino, M. Spaniol, G. Weikum: AIDA: An Online Tool for Accurate Disambiguation of Named Entities in Text and Tables. VLDB 2007.
- J. Zhu, Z. Nie, X. Liu, B. Zhang, J.-R. Wen. StatSnowball: a statistical approach to extracting entity relationships. WWW, 2009.

Outline for Part IV

- Querying Knowledge Bases

A short overview of SPARQL
Extensions to SPARQL

- Searching and Ranking Entities
- Searching and Ranking Facts
- Advanced Query Interfaces
- Query language for RDF from the W3C
- Main component:
- select-project-join combination of triple patterns graph pattern queries on the knowledge base

SPARQL - Example

Example query:
 Find all actors from Ontario (that are in the knowledge base)

SPARQL - Example

Example query:
 Find all actors from Ontario (that are in the knowledge base)

```
SELECT ?person WHERE ?person isA actor. ?person bornIn ?loc.
    ?loc locatedIn Ontario.
```

Find subgraphs of this form:

SPARQL - More Features

- Eliminate duplicates in results

SELECT DISTINCT ?c WHERE \{?person isA actor. ?person bornIn ?loc. ?loc locatedIn ?c\}

- Return results in some order

SELECT ?person WHERE \{?person isA actor. ?person bornIn ?loc. ?loc locatedIn Ontario\} ORDER BY DESC(?person) with optional LIMIT n clause

- Optional matches and filters on bounded vars

SELECT ?person WHERE \{?person isA actor.
OPTIONAL\{?person bornIn ?loc\}. FILTER (!BOUND(?loc))\}

- More operators: ASK, DESCRIBE, CONSTRUCT

SPARQL: Extensions from W3C

W3C SPARQL 1.1 draft:

- Aggregations (COUNT, AVG, ...) and grouping
- Subqueries
- Negation: syntactic sugar for

OPTIONAL \{?x ... \} FILTER (!BOUND (?x))

- Expressions in SELECT clause:

SELECT (?a+?b) as ?sum

- Label constraints on paths:
?x foaf:knows/foaf:knows/foaf:name ?name
- More functions and operators

SPARQL: Extensions from Research (1)

More complex graph patterns:

- Transitive paths [Anyanwu et al., WWW07] SELECT ?p, ?c WHERE $\{$?p isA scientist.
?p ??r ?c. ?c isA Country. ?c locatedIn Europe. PathFilter (cost(??r) < 5) .
PathFilter (containsAny (??r,?t). ?t isA City. \}
- Regular expressions [Kasneci et al., ICDE08] SELeCT ?p, ?c Where \{ ?p isA ?s. ?s isA scientist.
?p (bornIn | livesIn | citizenOf) locatedIn* Europe.\}

Now mostly covered by the SPARQL 1.1 Query proposal

SPARQL: Extensions from Research (2)

Queries over federated RDF sources:

- Determine distribution of triple patterns as part of query (for example in ARQ from Jena)
- Automatically route triple predicates to useful sources

SPARQL: Extensions from Research (2)

Queries over federated RDF sources:

- Determine distribution of triple patterns as part of query (for example in ARQ from Jena)
- Automatically route triple predicates to useful sources

Potentially requires mapping of identifiers from different sources

SPARQL 1.1 will support explicit federation of sources

RDF+SPARQL: Systems

- BigOWLIM
- OpenLink Virtuoso
- Jena with different backends
- Sesame
- OntoBroker
- SW-Store, Hexastore, RDF-3X (no reasoning)

System deployments with $>10^{11}$ triples
(see http://esw.w3.org/LargeTripleStores)
More details on systems in our tutorial at the Reasoning Web Summer School: „Database foundations for scalable RDF processing"

Outline for Part IV

- Querying Knowledge Bases
- Searching and Ranking Entities Entity Importance: Graph Analysis Entity Search: Language Models
- Searching and Ranking Facts
- Advanced Query Interfaces

Why ranking is essential

- Queries often have a huge number of results:
- scientists from Canada
- conferences in Toronto
- publications in databases
- actors from the U.S.
- Ranking as integral part of search
- Huge number of app-specific ranking methods: paper/citation count, impact, salary, ...
- Need for generic ranking

Extending Entities with Keywords

Remember: entities occur in facts in documents

 \Rightarrow Associate entities with terms in those documents, keywords in URIs, literals, ... (context of entity)chancellor Germany scientist election Stuttgart21 Guido Westerwelle France Nicolas Sarkozy

Digression 1: Graph Authority Measures

Idea: incoming links are endorsements \& increase node authority, authority is higher if links come from high-authority nodes Important instance: PageRank [Brin\&Page, 1998]

- random walk of the Web graph: uniformly random choice of links, random jumps
- Authority of a page corresponds to stationary visiting probability

$$
P R(q)=\frac{\varepsilon}{|V|}+(1-\varepsilon) \cdot \sum_{(p, q) \in E} \frac{P R(p)}{\operatorname{outdeg}(p)}
$$

Easy application to RDF data (with different weights for different relations): ObjectRank (Balmin et al., 2004), EntityRank (Cheng et al., 2007), TripleRank (Franz et al., 2009)

Keyword-Based Entity Search: Principles

Combine several paradigms:

- Graph-based authority measure to determine important entities
- Keyword search on associated terms to determine candidate entities
- Ranking can combine entity importance with keyword-based score

Digression 2: Language Models (LMs)

State-of-the-art model in text retrieval

- each document d_{i} has LM: generative probability distribution of terms with parameter θ_{i}
- query q viewed as sample from $\operatorname{LM}\left(\theta_{1}\right), \operatorname{LM}\left(\theta_{2}\right), \ldots$
- estimate likelihood $\mathrm{P}\left[\mathrm{q} \mid \mathrm{LM}\left(\theta_{\mathrm{i}}\right)\right.$] that q is sample of LM of document $d_{i}\left(q\right.$ is ,,generated by" d_{i})
- rank by descending likelihoods (best „explanation" of q)

Language Models for Text: Example

model M

B B
 C C
 D
 (E)EEE

estimate likelihood of observing query

document d: sample of M used for parameter estimation

Language Models for Text: Smoothing

model M

document d + background corpus and/or smoothing used for parameter estimation

Entity Search with LM Ranking

query: keywords \rightarrow answer: entities

$$
s(e, q)=\lambda P[q \mid e]+(1-\lambda) P[q] \sim \prod \frac{P\left[q_{i} \mid \mathrm{e}_{\mathbf{i}}\right]}{\mathbf{P}\left[\mathrm{q}_{\mathbf{i}}\right]} \sim \mathbf{K L}(\mathbf{L M}(\mathbf{q}) \mid \mathbf{L M}(\mathbf{e}))
$$

LM (entity e) = prob. distr. of words seen in context of e
query q: „French player who
won world championship"

candidate entities:

e1: David Beckham
e2: Ruud van Nistelroy
e3: Ronaldinho
e4: Zinedine Zidane
e5: FC Barcelona
played for ManU, Real, LA Galaxy David Beckham champions league England lost match against France married to spice girl ...

Zizou champions league 2002 Real Madrid won final ... Zinedine Zidane best player France world cup 1998
[Z. Nie et al.: WWW’07]

Outline for Part IV

- Querying Knowledge Bases
- Searching and Ranking Entities
- Searching and Ranking Facts

General ranking issues
NAGA-style ranking Language Models for facts

- Advanced Query Interfaces

What makes a fact „good"?

Confidence:

Prefer results that are likely correct
$>$ accuracy of info extraction
$>$ trust in sources (authenticity, authority)

Informativeness:

Prefer results with salient facts
Statistical estimation from:
$>$ frequency in answer
$>$ frequency on Web
$>$ frequency in query log

Diversity:

Prefer variety of facts

Conciseness:

Prefer results that are tightly connected
$>$ size of answer graph
$>$ cost of Steiner tree
bornIn (Jim Gray, San Francisco) from „Jim Gray was born in San Francisco" (en.wikipedia.org)
livesIn (Michael Jackson, Tibet) from „Fans believe Jacko hides in Tibet" (www.michaeljacksonsightings.com)

q: Einstein isa ?

Einstein isa scientist
Einstein isa vegetarian
$\mathrm{q}: ~ ? \mathrm{x}$ isa vegetarian
Einstein isa vegetarian
Whocares isa vegetarian

E won ... E discovered ... E played ...
E won ... E won ... E won ... E won ...
Einstein won NobelPrize
Bohr won NobelPrize
Einstein isa vegetarian
Cruise isa vegetarian
Cruise born 1962 Bohr died 1962

How can we implement this?

Confidence:

Prefer results that are likely correct
$>$ accuracy of info extraction
$>$ trust in sources (authenticity, authority)

Informativeness:

Prefer results with salient facts
Statistical estimation from:
$>$ frequency in answer
$>$ frequency on Web
$>$ frequency in query log

Diversity:

Prefer variety of facts

Conciseness:

Prefer results that are tightly connected
$>$ size of answer graph
$>$ cost of Steiner tree
empirical accuracy of IE
PageRank-style estimate of trust combine into:

```
max { accuracy (f,s) * trust(s) |
    s}\in\mathrm{ witnesses(f) }
```

PageRank-style entity/fact ranking [V. Hristidis et al., S.Chakrabarti, ...]

or

IR models: tf*idf ... [K.Chang et al., ...]
Statistical Language Models

Statistical Language Models
graph algorithms (BANKS, STAR, ...)
[J.X. Yu et al., S.Chakrabarti et al.,
B. Kimelfeld et al., A. Markovetz et al.,
B.C. Ooi et al., G.Kasneci et al., ...]

LMs: From Entities to Facts

Document / Entity LM‘s
LM for doc/entity: prob. distr. of words
LM for query: (prob. distr. of) words
LM's: rich for docs/entities, super-sparse for queries
richer query $L M$ with query expansion, etc.

Triple LM‘s

LM for facts: (degen. prob. distr. of) triple
LM for queries: (degen. prob. distr. of) triple pattern
LM's: apples and oranges

- expand query variables by S,P,O values from DB/KB
- enhance with witness statistics
- query LM then is prob. distr. of triples!

LMs for Triples and Triple Patterns

triple patterns (queries q):
$\mathrm{q}: \mathrm{LM}(\mathrm{q})+$ smoothing

q: Beckham p ManU	$200 / 550$
q: Beckham p Real	$300 / 550$
q: Beckham p Galaxy	$20 / 550$
q: Beckham p Milan	$30 / 550$

q: ?x p ASCannes
Zidane p ASCannes 20/30
Tidjani p ASCannes 10/30

triples (facts f):

f1: Beckham p ManchesterU
f2: Beckham p RealMadrid
f3: Beckham p LAGalaxy
f4: Beckham p ACMilan
F5: Kaka p ACMilan
F6: Kaka p RealMadrid
f7: Zidane p ASCannes
f8: Zidane p Juventus

LM(q): $\{\mathrm{t} \rightarrow \mathrm{P}$ [t|t matches q$]$ ~ \#witnesses(t) $\}$
Messi p FCBarcelona Zidane p RealMadri Kaka p ACMilan ...

LM(answer f): $\{t \rightarrow P[t \mid t$ matches $f] \sim 1$ for $f\}$ smooth all LM's
rank results by ascending $\operatorname{KL}(\mathrm{LM}(\mathrm{q}) \mid \mathrm{LM}(\mathrm{f}))$
q: Cruyff ?r FCBarcelona

Cruyff playedFor FCBarca	$200 / 500$
Cruyff playedAgainst FCBarca	$50 / 500$
Cruyff coached FCBarca	$250 / 500$

f14: Ribery p BayernMunich
f15: Drogba p Chelsea
f16: Casillas p RealMadrid witness statistics

LMs for Composite Queries

q: Select ?x,?c Where \{?x bornIn France . ?x playsFor ?c . ?c in UK . \}

P [Henry bl F,
Henry p Arsenal,
P [Drogba bl F, Drogba p Chelsea, Chelsea in UK]
$\sim \frac{30}{650} \cdot \frac{150}{2600} \cdot \frac{140}{500}$
queries q with subqueries $q_{1} \ldots q_{n}$ results are n-tuples of triples $t_{1} \ldots t_{n}$
$L M(q): P\left[q_{1} \ldots q_{n}\right]=\prod_{i} P\left[q_{i}\right]$
$L M($ answer $): ~ P\left[t_{1} \ldots t_{n}\right]=\prod_{i} P\left[t_{i}\right]$
$K L(L M(q) \mid L M($ answer $))=\sum_{i} K L\left(L M\left(q_{i}\right) \mid L M\left(t_{i}\right)\right)$

Extensions: Keywords

Problem: not everything is triplified

- Consider witnesses/sources (provenance meta-facts)
- Allow text predicates with each triple pattern (à la XQ-FT)

Semantics:

triples match struct. pred. witnesses match text pred.

European composers who have won the Oscar, whose music appeared in dramatic western scenes, and who also wrote classical pieces ?

Select ?p Where \{
?p instanceOf Composer .
?p bornIn ?t . ?t inCountry ?c . ?c locatedIn Europe .
?p hasWon ?a .?a Name AcademyAward .
?p contributedTo ?movie [western, gunfight, duel, sunset]. ?p composed ?music [classical, orchestra, cantata, opera] . \}

Extensions: Kevwords

Problem: not everything is triplified

- Consider witnesses/sources (provenance meta-facts)
- Allow text predicates with each triple pattern (à la XQ-FT)

Grouping of keywords or phrases boosts expressiveness

French politicians married to Italian singers?
Select ?p1, ?p2 Where \{ ?p1 instanceOf ?c1 [France, politics].
?p2 instanceOf ?c2 [Italy, singer].
?p1 marriedTo ?p2 . \}
CS researchers whose advisors worked on the Manhattan project?
Select ?r, ?a Where \{

?a Ppor ReaQhivim ifilildah qutaje op"dject"].
?r Rp3Ądviş̧̧or ?a . \}

LMs for Keyword-Augmented Queries

q: Select ?x, ?c Where \{
France ml ?x [goalgetter, "top scorer"] .
?xp ?c.
?c in UK [champion, "cup winner", double]. \}

results are still n-tuples of triples t_{i}
$L M\left(q_{i}\right): P\left[\right.$ triple $\left.t_{i} \mid w_{1} \ldots w_{m}\right]=\prod_{k} \beta P\left[t_{i} \mid w_{k}\right]+(1-\beta) P\left[t_{i}\right]$
LM(answer f_{i}) analogous
$\operatorname{KL}\left(L M(q) \mid L M\left(\right.\right.$ answer $\left.\left.f_{i}\right)\right)=\sum_{i} K L\left(L M\left(q_{i}\right) \mid L M\left(f_{i}\right)\right)$
result ranking prefers (n-tuples of) triples whose witnesses score high on the subquery keywords

Extensions: Query Relaxation

$q^{(2)}$:
 Where \{?x bornIn P区. .?zxpp?Zc. .?ZainuKK . .\}\}
[Zidane bl F, Zidane p Real,
[Drogba bl IC, Drogba p Chelsea,
[[Drogba resOf F, Drogba p Chelsea, [Drogba bI IC, Drogba p Chelsea, Chelsea in UK]

$$
\mathrm{LM}\left(\mathrm{q}^{*}\right)=\lambda \mathrm{LM}(\mathrm{q})+\lambda_{1} \mathrm{LM}\left(\mathrm{q}^{(1)}\right)+\lambda_{2} \mathrm{LM}\left(\mathrm{q}^{(2)}\right)+\ldots
$$

$$
\begin{aligned}
& \text { replace e in q by } \mathrm{e}^{(\mathrm{i})} \text { in } \mathrm{q}^{(\mathrm{i})} \\
& \text { precompute } \mathrm{P}:=L M(\mathrm{e} \text { ? } \mathrm{p} \text { ?o) } \\
& \text { and } Q:=L M\left(e^{\mathrm{i})}\right. \text { ?p ?o) } \\
& \text { set } \lambda_{i} \sim 1 / 2(K L(P \mid Q)+K L(Q \mid P))
\end{aligned}
$$

replace r in q by $r^{(i)}$ in $q^{(i)} \rightarrow L M\left(? s r^{(i)}\right.$?o) replace e in q by ?x in $q^{(i)} \rightarrow$ LM (?x r ?o)

f21: Zidane bI F 200
f22: Tidjani bl F 20
F23: Henry bl F 200
F24: Ribery bl F 200 F26: Drogba bl IC 100 F27 Zidane bl ALG 50

f1: Beckham p ManU	200
f7: Zidane p ASCannes	
f9: Zidane p Real	300
f10: Tidjani p ASCannes	
f12: Henry p Arsenal	200
f15: Drogba p Chelsea	150

LM's of e, r, ... are prob. distr.'s of triples !
ff32: Arsenal in UK 160
f33: Chelsea in UK 140

Extensions: Diversification

q: Select ?p, ?c Where \{ ?p isa SoccerPlayer . ?p playedFor ?c . \}

1 Beckham, ManchesterU
2 Beckham, RealMadrid
3 Beckham, LAGalaxy
4 Beckham, ACMilan
5 Zidane, RealMadrid
6 Kaka, RealMadrid
7 Cristiano Ronaldo, RealMadrid
8 Raul, RealMadrid
9 van Nistelrooy, RealMadrid
10 Casillas, RealMadrid

1 Beckham, ManchesterU
2 Beckham, RealMadrid
3 Zidane, RealMadrid
4 Kaka, ACMilan
5 Cristiano Ronaldo, ManchesterU
6 Messi, FCBarcelona
7 Henry, Arsenal
8 Ribery, BayernMunich
9 Drogba, Chelsea
10 Luis Figo, Sporting Lissabon
rank results $f_{1} \ldots f_{k}$ by ascending
$\delta K L\left(L M(q) \mid L M\left(f_{i}\right)\right)-(1-\delta) K L\left(L M\left(f_{i}\right) \mid L M\left(\left\{f_{1} . . f_{k}\right\} \backslash\left\{f_{i}\right\}\right)\right)$ implemented by greedy re-ranking of $f_{i}^{\prime} s$ in candidate pool

Outline for Part IV

- Querying Knowledge Bases
- Searching and Ranking Entities
- Searching and Ranking Facts
- Advanced Query Interfaces Natural Language Queries Incremental Query Construction Visual Query Interfaces

What we have seen so far

Two main paradigms for querying:

- Keywords for entity search:
very easy to use, but not very powerful
- Structured languages (SPARQL): usable by experts only, but very powerful

Need for more powerful paradigms below the complexity of SPARQL

Other Query Interfaces

- Domain-specific form-based interfaces
- Natural language queries, QA
- Incremental Query construction
- Faceted Browsing
- Active Learning
- Visual SPARQL Query Builders

Natural Language Queries

Paradigm:

Allow queries in plain English

- Map (groups of) keywords to triple patterns, based on existing triples: [NLPReduce, PowerAqua]
"Find a restaurant that is in Barcelona"
\Rightarrow ?r isIn Barcelona. ?r isA restaurant
- Extract query skeleton from syntax tree, heuristic match to known patterns:
[Querix]
"What is a restaurant in Barcelona"
\Rightarrow Q-V-N-P-N
- Ambiguities resolved by user interaction or by automated methods
- Controlled language: Present possible continuation of query based on grammar [Ginseng]

Example: PowerAqua (Open University, UK)

1 http://dbpedia.org: "belong" 8 facts | "Spain" 6 facts | "islands" 2
facts |
kmi-
web03.open.ac.uk:8890\#http://dbpedia.org
2 ncioncology: "belong" 1 facts | "Spain" 1 facts | "islands" 11 facts
I
http://kmi-
web07.open.ac.uk: $8080 /$ sesame/ncioncology
3 travel_destinations: "belong" 1
facts | "Spain" 1 facts | "islands" 1
facts |
http://kmi-
web07.open.ac.uk:8080/sesame/travel destin

QUESTION ANSWERING

ASK ANOTHER QUESTION

```
Which islands belong to Spain?
```

Make use of WATSON Г

LINGUISTIC TRIPLES <subject, relation, object>

Query-Triples: < islands, belong, Spain > , Category: WH_GENERICTERM

			Relevant Facts	Merged Ans	
Sort by: Alphabet / Confidence / Popularity / WordNet Synset / Combined We found 11 answers in total from 3 ontologies					
Baleariclslands (Baleariclslands) travel_destinations	\square Hide			score:	
	Balearic Islands (Balearic_Islands ontology_ad_hoc)		Spain country (Spain_country equivalentMatching)	2	
	Balearic Islands (Balearic_Islands ontology_ad_hoc)		Island (Island synonym)		
Canarylslands (Canarylslands) travel_destinations	${ }^{\text {(}}$ Explain			$\begin{aligned} & \text { score: } \\ & 3 \end{aligned}$	

Example: Querix (Uni Zurich)

http://www.ifi.uzh.ch/ddis/research/talking-to-the-semantic-web/querix/

Natural Language Queries

Pros:

- Intuitive to use
- No schema knowledge necessary

Cons:

- Often domain-specific
- Finding good query formulation often hard
- Result quality often poor

Faceted Search

Paradigm:

- Incremental refinement of entity-level query
- Facets: common properties of many results of (current) query with potential to reduce number of results

Faceted Search: http://dpbedia.neofonie.de/

About Neofonie
About DBpedia
Imprint
Help
vitem type
start typing
Place (387150)
Person (308497)
Populated Place (293642)
Settlement (272483)
Work (246549)
Species (146002)
Eukaryote (143480)
Organisation (134236)
Musical Work (126194)
Athlete (114561)
Animal (96517)
Album (91427)
Artist (78441)
Village (60351)
Soccer Player (58897)
Film (49045)
Plant (39523)
Actor (37721)
Insect (36243)
Town (32363)
Building (31666)
Comnany (31104
enter search terms... Search
Your Filters
No Filters selected

aceted Wikipedia Search

Faceted Wikipedia Search allows users to ask complex queries against Wikipedia.
The answers to these queries are not generated using key word matching as the
answers of search engines like Google or Yahoo, but are generated based on
structured information that has been extracted from many different Wikipedia articles
Please try the following example queries to see Faceted Wikipedia Search in action:
Rivers that flow into the Rhine and are longer than 50 kilometers
French scientists who were born in the 19th century
Skyscrapers in Hong Kong with more than 50 floors
Actors of the American TV-series Lost that were born in the United States
Endangered Primates
Albums from the Beach Boys that were released between 1980 and 1990

Initial selection of entity type (candidates sorted by frequency)

Faceted Search: http://dpbedia.neofonie.de/

About Neofonie
About DBpedia
Imprint
Help

$\longdiv { \text { enter search terms... Search } }$

search powered by \equiv neofonie
First | Previous | Next | Last

v item type	
start typing...	
Person (308497) Athlete (114561) Artist (78441)	
	more
* position	
start typing...	
Midfielder (14011) Defender (11789) Striker (9010)	
	more
- born in	
start typing...	
England (11136) United States (3791) Scotland (2954)	
	more
v active from year	

Your Filters Reset Filters \times

Results 1 to 6 of 308497
Hemmo Pessond current query

George W. Bush
*
George Walker Bush (born July 6, 1946) served as the 43rd President of the United States from 2001 to 2009 and the 46th Governor of Texas from 1995 to 2000. Bush is the eldest son of President George H. W. Bush, who served as the 41 st President, and Barbara Bush, making him one of only two American presidents to be the son of a preceding president. After graduating from Yale University in 1968, and Harvard Business School in 1975, Bush worked in his family's oil businesses.

Best results for
current query

Possible refinements („facets"): propert-value pairs

Current SPARQL query: SELECT ?x WHERE
 \{?x isA Person.\}

Faceted Search: http://dpbedia.neofonie.de/

vitem type

start typing...
Person (308497)
Athlete (114561)
Artist (78441)
Soccer Player (58897)
Actor (37721)
Musical Artist (25579)
Politician (19226)
Office Holder (16483)
Gridiron Football Player (15231)
Military Person (13432)
Baseball Player (11136)
American Football Player (8937) Writer (8719)

Socceer Manamer (8485)

Scientist (8465)
Ice Hockey Player (6302)
Cricketer (6082)
Cleric (5351)
British Royalty (4084)
Member Of Parliament (3939)
College Coach (3494)
Rugby Player (3022)

Best results for current query

Current SPARQL query: SELECT ?x WHERE
\{?x isA Person.\}

Faceted Search: http://dpbedia.neofonie.de/

About Neofonie
About DBpedia
Imprint
Help

\checkmark item type

Start typing
Person (8465)
Scientist (8465)
\checkmark nationality
start typing...
United States (1401)
Germany (485)
United Kingdom (421)

vorn in

start typing...
New York City (137)
London (117)
Berlin (77)

v died in

Start typing...
Paris (110)
London (85)
Berlin (76)
$\longdiv { \text { enter search terms... Search } }$
Your Filters Reset Filters×

Current SPARQL query: SELECT ?x WHERE
 \{?x isA Person. ?x isA Scientist.\}

Faceted Search: http://dpbedia.neofonie.de/

About Neofonie
About DBpedia
Imprint
Help

\checkmark item type

Start typing (..
Person (485)
Scientist (485)
\checkmark nationality

Germany (485)
United States (1)

Textual facet values with completion

> Current SPARQL query: SELECT ?x WHERE
> $\{? \mathrm{x}$ isA Person. ? x isA Scientist. hasNationality German.\}

Faceted Search: http://dpbedia.neofonie.de/

item type

Start typing...
Person (485)
Scientist (485)
v nationality
start typing...

Germany (485)
United States (1)

- died in
start typing
Berlin (48)
Göttingen (24)
Munich (21)

vorn in

- born in year year
$\longdiv { \text { enter search terms... } }$ Search

| Your Filters \quad Reset Filters x | First \| Previous | Next | Last |
| :--- | :--- |
| item type Person x item type Scientist $× ~ n a t i o n a l i t y ~ G e r m a n y x ~$ | Results 1 to 6 of 485 |

Carl Friedrich Gauss
Johann Carl Friedrich Gauss (30 April 1777-23 February 1855) was a German mathematician and scientist who contributed significantly to many fields, including number theory, statistics, analysis, differential geometry, geodesy, geophysics,
electrostatics, astronomy and optics.

Johann Friedrich Gmelin
Johann Friedrich Gmelin (August 8, 1748 - November 1, 1804) was a German naturalist, botanist, entomologist and malacologist.

> Current SPARQL query: SELECT ?x WHERE
> $\{? \mathrm{x}$ isA Person. ? x isA Scientist. hasNationality German.\}

Faceted Search: http://dpbedia.neofonie.de/

About Neofonie
About DBpedia
Imprint
Help enter search terms... Search

- item type	
start typing...	
Person (2) Scientist (2)	
- nationality	
start typing...	
Germany (2)	
- born in	
start typing...	
Kiel (2)	
\checkmark died in	
start typing...	
Starnberg (1) Göttingen (1)	
- born in year year	
start typing...	
From... 0	$>$
$1912(1)$	

[^1]
Faceted Search

Pros:

- Intuitive to use
- No schema knowledge necessary
- Quickly leads to results

Cons:

- Only few facets visible at each step
- Required facets sometimes not shown
- Limited to properties of entities, cannot create queries with more than one variable

AutoSPARQL: Learning Queries from Examples

- Goal: Generate SPARQL query from few positive and negative examples for results

New positive or

- Build query tree from data graph around each example, find minimal subsuming subquery:

Active Learning from Examples

Pros:

- Very easy to use, query refinement „on the fly"
- No schema knowledge necessary
- Quickly leads to results

Cons:

- Can require many steps until good query is found
- Limited to entity-centric queries

Visual Query Formulation

Paradigm:

Incremental construction of query by adding and refining constraints in a graphical interface
Example Systems:

- iSPARQL, http://dbpedia.org/isparql/
- Nitelight [Russell and Smart, ISWC 2008]
- Konduit [Möller et al., ISWC 2008]
- DSpace [Koutsomitropoulos et al., ESWC 2011]

Common features:
point\&click, easy access to relations and schema (lists, auto-completion)

iSPARQL, http://dbpedia.org/isparql/

iSPARQL, http://dbpedia.org/isparql/

Visual Query Formulation

Pros:

- Full expressiveness of SPARQL
- Schema knowledge provided by the system
- Leads to very precise queries

Cons:

- Not useful for non-expert users

Which interface is best (for casual users)?

Comparative study 1: [Tran et al., ESWC 2010]

- Not much difference for entity queries
- Faceted Search not very useful when searching for an attribute of an entity
- Users liked Active Learning most

Comparative study 2: [Kaufmann and Bernstein, ISWC 2007]

- Full natural language questions most popular
- Visual Query Builder: fewest steps, longest time, highest failure rate

Outline for Part IV

- Querying Knowledge Bases
- Searching and Ranking Entities
- Searching and Ranking Facts
- Advanced Query Interfaces

Open Problems and Challenges - Part IV

- Unified ranking for queries with keywords and structure
- User Interfaces for non-experts
- Support to formulate structured queries
- General-purpose NLP systems
- Output of complex results beyond entities

Readings for Part IV

Part IV.1:

- SPARQL Query Language for RDF, W3C Recommendation, 15 January 2008, http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/
- SPARQL New Features and Rationale, W3C Working Draft, 2 July 2009, http://www.w3.org/TR/2009/WD-sparql-features-20090702/
- SPARQL 1.1 Query Language, W3C Working Draft, 12 May 2011, http://www.w3.org/TR/2011/WD-sparql11-query-20110512/
- SPARQL 1.1 Federation Extensions, W3C Working Draft, 1 June 2010, http://www.w3.org/TR/2010/WD-sparql11-federated-query-20100601/
- Kemafor Anyanwu, Angela Maduko, Amit P. Sheth: SPARQ2L: towards support for subgraph extraction queries in RDF databases. WWW Conference, 2007
- Gaurav Bhalotia, Arvind Hulgeri, Charuta Nakhe, Soumen Chakrabarti, S. Sudarshan: Keyword Searching and Browsing in Databases using BANKS. ICDE, 2002
- Gjergji Kasneci, Fabian M. Suchanek, Georgiana Ifrim, Maya Ramanath, Gerhard Weikum: NAGA: Searching and Ranking Knowledge. ICDE, 2008
- Thomas Neumann, Gerhard Weikum: The RDF-3X engine for scalable management of RDF data. VLDB Journal 19(1), 2010
- Nicoleta Preda, Gjergji Kasneci, Fabian M. Suchanek, Thomas Neumann, Wenjun Yuan, Gerhard Weikum: Active knowledge: dynamically enriching RDF knowledge bases by web services. SIGMOD Conference, 2010
Part IV.2:
- Sergey Brin, Lawrence Page: The Anatomy of a Large-Scale Hypertextual Web Search Engine. Computer Networks 30(1-7), 1998
- Andrey Balmin, Vagelis Hristidis, Yannis Papakonstantinou: ObjectRank: Authority-Based Keyword Search in Databases. VLDB, 2004
- Soumen Chakrabarti: Dynamic personalized pagerank in entity-relation graphs. WWW Conference, 2007
- Thomas Franz, Antje Schulz, Sergej Sizov, Steffen Staab: TripleRank: Ranking Semantic Web Data by Tensor Decomposition. ISWC, 2009
- Tao Cheng , Xifeng Yan , Kevin Chen-Chuan Chang: EntityRank: searching entities directly and holistically. VLDB, 2007
- Krisztian Balog, Edgar Meij, Maarten de Rijke: Entity Search: Building Bridges between Two Worlds. WWW, 2010
- Zaiqing Nie, Yunxiao Ma, Shuming Shi, Ji-Rong Wen, Wei-Ying Ma: Web object retrieval. WWW Conference, 2007
- Desislava Petkova, W. Bruce Croft: Hierarchical Language Models for Expert Finding in Enterprise Corpora. ICTAI, 2006
- Pavel Serdyukov, Djoerd Hiemstra: Modeling Documents as Mixtures of Persons for Expert Finding. ECIR, 2008
- ChengXiang Zhai: Statistical Language Models for Information Retrieval. Morgan \& Claypool Publishers, 2008
- Djoerd Hiemstra: Language Models. Encyclopedia of Database Systems, 2009

Part IV.3:

- Shady Elbassuoni, Maya Ramanath, Ralf Schenkel, Marcin Sydow, Gerhard Weikum: Language-model-based ranking for queries on RDF-graphs. CIKM, 2009
- Shady Elbassuoni, Maya Ramanath, Gerhard Weikum: Query Relaxation for Entity-Relationship Search. ESWC, 2011
- Vagelis Hristidis, Heasoo Hwang, Yannis Papakonstantinou: Authority-based keyword search in databases. ACM Transactions on Database Systems 33(1), 2008
- Gjergji Kasneci, Maya Ramanath, Mauro Sozio, Fabian M. Suchanek, Gerhard Weikum: STAR: Steiner-Tree Approximation in Relationship Graphs. ICDE, 2009
- Alexandra Poulovassilis and Peter T. Wood: Combining Approximation and Relaxation in Semantic Web Path Queries. ISWC, 2010

Part IV.4:

- Esther Kaufmann, Abraham Bernstein, Lorenz Fischer: NLP-Reduce: A "naive" but Domain-independent Natural Language Interface for Querying Ontologies. ESWC, 2007
- Knud Möller, Oszkar Ambrus, Laura Josan, Siegfried Handschuh: A Visual Interface for Building SPARQL Queries in Konduit. ISWC, 2008
- Alistair Russell, Paul R. Smart: NITELIGHT: A Graphical Editor for SPARQL Queries. ISWC, 2008
- Jens Lehmann and Lorenz Bühmann: AutoSPARQL: Let Users Query Your Knowledge Base. ESWC, 2011
- Thanh Tran, Haofen Wang, Sebastian Rudolph, Philipp Cimiano: Top-k Exploration of Query Candidates for Efficient Keyword Search on Graph-Shaped (RDF) Data. ICDE, 2009.
- Esther Kaufmann, Abraham Bernstein: How useful are natural language interfaces to the Semantic Web for casual end-users? ESWC, 2007
- Thanh Tran, Tobias Mathäß, Peter Haase: Usability of Keyword-Drive Schema-Agnostic Search. ESWC, 2010
- Gideon Zenz et al.: From keywords to semantic queries - Incremental query construction on the semantic web. Journal Web Semantics 7(3),2009

Outline for Part V

- URIs \& Dereferenceable URIs
- Shared Vocabularies
- Linked Data
- The Semantic Web and the Web

There's not only DBpedia \& YAGO

DBpedia

There's a whole Web of Ontologies

Goal: Identify entities uniquely, worldwide The same entity can have multiple identifiers, but the same identifier shall always mean the same entity.

Elvis

Elvis Presley

URL-like URIs

A Uniform Resource Identifier (URI) is a string of characters used to identify a name or a resource on the Internet

URIs can be like URLs

http://imitators.org/Elvis/FG17

http://onto.com/people/singers/EP

URL-like URIs

http://elvis.org/me

Age
Identifies the person, not Internet-accessible

http://elvis.org/index.html Identifies a file, 5

 Internet-accessible
URL-like URIs

http://imitators.org/Elvis/FG17

World-wide unique in the responsibility \Rightarrow There should be no mapping to domain of the domain owner URI with two meanings owner
\Rightarrow People can invent all kinds of URIs

- a company can create URIs to identify its products
- an organization can assign sub-domains and each sub-domain can define URIs
- individual people can create URIs from their homepage
- people can create URIs from any URL for which they have exclusive rights to create URIs

Triples with URIs

Every entity name and relation name is expressed by a URI:

Elvis Presley
http://elvis.org/himself
won
http://inria.fr/rdf/dta\#won http://g-a.com/prize
=> Facts become triples of URIs

Namespace Prefixes

A namespace prefix is an abbreviation for the prefix of a URI.
@prefix elvis: http://elvis.org/
@prefix inria: http://inria.fr/rdf/dta\#
@prefix grammy: http://g-a.com/
http://elvis.org/himself

elvis:himself
http://inria.fr/rdf/dta\#won

inria:won
http://g-a.com/prize

grammy:prize

A URI abbreviated this way is called a qname.

Storing data

RDF data is usually stored on a server

Namespace $\mathrm{g}=\mathrm{http}: / / \mathrm{g}-\mathrm{a} . \mathrm{com}$

g:Grammy Award g:presents

g:NatAcademy

The server at http://g-a.com stores:
@prefix g: http://g-a.com
@prefix rdf: http://www.w3.org/...
g:GrammyAward
rdf:type g:Award
g:NatAcademy
g:presents g:GrammyAward

Cool URIs

A URI is not necessarily dereferenceable (i.e., it cannot be accessed online)
http://g-a.com/GrammyAward => NOT FOUND
... but it can be dereferenceable. This means that if I access the URL, the server responds with an RDF snippet:

```
@prefix g: http://g-a.com
@prefix rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#
g:GrammyAward rdf:type g:Award
http://elvis.com/elvis g:won g:GrammyAward
```

Try this out: rdf:type = http://www.w3.org/1999/02/22-rdf-syntax-ns\#type
\Rightarrow URIs can be "clicked" (followed) [W3C, Cool URIs, 2008]

Cool URIs

```
@prefix e: http://elvis.com
@prefix rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#
e:elvis rdf:type e:singer
e:elvis e:born 1935
```

Server at http://elvis.com
@prefix g:

@prefix rdf: http://g-a.com		
http://www.w3.org/1999/02/22-rdf-syntax-ns\#		
g:GrammyAward		
http://elvis.com/elvis	rdf:type	g:Award

Server at http://g-a.com
\Rightarrow The RDF graph becomes traversable

We're all one Graph

If two RDF graphs share one node, they are actually 1 graph.
Namespace
g = http://g-a.com

A machine can follow the links and retrieve more information in the neighboring ontology.

Outline

- URIs \& Dereferenceable URIs \downarrow
- Shared Vocabularies
- Linked Data
- The Semantic Web and the Web

Standard Vocabulary

A number of standard vocabularies have evolved
rdf: The basic RDF vocabulary http://www.w3.org/1999/02/22-rdf-syntax-ns\#
rdfs: RDF Schema vocabulary http://www.w3.org/1999/02/22-rdf-syntax-ns\#

Standard vocabulary provided by the W3C:

- type,
- subclassOf,
- Property,
- Class
- label

Dublin Core

dc: Dublin Core (predicates for describing documents) http://purl.org/dc/elements/1.1/

Creative Commons

cc: Creative Commons (types of licences) http://creativecommons.org/ns\#

Creative Commons defines very popular licenses, notably

- CC-BY: Free for reuse, just give credit to the author
- CC-BY-NC: Free for reuse, give credit, non-commercial use only
- CC-BY-ND: Free for reuse, give credit, do not create derivative works

Schema.org

schema: Defined by Microsoft + Google + Yahoo for „everything on the Web", http://schema.org

Thing $>$ Person

A person (alive, dead, undead, or fictional).

Property	Expected Type	Description
Properties from Thing		A short description of the item.
description	Text	URL of an image of the item.
image	URL	The name of the item.
name	URL	URL of the item.
url		Physical address of the item.
Properties from	Person	An organization that this person is affiliated with. For example,
address	PostalAddress	Organization

Outline

- URIs \& Dereferenceable URIs $\boldsymbol{\checkmark}$
- Shared Vocabularies
- Linked Data
- The Semantic Web and the Web

Linked Data Problem

Many ontologies talk about the same entity with different URIs.

Elvisopedia

DBpedia (http://dbpedia.org/)
(http://elvisopedia.org/)

This is bad, because we cannot join the information.

Linked Data Solution

OWL provides vocabulary to link equivalent entities

http://elvisopedia.org/Elvis owl:sameAs http://dpbedia.org/Elvis

The Linking Data Project

The Linking Open Data Project aims to interlink all open RDF data sources into one gigantic RDF graph (link).

The Linked Data Cloud

- 25 billion triples
- 400m links
http://richard.cyganiak.de/2007/10/lod/imagemap.html

Existing Ontologies

The existing ontologies in the Linked Data Cloud include
(http://www4.wiwiss.fu-berlin.de/lodcloud/)

- US census data
- BBC music database
- Gene ontologies
- DBpedia general knowledge, + YAGO, + Cyc etc.
- UK government data
- geographical data in abundance
- national library catalogs (USA, Germany etc.)
- publications (DBLP)
- commercial products
- all Pokemons
- ...and many more

Outline for Part V

- URIs \& Dereferenceable URIs \boldsymbol{V}
- Shared Vocabularies
- Linked Data \vee
- The Semantic Web and the Web

And the rest of the Web?

Microdata

Microdata is a W3C standard to annotate HTML 5 pages with RDF data.

<div>

Martin Thunderbird

Researcher in Rock'N'Roll Music of 1935-1977

3764 Presley Boulevard

Memphis, Tennessee
</div>

Creating an Entity

Makes the red box an entity

The type of this entity is "Person"

<div itemscope itemtype="http://schema.org/Person">

Martin Thunderbird

Researcher in Rock'N'Roll Music of 1935-1977

3764 Presley Boulevard

Memphis, Tennessee
</div>

Naming an Entity

Specifies the URI of the entity.

<div item cope itemtype=http://scher .org/Person itemid= http://martin.thunderbird.org/me >
Martin Thunderbird

Researcher in Rock'N'Roll Music of 1935-1977

3764 Presley Boulevard

Memphis, Tennessee
</div>

Item Properties

Statements are constructed with "itemprop="

Text becomes a string node in RDF

<div iter ope itemtype=http://schema.o
itemin \(=\) http: \(/ /\) martin. thunderbird. org \(/\) me \(>\) Martin Thunderbird
 Researcher in Rock'N'Roll Music of 1935-1977

3764 Presley Boulevard

Memphis, Tennessee
</div>

Item Properties with URIs

Links given by "itemprop" + "href" become a URI node in RDF

<div itemscope itemtype=http:
ma.org/Person

My only friend is
 Bob Miller
</div>

Inner Nodes

"itemprop" creates a link between the outer node and the inner node.
itemscope + itemtype creates a new node
pe itemtype=http://schem frg/Person iten $=$ http://martin.thunderbi .org/me >

</div>

Inner Nodes

<div itemscope itemtype=http://schema.org/Person itemref= http://martin.thunderbird.org/me >
 Memphis

</div>

Microdata Summary

Microdata is a W3C standard to annotate HTML 5 pages with RDF data.

Advantages:

- Grass root appeal
(everybody can start annotating pages)
- No data duplication
(all data in one file)
- Publisher independence
(everybody can use his own attributes)

www.imdb.com/title/tt0268978/ <html>

<meta itemprop='type' content='movie' /> <meta itemprop ='app_id' content='123' />
</html>

[\} Like $f 4,352$ people like this.

RDF data following the Open Graph Protocol is often embedded in HTML pages, thus allowing the Facebook LIKE button to work.

Search Engines \& Annotated HTML

Google, Microsoft and Yahoo have agreed (!) on a common schema (http://schema.org).

It allows annotating HTML pages with meta-information that will show up in "rich snippets".

Nikon D3100 review - Digital Camera reviews -

10 Jan 2011 ... Following its release, Nikon proudly clairr digital SLR in Europe. Its successor therefore, the D3100, www.trustedreviews.com, Digital Cameras - Cached

Try it out

Schema.org is for the description of people, places, institutions, movies, documents, etc...

Outline for Part V

- URIs \& Dereferenceable URIs \boldsymbol{V}
- Shared Vocabularies
- Linked Data \vee
- The Semantic Web and the Web

References

References

- [W3C URI 2004] W3C: "Architecture of the World Wide Web, Volume One" Recommendation 15 December 2004, http://www.w3.org/TR/webarch/
- [W3C CoolURIs 2008] W3C: "Cool URIs for the Semantic Web" Interest Group Note 03 December 2008, http://www.w3.org/TR/cooluris/
- [W3C Microdata, 2011] W3C: "HTML Microdata", Working Draft 25 May 2011, http://www.w3.org/TR/microdata/
- [Bizer, JSWIS 2009] C.Bizer, T.Heath, T.Berners-Lee: "Linked data - the story so far" International Journal on Semantic Web and Information Systems, 5(3):1-22, 2009.
- [Tummarello ISWC 2007] G. Tummarello, R. Delbru, E. Oren:
"Sindice.com: Weaving the Open Linked Data"
ISWC/ASWC 2007:

Outline

- Part I V
- Machine Knowledge \& Intelligent Applications
- Part II
- Knowledge Representation \& Public Knowledge Bases
- Part III
- Extracting Knowledge
- Part IV
- Ranking and Searching
- Part V
- Linked Data
- Part VI
- Conclusion and Outlook

Summary

In this tutorial, we have explained:

- how a knowledge base is organized
- which knowledge bases are publicly available
- how we can automatically construct knowledge bases
- how we can query a knowledge base and rank the results
- how we can deal with inter-linked knowledge bases

We discussed:

- fundamental models \& methods
- state-of-the-art techniques
- open problems \& research challenges

Spectrum of Machine Knowledge（1）

factual：

 bornIn（GretaGarbo，Stockholm），hasWon（GretaGarbo，AcademyAward）， playedRole（GretaGarbo，MataHari），livedIn（GretaGarbo，Klosters）
taxonomic（ontology）：

instanceOf（GretaGarbo，actress），subclassOf（actress，artist）

lexical（terminology）：

means（＂Big Apple＂，NewYorkCity），means（＂Apple＂，AppleComputerCorp） means（＂MS＂，Microsoft），means（＂MS＂，MultipleSclerosis）

multi－lingual：

meansInChinese（，，乔戈里峰＂，K2），meansInUrdu（，，＂，K2） meansInFrench（，，école＂，school（institution））， meansInFrench（，，banc＂，school（of fish））

Multilingual Lexical Knowledge

WordNet in ca. 50 languages, only English is big several 1000 languages spoken/written in this world

- UWN (de Melo: CIKM‘09): 800000 words, 200 languages, 120000 senses
- PanDictionary (Mausam: AAAI'10): 10 Mio. words, 1000 languages, 80000 senses
- WikiNet (Nastase: LREC'10): 3 Mio. concepts, 100 languages

MENTA: A Multilingual Entity Taxonomy
 Research Query Publications People

Persian

has gloss	fas:
lexicalization	fas:

Finnish

has gloss	fin: Koulu on paikka, jossa opetetaan ammattiin, har ja jatkokoulutukseen varallisuuden estámátta. fin: koulu
lexicalization	fin: Oppilaitokset
lexicalization	fra: Une école est un établissement permettant daca scholè (le loisir), lequel constituait un idéal souvent fra: Ecole
French	fra: École/Documentation
has gloss	fra: école
lexicalization	
lexicalization	
lexicalization	

Galician
has gloss
lexicalization
glg: Escola ou colexio é o nome xenérico de calquera ensino primario.
glg: Escolas

Knowledge from Many Languages

- Integrate entities across Wikipedia editions
- Derive taxonomic and factual knowledge

Identify good edges: min cost for dropping equivalence evidence + distinctness evidence \rightarrow ILP, LP relexation, random walks, etc.
once cleaned, multilingual links and categories yield additional instanceOf and subclassOf facts

Spectrum of Machine Knowledge (2)

ephemeral (dynamic services):

wsdl:getSongs (musician ?x, song ?y), wsdl:getWeather (city?x, temp ?y)

common-sense (properties):

hasAbility (Fish, swim), hasAbility (Human, write), hasShape (Apple, round), hasProperty (Apple, juicy),
hasMaxHeight (Human, 2.5 m)

common-sense (rules):

$\forall x$: human $(x) \Rightarrow$ male $(x) \vee$ female (x)
$\forall x$: (male $(x) \Rightarrow \neg$ female $(x)) \wedge$ (female $(x)) \Rightarrow \neg$ male $(x))$
$\forall x$: animal $(x) \Rightarrow(h a s L e g s(x) \Rightarrow$ isEven(numberOfLegs(x))

temporal (fluents):

hasWon (GretaGarbo, AcademyAward)@1955
marriedTo (AlbertEinstein, MilevaMaric)@[6-Jan-1903, 14-Feb-1919]

Spectrum of Machine Knowledge (3)

free-form (open IE):

hasWon (NataliePortman, AcademyAward)
occurs („Natalie Portman", „celebrated for", „Oscar Award")
occurs („Jeff Bridges", „nominated for", „Oscar")

multimodal (photos, videos):

StuartRussell
JamesBruceFalls

social (opinions):
admires (maleTeen, LadyGaga), supports (AngelaMerkel, HelpForGreece)
epistemic ((un-)trusted beliefs):
believe(Ptolemy,hasCenter(world,earth)), believe(Copernicus,hasCenter(world,sun)) believe (peopleFromTexas, bornIn(BarackObama,Kenya))

ImageNet: Visual WordNet

http://www.image-net.org/

INMNㅡNENET

SEARCH

[J. Deng et al.: CVPR 2009]

Home	Explore
About	Download

Explore
Download

Kivi, apteryx
YO Nocturnal flightless bird of New Zealand having a long neck and stout legs; only surviving representative of the order Apterygiformes

ImageNet: Visual WordNet

Not logged in. Login I Signup

Photos of Entities in the Long Tail

[B. Taneva et al.: WSDM'10]

David Patterson

David Patterson Berkeley

David Patterson RISC

David
Patterson ACM
combined method

- exploit KB:
worksFor (DavidPatterson, Berkeley) invented (DavidPatterson, RISC) presidentOf (DavidPatterson, ACM) wonAward (DavidPatterson, ...)
- generate expanded queries
- combine results by voting

KB Building: Achievements \& Challenges

Entities \& Classes

strong success story, some problems left:

- large taxonomies of classes with individual entities
- long tail calls for new methods
- entity disambiguation remains grand challenge

Relationships
good progress, but many challenges left:

- recall \& precision by patterns \& reasoning
- efficiency \& scalability
- soft rules, hard constraints, richer logics, ...
- open-domain discovery of new relation types

Temporal Knowledge
widely open (fertile) research ground:

- uncertain / incomplete temporal scopes of facts
- joint reasoning on ER facts and time scopes

KB Applications: Achievements \& Challenges

Search \& QA
good progress on entity awareness; next challenges:

- coping with entities in the long tail
- querying relational facts for knowledge-intensive QA
- compelling UI for QA input/output (speech, visual, ...)
- composable services (e.g. API for Sparql+text+time+...)

Ranking \& Recommendation
progress on statistical ranking; problems remaining:

- ranking for relational queries and QA results
- consideration of diversity, trust, provenance
- aggregation of uncertain statements

Contextualization, Disambiguation \& Linkage key to all of this, remains challenging
Broad Application Areas Web 2.0, mobile, multimodal, digital humanities, health, biology, ...

Grand Challenge: Web-Scale KB Construction

ontological rigor

Names \& Patterns Entities \& Relations

Open-
Domain \&
Unsupervised

DomainSpecific Model w/ Seeds
> \rightarrow < „N. Portman" "honored with", "Academy Award">,
> < „Jeff Bridges", "expected to win", "Oscar" >
> < "Bridges",
> „nominated for", "Academy Award">
wonAward: Person \times Prize type (Meryl Streep, Actor) wonAward (Meryl_Streep, Academy_Award)
wonAward (Natalie_Portman, Academy_Award) wonAward (Ethan_Coen, Palme_d'Or)

Grand Challenge: Web-Scale KB Construction

 ontological rigor
Names \& Patterns Entities \& Relations

Open-
Domain \& Unsupervised

TextRunner

Probase
WebTables /
FusionTables
StatSnowball/
EntityCube
ReadTheWeb
DomainSpecific Model w/ Seeds

Overall Take-Home

Historic opportunity:
revive Cyc vision, make it real \& large-scale !
challenging, but high pay-off
Explore \& exploit synergies between semantic, statistical, \& social Web methods: statistical evidence + logical consistency !

For DB / AI / IR / NLP / Web researchers:

- efficiency \& scalability
- constraints \& reasoning
- killer app for uncertain data management (prob. DB)
- search \& ranking for RDF + text
- text (\& speech) disambiguation
- knowledge-base life-cycle: growth \& maintenance

Outline

- Part I V
- Machine Knowledge \& Intelligent Applications
- Part II
- Knowledge Representation \& Public Knowledge Bases
- Part III
- Extracting Knowledge
- Part IV
- Ranking and Searching
- Part V
- Linked Data
- Part VI
- Conclusion and Outlook

The End

The slides are available at http://www.mpi-inf.mpg.de/yago-naga/IJCAI11-tutorial/

Feel free to contact us with further questions

Hady Lauw
Institute for
Infocomm Research
Singapore
http://hadylauw.com

Fabian M. Suchanek
INRIA Saclay
Paris
http://suchanek.name

Ralf Schenkel
Saarland University
Saarbrücken
http://people.mmci.uni-saarland.de/ uschenkel/

Gerhard Weikum
Max-Planck Institute
for Informatics
Saarbrücken
http://www.mpi-inf.mpg.de/ ~weikum/

Martin Theobald
Max-Planck Institute
for Informatics
Saarbrücken
http://www.mpi-inf.mpg.de/~mtb/

Thanks

Whatre

\square E Deutsche
Forschungsgemeinschaft

[^0]: HAS INSTANCE \Rightarrow Harvey, William Hatvey -- (English physician and scientist who described the mimotatinn of the hinnat he later wimenoed that all animale meininate from an

[^1]: v died in year

