facebook

Center of Attention How Facebook Users Allocate Attention across Friends

Lars Backstrom¹, Eytan Bakshy¹,2, Jon Kleinberg³, Tom Lento¹, Itamar Rosenn¹
Facebook ${ }^{1}$
School of Information - University of Michigan²
Department of Computer Science - Cornell University³ ${ }^{3}$
ICWSM 2011. Barcelona, Spain.

Outline

- Motivation and introduction
- Data and quantities of interest
- Balance of attention
- Relation to activity and network size
- Individual variation
- Intergroup variation
- Temporal shifts in attention
- Conclusion

Motivation and Introduction

Motivation

- How does attention to our important friends change as online social networks become larger and more active?
- Urban experience:
- Milgram (1970): more interactions diminishes time spent interacting with any one individual
- Mayhew and Levinger (1976): model assumes a uniform decrease in attention as a function of interaction volume
- Not a priori obvious how increased number of interactions or network size impacts the amount of attention given to any particular individual

The Angle

- Our Claim:
- Attention is allocated differently across friends
- Increased activity does not necessarily mean core contacts receive less attention
- Measure what \% of attention is allocated toward a core set of friends
- Requires complete information about all interactions
- Consider both communication and observation interactions

Data and Setup

Data

- 16M heavily engaged users on Facebook
- All interactions over one year (2010):
- Communication
- messages sent
- comments given
- wall posts left
- Observation
- profile views
- photo views

Quantities of Interest

- a_{k} : Fraction of attention devoted to rank k friend
- f_{k} : Fraction of attention devoted to top n friends
- Activity: total number of interactions along a modality
- Network size: number of users interacted with

Volume of Activity

- Approximately 1 order of magnitude more observation than communication interactions
- Plot data in terms of activity percentile

Attention (a_{k}) by Rank

- Average attention toward top kth friend decreases rapidly with $k\left(a_{k} \sim k^{0.75}\right)$
- More attention given to top communication friends compared to observation friends

The Balance of Attention

Attention and Activity

- Consider the total fraction of attention given to top 15 friends
- Large increases in activity level do not lead to large changes in how much attention is allocated to top k friends

Activity and Network Size

Profile views

Comments

Individual Variation

Age

Gender

Distributional Differences in Gender

	Comments			Profile views		
		Median	Mean		Median	Mean
Number of Contacts	F	73	89	F	918	1,196
	M	60	78	M	1,063	1,458
	F/M	1.2x	1.1x	F/M	0.9x	0.8x
	Comments			Profile views		
		Median	Mean	Median		Mean
Number of Actions	F	388	638	F	4,719	7,194
	M	245	473	M	4,201	6,361
	F/M	1.5x	1.3 x	F/M	1.1 x	$1.1 x$

Explaining Individual Variation

- Gender and age differences can be explained by different underlying distributions of network size and activity level

Linear model of f_{5} as a function of individual characteristics

	Intercept	Network Size	Activity	Age	Male	R^{2}
Profile	0.18	-0.53	0.44	0.03	0.02	0.38
Photo	0.20	-0.47	0.21	-0.01	0.01	0.53
Comment	0.43	-0.81	0.41	-0.03	-0.01	0.67
Message	0.44	-0.87	0.48	0.03	0.00	0.59
Wall	0.51	-1.48	0.92	-0.02	0.00	0.62

$N=1,037,885 ; p<0.0001$
continuous covariates are given in centered percentiles

Intergroup Variation

Gender-Gender Interactions

- Females exhibit strong gender homophily in communication
- Females send 68\% of their messages to females
- Males send only 53\% to females
- Males and females both direct 60\% of their profile views to females

Attention Between Genders - Messages

- Consider each individuals' male and female target network separately
- Attention more concentrated along across-gender communication, dispersed along within gender communication

Attention Between Genders - Messages

- Consider each individuals' male and female target network separately
- Attention more concentrated along across-gender communication, dispersed along within gender communication
- Effect is stronger for
 females

Attention Between Genders - Profile Views

- Females and males have similar focus in attention when viewing females
- Focus is much higher for females viewing male profiles

Best Friends... Forever?

- Do more interactions lead to less stable relationships?
- Measure number of top-10 friends that remain top-10 from one two-month period to the next
- Comments and profile views most stable, potentially as a result of feed

Conclusion

- Proposed a measure of attention based on how an individual distributes her interactions among friends
- Allows for easy comparison between among different modalities
- How an individual divides their attention is a stable property of the individual, and is different across age and gender
- Differences can be partly captured by activity and network size
- Attention is divided differently within and between genders
- Greater levels of activity are associated with stability

Thanks

- Collaborators:

R. Lars Backstrom

Jon Kleinberg
2
Itamar Rosenn

Questions?

