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General Take-Away Message

 Graphs are not enough

 We need logic
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Roadmap

1. Motivation

2. Statistical Relational Learning / AI:        
a short overview

3. Markov Logic Networks
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MOTIVATION



Rorschach Test
[Hermann Rorschach (* Nov 8, 1884; † April 2 1922)]

6
Pedro Domingos, Kristian Kersting
Combining Probability and Logic: Languages, Algorithms and Applications



Etzioni’s Rorschach Test for Computer Scientists 
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Moore’s Law? 
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Storage Capacity? 
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Number of Scientific Publications?
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Number of Facebook Users?
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Number of Web Pages? 
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The World-Wide Mind

http://www.cs.washington.edu/research/textrunner/

Object ObjectRelation Uncertainty

[Weikum, Kasneci, Ramanath, Suchanek Commun. ACM 52(4): 56-64 (2009)]
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So, Tasks Are Often Structural

 Objects are not just feature vectors

 They have parts and subparts

 Which have relations with each other

 They can be trees, graphs, etc.

 Objects are seldom i.i.d.
(independent and identically distributed)

 They exhibit local and global dependencies

 They form class hierarchies (with multiple 
inheritance)

 Objects‟ properties depend on those of related 
objects

 Deeply interwoven with knowledge
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How do computer systems deal with 
structural problems?



(First-order) Logic handles Structures

atomic propositional first-order/relational

Many types of entities
Relations between them
Arbitrary knowledge

19th C5th C B.C.

Explicit enumeration

daugther-of(cecily,john)
daugther-of(lily,tom)
…

Logic
true/false
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 Main theoretical foundation of computer science

 General language for describing complex structures and 
knowledge: trees, graphs, hierarchies, etc.

 Inference algorithms (satisfiability testing, resolution,
theorem proving, etc.)

More compact knowledge representation. Consider e.g. 
classicial examples such as chess or wumpus:

FOL << PL << atomic

[slide inspired by Russell]



Tasks are also often Statistical

 Information are ambiguous

 Our information is always incomplete

 Our predictions are uncertain
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How do computer systems deal with 
uncertainty?



Probability handles Uncertainty

atomic propositional first-order/relational

Many types of entities
Relations between them
Arbitrary knowledge

19th C5th C B.C.

Explicit enumeration

Logic
true/false
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Probability

Sensor noise
Human error

Inconsistencies
Unpredictability

17th C 20th C

Mixture models

Hidden Markov models

Bayesian networks

Markov random fields

Maximum entropy models

Conditional random fields

…

[slide inspired by Russell]



atomic propositional first-order/relational

Many types of entities
Relations between them
Arbitrary knowledge

19th C5th C B.C.

Explicit enumeration

Logic
true/false
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Probability

Sensor noise
Human error

Inconsistencies
Unpredictability

17th C 20th C

So, will traditional (U)AI scale ?

[slide inspired by Russell]



Pedro Domingos, Kristian Kersting
Combining Probability and Logic: Languages, Algorithms and Applications

Y X1 X2 ... Zn

+ 1 r ... t

– 3 b ... t

– 2 b ... f

... ... ... ... ...

O 9 34 ... t

Propositional vs. Relational Data

Y X1 X2 ... Xn

+ 1 r ... 32

– 3 b ... 17

– 2 b ... 45

... ... ... ... ...

+ 2 g ... 29

 Traditional work in robotics,  
machine learning and 
knowledge discovery assume 
data instances form a single 
table.

• Traditional statistical models 
assume independence 
among instances (rows) and 
find associations among the 
values of multiple variables 
within a single instance.

• Relational models assume 
dependence among instances in different rows and 
tables and find associations among these values.

[slide adapted from David Jensen]
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Let’s consider a simple relational 
domain: Reviewing Papers

 The grade of a paper at a conference 
depends on the paper‟s quality and the 
difficulty of the conference.

 Good papers may get A’s at easy 
conferences

 Good papers may get D’s at top 
conference

 Weak papers may get B’s at good 
conferences

 …

[inspired by Friedman and Koller]
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(Reviewing) Bayesian Network

P(Qual)

low middle high

0.3 0.5 0.2

P(Diff)

low middle high

0.2 0.3 0.5

Qual Diff

P(Grade)

c b a

low low 0.2 0.5 0.3

low middle 0.1 0.7 0.2

...

   1 1 11
, , , ,

n

n i ii
P X X P X X X



Random Variables

Direct Influence
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… has inter-related objects

Paper1 Diff_UAI

Grade_Paper1_UAI

Paper2 Diff_UAI

Grade_Paper2_UAI

Paper2 Diff_IJCAI

Grade_Paper2_IJCAI

The real world, however,  …

These ‘instance’ are not independent !

[slide inspired by Friedman and Koller]
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atomic propositional first-order/relational

Many types of entities
Relations between them
Arbitrary knowledge

19th C5th C B.C.

Explicit enumeration

Logic
true/false
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Probability

Sensor noise
Human error

Inconsistencies
Unpredictability

17th C 20th C

So, will traditional (U)AI scale ?

“Scaling up the environment 
will inevitably overtax the 

resources of the traditional 
(U)AI architecture.”

No !



Search

IR…

Robotics

CV
KR

PlanningSAT

Probability

Statistics

Logic

Graphs

Trees
Learning  

Let„s deal with uncertainty, objects, relations, and
learning jointly

The study and design of intelligent agents that act 
in noisy worlds composed of objects and relations 
among the objects

Statistical Relational Learning and AI
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How to solve
commonsense

reasoning

How to solve
Natural

Language
Processing

How to solve 
robotics

How to solve
Vision

Domain
Knowledge

Inference
and

Learning

Language
Knowledge

Inference
and

Learning

Domain &
Robot

Knowledge

Inference
and

Learning

Objects &
Optics

Knowledge

Inference
and

Learning

The Big Picture on AI

Commonsense 
reasoning

Natural Language
Processing

Robotics Vision ...

Lifted Inference
and

Learning
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[slide inspired by de Salvo Braz]
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Why the Tutorial?

 A very active, multi-disciplinary research area

 Involves all sub-disciplines of AI: reasoning and 
acting under uncertainty, knowledge 
representation, constraint satisfaction, machine 
learning, … 

 Unfortunately, can be hard to follow:                                 
they all speak a different language

 A success story

 Often outperforms state-of-the-art

 Novel ways of using the structure for faster 
and/or more robust solutions

 Growth path for (U)AI in general
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STATISTICAL RELATIONAL LEARNING / AI: 
A SHORT OVERIEW



Applications to Date

 Natural language 
processing

 Information extraction

 Entity resolution

 Link prediction

 Collective classification

 Social network analysis

 Robot mapping

 Activity recognition

 Scene analysis

 Computational biology

 Probabilistic Cyc

 Personal assistants

 Etc.



Information Extraction

Parag Singla and Pedro Domingos, “Memory-Efficient         
Inference in Relational Domains” (AAAI-06). 

Singla, P., & Domingos, P. (2006).Memory-efficent
inference in relatonal domains. In Proceedings of the   
Twenty-First National Conference on Artificial Intelligence      
(pp. 500-505). Boston, MA: AAAI Press.

H. Poon & P. Domingos, Sound and Efficient Inference       
with Probabilistic and Deterministic Dependencies”, in      
Proc. AAAI-06, Boston, MA, 2006.

P. Hoifung (2006). Efficent inference. In Proceedings of the 
Twenty-First National Conference on Artificial Intelligence.



Information Extraction

Paper

Parag Singla and Pedro Domingos, “Memory-Efficient         
Inference in Relational Domains” (AAAI-06). 

Singla, P., & Domingos, P. (2006).Memory-efficent
inference in relatonal domains. In Proceedings of the   
Twenty-First National Conference on Artificial Intelligence      
(pp. 500-505). Boston, MA: AAAI Press.

H. Poon & P. Domingos, Sound and Efficient Inference       
with Probabilistic and Deterministic Dependencies”, in      
Proc. AAAI-06, Boston, MA, 2006.

P. Hoifung (2006). Efficent inference. In Proceedings of the 
Twenty-First National Conference on Artificial Intelligence.



Segmentation
Author

Title

VenuePaper

Parag Singla and Pedro Domingos, “Memory-Efficient         
Inference in Relational Domains” (AAAI-06). 

Singla, P., & Domingos, P. (2006).Memory-efficent
inference in relatonal domains. In Proceedings of the   
Twenty-First National Conference on Artificial Intelligence      
(pp. 500-505). Boston, MA: AAAI Press.

H. Poon & P. Domingos, Sound and Efficient Inference       
with Probabilistic and Deterministic Dependencies”, in      
Proc. AAAI-06, Boston, MA, 2006.

P. Hoifung (2006). Efficent inference. In Proceedings of the 
Twenty-First National Conference on Artificial Intelligence.



Entity Resolution
Author

Title

VenuePaper

Parag Singla and Pedro Domingos, “Memory-Efficient         
Inference in Relational Domains” (AAAI-06). 

Singla, P., & Domingos, P. (2006).Memory-efficent
inference in relatonal domains. In Proceedings of the   
Twenty-First National Conference on Artificial Intelligence      
(pp. 500-505). Boston, MA: AAAI Press.

H. Poon & P. Domingos, Sound and Efficient Inference       
with Probabilistic and Deterministic Dependencies”, in      
Proc. AAAI-06, Boston, MA, 2006.

P. Hoifung (2006). Efficent inference. In Proceedings of the 
Twenty-First National Conference on Artificial Intelligence.

Relations are at the heart of entity resolution



Gene Localization

 Predict the localization 
of a given gene in a cell 
among 15 distinct 
positions

 Relations important as
sequence similarity does
not help

Relational Kernels 
better then Hayashi 
et al.’s KDD Cup 
2001 winning 
approach
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Semantic Labeling of 3D Scan Data
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 Neighbouring pixels/voxels have the same 
semantic label

[Anguelov et al. CVPR05, Triebel et al. ICRA06, …]

Relations as constraints
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Web Search

?Query

?Query

?Query

similar

more
relevant

Relational approaches outperfom
traditional ranking approaches

35
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Social Recommendation / Collaborative Filtering

 Predict whether a user likes a movie given attributes of 
users and movies, as well as known ratings and 
complex link structures

like
like

like
like

like like

artist

drama

action
thriller

engineer

Relational approaches outperfom set-
based recommendation systems 36



What is the world talking about ?
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Topic Models

Relational approaches estimate better 
low-dimensional embeddings

38



How do you spend your spare time?

YouTube like media portals have changed the way 

users access media content in the Internet

Every day, millions of people visit social media 

sites such as Flickr, YouTube, and Jumpcut, 

among others, to share their photos and videos, 

…

while others enjoy themselves by searching, 

watching, commenting, and rating the photos and 

videos; what your friends like will bear great 

significance for you.
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How do you efficiently broadcast
information?

Lifted inference faster than belief 
propagation

40



Predicting Coronary Artery Calcification Levels

 Cardiovascular disease cost the EU EURO169 billion in 2003 and the 
USA about EURO310.23 billion in direct and indirect annual costs. 

 By comparison, the estimated cost of all cancers is EURO146.19 
billion and HIV infections EURO22.24 billion.
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Relational models provide new insights

So, what are relations?



What are Relations?

 There are several types of relations and in turn 
there are several views on what (statitical) 
relational learning is

1. Relations provide additional correlations/ 
regularization

 If two words occure frequently in the same context
(page, paragraph, sentence, …) then there must be
some semantic relation between them

2. Often extensional (data) only, for one
relation

 Covariance function, distance functions, kernel
functions, graphs, tensors, random walks with
restarts…

42
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What are Relations?

3. Relations are symmetries/redundancies
in the model
 E.g. lifted inference based on bisimulation

4. Hypergraph representations of data

 Multiple (extensional) relations

 Random walks with restarts as similarity measure or
to produce path features

5. Full-fledged relational (or logical) 
knoweldge as considered in this tutorial

 Multiple (often typed) relations

 Intensional formulas (often Horn clauses)     
ancestor(X,Z) ^ parent(Z,Y) ⇒ ancestor(X,Y)

43
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LPAD: Bruynooghe
Vennekens,Verbaeten

Markov Logic: Domingos,
Richardson

CLP(BN): Cussens,Page, 
Qazi,Santos Costa

The SRL Alphabet Soup

2011

PRMs: Friedman,Getoor,Koller,
Pfeffer,Segal,Taskar

´03´96

SLPs: Cussens,Muggleton 

´90 ´95

First KBMC approaches:
Bresse, 
Bacchus,
Charniak, 
Glesner,
Goldman, 
Koller,
Poole, Wellmann

´00

BLPs: Kersting, De Raedt

RMMs: Anderson,Domingos,
Weld

LOHMMs: De Raedt, Kersting,
Raiko

[names in alphabetical order]

Prob. CLP: Eisele, Riezler

´02

PRISM: Kameya, Sato

´94

PLP: Haddawy, Ngo

´97´93

Prob. Horn 
Abduction: Poole

´99

1BC(2): Flach,
Lachiche

Logical Bayesian Networks:
Blockeel,Bruynooghe,

Fierens,Ramon, 

´07 RDNs: Jensen, Neville
´10 PSL: Broecheler, Getoor, Mihalkova

BUGS/Plates

Relational Markov Networks

Multi-Entity Bayes Nets

Object-Oriented Bayes Nets

IBAL

SPOOK

Relational Gaussian Processes Infinite Hidden Relational Models

Figaro

Curch

Probabilistic Entity-Relationship Models

DAPER
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Key Dimensions with some prototypes
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directed undirected

PRMs

MLNs

ProbLog

RMNs
BLPs

PRISM

SLPs
CLP(BN)

RGPs
IHRM

LPAD

BLOG

RDN

BUGS

RBNs

ICL
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( , ) ( ) _ ( )

_ ( ) ( )

x author x p smart x high quality p

x high quality p accepted p

  

 

[Getoor et al. 2002; Kersting De Raedt 2007]

Directed: Probabilistic Relational Models (PRMs)
Bayesian logic Programs (BLPs) 

high_quality/1

author/2 smart/1

Rule Graph

accepted/1

Predicates

high_quality

smart

P

author

X

......

yes(0.9,0.1)

smart(X)high_quality(Y)

Placeholders Atoms

Macro for conditional probability table

Deterministic
background
knowledge

Probabilistic rule

46
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Inference on BN constructed by 
instantiating the rules/ macros using back-
or forward chaining

smart(alice)

high_quality(p1)

author(alice,p1)

accepted(p1)

smart(bob)

high_quality(p2)

author(bob,p2)

accepted(p2)

So, we can deal with a variable number of objects. 
The induced BN depends on the domain elements and 
the background knowledge we have.

But what happens if instead we have author(bob,p1)?

47



smart(alice)

high_quality(p1)

author(alice,p1)

accepted(p1)

smart(bob)

author(bob,p1)

Directed: Aggregate Dependencies

48
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smart(alice)

high_quality(p1)

author(alice,p1)

accepted(p1)

smart(bob)

author(bob,p1)

Directed: Aggregate Dependencies

sum, min, max, 
avg, mode, count

aggr

8.02.0

1.09.0

f

t

P(HQ | A)A

Still, the induced model is assumed to be acyclic
49



Option 1 : Relational Dependency Networks (RDNs)
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[Neville, Jensen 2007]

( , ) ( ) _ ( )

_ ( ) ( )

, _ ( , ) ( ) ( )

, ( , ) ( , ) _ ( , )

x author x p smart x high quality p

x high quality p accepted p

x y co author x y smart x smart y

x y p author x p author y p co author x y

  

 

  

   

cyclic
dependency

high_quality/1

co-author/2 smart/1

accepted/1

smart

smart

Y

co_author

X
author/2

Run approximate 
Gibbs sample
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smart(alice)

high_quality(p1)

author(alice,p1)

accepted(p1)

smart(bob)

author(bob,p1)

Relational Dependency Networks

co_author(alice,bob) co_author(bob,alice)

aggr

Run approximate 
Gibbs sample

51
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 

),(_),(),(,

)()(),(_,

)()(_

)(_)(),(

yxauthorcopyauthorpxauthorpyx

ysmartxsmartyxauthorcoyx

pacceptedpqualityhighx

pqualityhighxsmartpxauthorx











2.1

1.1

5.1

Suppose we have constants: alice, bob and p1

[Richardson, Domingos MLJ 62(1-2): 107-136, 2006]

Option 2: Markov Logic Networks

smart(bob)smart(alice)

high_quality(p1)

author(p1,alice) author(p1,bob)

accepted(p1)

co_author(bob,alice) co_author(alice,bob)

co_author(alice,alice) co_author(bob,bob)

Compile to an undirected model
52



Key Dimensions with some prototypes

directed undirected

PRMs

MLNs

ProbLog

RMNs
BLPs

PRISM

SLPs
CLP(BN)

RGPs
IHRM

LPAD

BLOG

RDN

macro proofs
MLNs

BLPs
ProbLog

IHRM

PRMs

BLOG

RDN
PRISM

SLPs

LPAD
RGPs

BUGS

RBNs

ICL

ICL

RBNs

53
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 Label of a clause/fact c is the probability that c belongs to the 
target program; Facts/clauses independent of each other

 Defines a distribution over programs

ProbLog
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0.10 :: edges(x_gene, disease2)

0.66 :: edge(x_gene, disease1)

0.39 :: edges(disease1,disease2)

path(X,Y) :- edge(X,Y)

path(X,Y) :- edges(X,Z), path(Z,Y)

disease2

disease1

X_gene
0.39

0.10

0.66

disease2

disease1

X_gene

disease2

disease1

X_gene

disease2

disease1

X_gene
0.39

disease2

disease1

X_gene …

P=0.1*0.66*0.39 + P=(1-0.1)*0.66*0.39

P=(1-0.1)*(1-0.66)*0.39

+ P=0.1*0.66*(1-0.39)

P(path(x_gene,disease2) )=  sum of probs of all programs that entail the query

Exponentially many subprograms! To avoid explosion, 
consider proofs/paths only + store them in a BDD in 
order to count correctly



Many other approaches !!
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directed undirected

PRMs

MLNs

ProbLog

RMNs
BLPs

PRISM

SLPs
CLP(BN)

RGPs
IHRM

LPAD

BLOG

RDN

macro proofs
MLNs

BLPs
ProbLog

IHRM

PRMs

BLOG

RDN
PRISM

SLPs

LPAD
RGPs

parametric non-parametric

MLNs
BLPs

ProbLog
IHRM

PRMs

BLOG

RDN PRISM
SLPs

LPAD RGPs

NP-BLOG

CWA OWA

MLNs
BLPs

ProbLog

IHRM

PRMs
BLOGRDN PRISM

SLPs

LPAD

RGPs

NP-BLOG

MEBNs

BUGS

RBNs

ICL

ICL

RBNs

RBNs

ICL

RBNs

ICL



And actually they span the whole AI spectrum

 Relational topic models

 Mixed-membership models

 Relational Gaussian processes

 Relational reinforcement learning

 (Partially observable) MDPs

 Systems of linear equations

 Kalman filters

 Declarative information networks

 …
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So, should we worry about the soup?

No, this is very much like in the early 
days of UAI !



The early days of UAI
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[B. Wise, M. Henrion. A Framework for Comparing Uncertain Inference Systems to Probability. UAI-85]
[A. Bundy. Incidence Calculus: A Mechanism for Probabilistic Reasoning. UAI-85]
[D. Hunter. Uncertain. Reasoning Using Maximum Entropy Inference. UAI-85]
[D. Heckerman. Probabilistic Interpretations for MYCIN's Certainty Factors. UAI-85]
[S. Ursic. Generalizing Fuzzy Logic Probabilistic Inferences. UAI-86]
[N.J. Nilsson. Probabilistic Logic. Artificial Intelligence 28(1): 71-87, 1986]
[B. Falkenheiner. Towards a General-Purpose Belief Maintenance System. UAI-86]
[D. Heckerman. An Empirical Comparison of Three Inference Methods. UAI-88]

Mycin's Certainty Factors 

Prospector

Bayesian Networks

Fuzzy Set Theory

Dempster-Shafer Belief Functions

Incidence Calculus

Maximum entropy inference

Probabilistic Logic

Belief Maintenance System Bayes’ Theorem

Odds-likelihood updating

Expert-rating
Decision-theoretic metrices



This soup boiled down to Graphical Models
as intermediate representation

 There is an edge between a circle and a box if the
variable is in the domain/scope of the factor

unnormalized !

Random variable

Factor resp. potential

Distributions can naturally be represented as Factor Graphs
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Factor Graphs from Graphical Models

Similar “boiling down” process is going on in SRL! 



 Given a relational model in your language
of choice, a set of constants and a query, 
compile everything into an intermediate 
respresentation

 Factor graphs

 BDDs, Artihmetic Circuits, d-DNNFs, …

 Weighted CNFs

 Run inference

Boiled-Down SRL Alphabet Soup

Pedro Domingos, Kristian Kersting
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[Poole 2003; de Salvo Braz et al. 2005]

Rules + Potential: Logically Parameterized 
Factors

X. 1(popular, attends(X)) 

X. 2(attends(X), series) 

…

popular

start series

attends(p1) attends(p2) attends(pn)

Atoms represent a set of 
random variables

Logical Variables 
parameterize RV

Parfactors
parameterized 
factors

There can also be contraints
to logical variables such as 
X=/=UAI11
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[Domingos et al.]

Rules + Weights: Weighted CNF

 Weighted MAX-SAT as mode finding for log-linear 
distributions

 Each configuration has a cost: the sum of the 
weights of the unsatisfied (ground) clauses.

 An infinite cost gives a „hard‟ clause. 

 Goal: find an assignment with minimal cost.

   


z¬xyx 

Weigthed CNF x y z

 

Factor Graph:

x y  f(x,y)

0 0   0

0 1   w1

1 0   w1

1 1   w1

x z  f(x,z)

0 0   w2

0 1   w2

1 0   0

1 1   w2

w1 w2
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ILP= Machine Learning + Logic Programming
[Muggleton, De Raedt JLP96]

Examples E

pos(mutagenic(m1))           

neg(mutagenic(m2))

pos(mutagenic(m3))
...

c c

c c

c c

n

o

Background Knowledge B
molecule(m1)

atom(m1,a11,c)

atom(m1,a12,n)

bond(m1,a11,a12)

charge(m1,a11,0.82)

...

molecule(m2)

atom(m2,a21,o)

atom(m2,a22,n)              

bond(m2,a21,a22)

charge(m2,a21,0.82)

... 

Find a set of general rules

mutagenic(X) :- atom(X,A,c),charge(X,A,0.82)

mutagenic(X) :- atom(X,A,n),...
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:- true

Coverage = 0.5,0.7

Coverage = 0.6,0.3

Coverage = 0.4,0.6

:- atom(X,A,c)

:- atom(X,A,n)

:- atom(X,A,f)

Coverage = 0.8

Coverage = 0.6

:- atom(X,A,c),bond(A,B)

:- atom(X,A,n),charge(A,0.82)

Example ILP Algorithm: FOIL      
[Quinlan MLJ 5:239-266, 1990]

mutagenic(X) :- atom(X,A,n),charge(A,0.82)

mutagenic(X) :- atom(X,A,c),bond(A,B)

0

1

…





 1

…

Some objective function, e.g. 

percentage of covered positive examples
64
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 Traverses the hypotheses space a la ILP

 Replaces ILP‟s 0-1 covers relation by a 

“smooth”, probabilistic one [0,1]

0

1

…





 1

mutagenic(X) :- atom(X,A,n),charge(A,0.82)

mutagenic(X) :- atom(X,A,c),bond(A,B)

…

=0.882

Vanilla SRL Approach[De Raedt, K ALT04]
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MARKOV LOGIC



MARKOV LOGIC



Overview

 Representation

 Inference

 Learning

 Applications

 Discussion
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Propositional Logic

 Atoms: Symbols representing propositions

 Logical connectives: ¬, Λ, V, etc.

 Knowledge base: Set of formulas

 World: Truth assignment to all atoms

 Every KB can be converted to CNF

 CNF: Conjunction of clauses

 Clause: Disjunction of literals

 Literal: Atom or its negation

 Entailment: Does KB entail query?

Pedro Domingos, Kristian Kersting 
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First-Order Logic

 Atom: Predicate(Variables,Constants)

E.g.: 

 Ground atom: All arguments are constants

 Quantifiers:

 This talk: Finite, Herbrand interpretations

Pedro Domingos, Kristian Kersting 
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 Potential functions defined over cliques

Smoking Cancer Ф(S,C)

False False 4.5

False True 4.5

True False 2.7

True True 4.5


c

cc x
Z

xP )(
1

)(


x c

cc xZ )(

 Undirected graphical models

Cancer

CoughAsthma

Smoking

Markov Networks
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 Log-linear model:

Weight of Feature i Feature i



 


otherwise0

CancerSmokingif1
)CancerSmoking,(1f

51.01 w

Cancer

CoughAsthma

Smoking









 

i

ii xfw
Z

xP )(exp
1

)(

 Undirected graphical models

Markov Networks



Probabilistic Knowledge Bases

PKB = Set of formulas and their probabilities

+ Consistency + Maximum entropy

= Set of formulas and their weights

= Set of formulas and their potentials

(1 if formula true,       if formula false)

Pedro Domingos, Kristian Kersting 
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
i

worldn

i
i

Z
worldP

)(1
)( 

i



Markov Logic

 A Markov Logic Network (MLN) is a set of 

pairs (F, w) where

 F is a formula in first-order logic

 w is a real number

 An MLN defines a Markov network with

 One node for each grounding of each predicate

in the MLN

 One feature for each grounding of each formula F

in the MLN, with the corresponding weight w

8
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Example

),( BobAnnaFriends

)(BobHappy)(BobHappy

),( BobAnnaFriends
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Example

),( BobAnnaFriends

)(BobHappy)(BobHappy

),( BobAnnaFriends

)(

),(

BobHappy

BobAnnaFriends




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Example

),( BobAnnaFriends

)(BobHappy)(BobHappy

),( BobAnnaFriends

)(

),(

BobHappy

BobAnnaFriends





8.0))(),((  BobHappyBobAnnaFriendsP
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Example

),( BobAnnaFriends

)(BobHappy)(BobHappy

),( BobAnnaFriends

1))(),((  BobHappyBobAnnaFriends

75.0))(),((  BobHappyBobAnnaFriends

1 1

175.0
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Example

),( BobAnnaFriends

)(BobHappy)(BobHappy

),( BobAnnaFriends

29.0)75.0/1log(

)))(),(((



 BobHappyBobAnnaFriendsw

1 1

175.0

13Pedro Domingos, Kristian Kersting 

Combining Logic and Probability: Languages, Algorithms and Applications



Overview

 Representation

 Inference

 Learning

 Applications

 Discussion
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Theorem Proving

TP(KB, Query)

KBQ ← KB U {¬ Query}

return ¬SAT(CNF(KBQ))
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Satisfiability (DPLL)

SAT(CNF)

if CNF is empty return True

if CNF contains empty clause return False

choose an atom A

return SAT(CNF(A)) V SAT(CNF(¬A))

16Pedro Domingos, Kristian Kersting 
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First-Order Theorem Proving

 Propositionalization

1. Form all possible ground atoms

2. Apply propositional theorem prover

 Lifted Inference: Resolution

 Resolve pairs of clauses until empty clause derived

 Unify literals by substitution, e.g.: unifiesBobx
),( xAnnaFriends ),( BobAnnaFriendsand

)(

),(

)(),(

BobHappy

BobAnnaFriends

xHappyxAnnaFriends 
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Probabilistic Theorem Proving

Given Probabilistic knowledge base K

Query formula Q

Output P(Q|K)
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Weighted Model Counting

 ModelCount(CNF) = # worlds that satisfy CNF

 Assign a weight to each literal

 Weight(world) = П weights(true literals)

 Weighted model counting:

Given CNF C and literal weights W

Output Σ weights(worlds that satisfy C)

PTP is reducible to lifted WMC
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Example

),( BobAnnaFriends

)(BobHappy)(BobHappy

),( BobAnnaFriends 175.0

),( BobAnnaFriends
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Example

),( BobAnnaFriends

)(BobHappy)(BobHappy

),( BobAnnaFriends 175.0

57.0
75.01

1
)),(|)(( 


BobAnnaFriendsBobHappyP
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Example

),( BobAnnaFriends

)(BobHappy)(BobHappy

),( BobAnnaFriends 175.0

57.0
75.01

1
)),(|)(( 


BobAnnaFriendsBobHappyP

8.0))(),((  BobHappyBobAnnaFriendsPIf

Then
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Example

),( xAnnaFriends

)(xHappy)(xHappy

),( xAnnaFriends

)(

),(

xHappy

xAnnaFriends





8.0))(),((  xHappyxAnnaFriendsP
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Example

),( xAnnaFriends

)(xHappy)(xHappy

),( xAnnaFriends

)(

),(

xHappy

xAnnaFriends





8.0))(),((  xHappyxAnnaFriendsP

),( BobAnnaFriends

)(BobHappy)(BobHappy

),( BobAnnaFriends 175.0

),( BobAnnaFriends

Bobx 
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Inference Problems
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 All conditional probabilities are ratios

of partition functions:

 All partition functions can be computed 

by weighted model counting

Propositional Case

)(

)})0,{((

)(

)()(1
)|(

PKBZ

QueryPKBZ

PKBZ

worldworld
PKBQueryP

iiQueryworlds






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Conversion to CNF + Weights

WCNF(PKB)

for all (Fi, Φi) є PKB s.t. Φi > 0 do

PKB ← PKB U {(Fi  Ai, 0)} \ {(Fi, Φi)}

CNF ← CNF(PKB)

for all ¬Ai literals do W¬Ai ← Φi

for all other literals L do wL ← 1

return (CNF, weights)
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Probabilistic Theorem Proving

PTP(PKB, Query)

PKBQ ← PKB U {(Query,0)}

return WMC(WCNF(PKBQ))

/ WMC(WCNF(PKB))
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Probabilistic Theorem Proving

PTP(PKB, Query)

PKBQ ← PKB U {(Query,0)}

return WMC(WCNF(PKBQ))

/ WMC(WCNF(PKB))

TP(KB, Query)

KBQ ← KB U {¬ Query}

return ¬SAT(CNF(KBQ))

Compare:
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Weighted Model Counting

WMC(CNF, weights)

if all clauses in CNF are satisfied

return

if CNF has empty unsatisfied clause return 0

)()A( AACNFA ww  

Base

Case
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Weighted Model Counting

WMC(CNF, weights)

if all clauses in CNF are satisfied

return

if CNF has empty unsatisfied clause return 0

if CNF can be partitioned into CNFs C1,…, Ck

sharing no atoms

return

)()A( AACNFA ww  

),(1 weightsCWMC i

k

i
Decomp.

Step
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Weighted Model Counting

WMC(CNF, weights)

if all clauses in CNF are satisfied

return

if CNF has empty unsatisfied clause return 0

if CNF can be partitioned into CNFs C1,…, Ck

sharing no atoms

return

choose an atom A

return

)()A( AACNFA ww  

),(1 weightsCWMC i

k

i

),|( weightsACNFWMCw A  

),|( weightsACNFWMCwA

Splitting

Step
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First-Order Case

 PTP schema remains the same

 Conversion of PKB to hard CNF and weights:

New atom in  Fi  Ai is now 

Predicatei(variables in Fi, constants in Fi)

 New argument in WMC:

Set of substitution constraints of the form

x = A, x ≠ A, x = y, x ≠ y

 Lift each step of WMC
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Lifted Weighted Model Counting

LWMC(CNF, substs, weights)

if all clauses in CNF are satisfied

return

if CNF has empty unsatisfied clause return 0

)(

)A( )(
substsn

AACNFA
Aww  

Base

Case
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Lifted Weighted Model Counting

LWMC(CNF, substs, weights)

if all clauses in CNF are satisfied

return

if CNF has empty unsatisfied clause return 0

if there exists a lifted decomposition of CNF

return

)(

)A( )(
substsn

AACNFA
Aww  

Decomp.

Step

im

i

k

i weightssubstsCNFLWMC )],,([ 1,1
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Lifted Weighted Model Counting

LWMC(CNF, substs, weights)

if all clauses in CNF are satisfied

return

if CNF has empty unsatisfied clause return 0

if there exists a lifted decomposition of CNF

return

choose an atom A

return

)(

)A( )(
substsn

AACNFA
Aww  

Splitting

Step

im

i

k

i weightssubstsCNFLWMC )],,([ 1,1

),,|(1 weightssubstsCNFLWMCwwn jj

f

A

t

Ai

l

i
ii 
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Extensions

 Unit propagation, etc.

 Caching / Memoization

 Knowledge-based model construction
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Approximate Inference

WMC(CNF, weights)

if all clauses in CNF are satisfied

return

if CNF has empty unsatisfied clause return 0

if CNF can be partitioned into CNFs C1,…, Ck

sharing no atoms

return

choose an atom A

return

with probability                               , etc.

)()A( AACNFA ww  

),(1 weightsCWMC i

k

i

),|(
),|(

weightsACNFWMC
weightsCNFAQ

wA

Splitting

Step

),|( weightsCNFAQ
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MPE Inference

 Replace sums by maxes

 Use branch-and-bound for efficiency

 Do traceback
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More on Sunday at Noon

Session on First-Order Inference

 Probabilistic Theorem Proving
V. Gogate and P. Domingos

 Inference in Probabilistic  Logic
Programs Using Weighted CNF
D. Fierens, G. van den Broeck, I. Thon,
B. Gutmann and L. de Raedt
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Even More on Monday

IJCAI-11 Tutorial on Lifted Inference in 

Probabilistic Logical Models

 Eyal Amir

 Pedro Domingos

 Lise Getoor

 Kristian Kersting

 Sriraam Natarajan

 David Poole

 Rodrigo de S. Braz

 Prithviraj Sen
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Overview

 Representation

 Inference

 Learning

 Applications

 Discussion
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Learning

 Data is a relational database

 Closed world assumption (if not: EM)

 Learning parameters (weights)

 Generatively

 Discriminatively

 Learning structure (formulas)
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Generative Weight Learning

 Maximize likelihood

 Use gradient ascent or L-BFGS

 No local maxima

 Requires inference at each step (slow!)

No. of true groundings of clause i in data

Expected no. true groundings according to model

 )()()(log xnExnxP
w

iwiw

i





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Pseudo-Likelihood

 Likelihood of each variable given its 
neighbors in the data  [Besag, 1975]

 Does not require inference at each step

 Consistent estimator

 Widely used in vision, spatial statistics, etc.

 But PL parameters may not work well for
long inference chains


i

ii xneighborsxPxPL ))(|()(
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Discriminative Weight Learning

 Maximize conditional likelihood of query (y) 

given evidence (x)

 Expected counts can be approximated

by counts in MAP state of y given x

No. of true groundings of clause i in data

Expected no. true groundings according to model

 ),(),()|(log yxnEyxnxyP
w

iwiw

i





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 Originally proposed for training HMMs 

discriminatively [Collins, 2002]

 Assumes network is linear chain

wi ← 0

for t ← 1 to T do

yMAP ← Viterbi(x)

wi ← wi + η [counti(yData) – counti(yMAP)]

return ∑t wi / T

Voted Perceptron
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 HMMs are special case of MLNs

 Replace Viterbi by prob. theorem proving

 Network can now be arbitrary graph

wi ← 0

for t ← 1 to T do

yMAP ← PTP(MLN U {x}, y)

wi ← wi + η [counti(yData) – counti(yMAP)]

return ∑t wi / T

Voted Perceptron for MLNs
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Structure Learning

 Generalizes feature induction in Markov nets

 Any inductive logic programming approach can be 

used, but . . .

 Goal is to induce any clauses, not just Horn

 Evaluation function should be likelihood

 Requires learning weights for each candidate

 Turns out not to be bottleneck

 Bottleneck is counting clause groundings

 Solution: Subsampling
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Structure Learning

 Initial state: Unit clauses or hand-coded KB

 Operators: Add/remove literal, flip sign

 Evaluation function:

Pseudo-likelihood + Structure prior

 Search:

 Beam, shortest-first [Kok & Domingos, 2005]

 Bottom-up [Mihalkova & Mooney, 2007]

 Relational pathfinding [Kok & Domingos, 2009, 2010]
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Alchemy

Open-source software including:

 Full first-order logic syntax

 MAP and marginal/conditional inference

 Generative & discriminative weight learning

 Structure learning

 Programming language features

alchemy.cs.washington.edu
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Alchemy Prolog BUGS

Represent-

ation

F.O. Logic + 

Markov nets

Horn 

clauses

Bayes 

nets

Inference Probabilistic 

thm. proving

Theorem 

proving

Gibbs 

sampling

Learning Parameters

& structure

No Params.

Uncertainty Yes No Yes

Relational Yes Yes No
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Overview

 Representation

 Inference

 Learning

 Applications

 Discussion
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Applications to Date

 Natural language 

processing

 Information extraction

 Entity resolution

 Link prediction

 Collective classification

 Social network analysis

 Robot mapping

 Activity recognition

 Scene analysis

 Computational biology

 Probabilistic Cyc

 Personal assistants

 Etc.
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Information Extraction

Parag Singla and Pedro Domingos, “Memory-Efficient

Inference in Relational Domains” (AAAI-06). 

Singla, P., & Domingos, P. (2006). Memory-efficent

inference in relatonal domains. In Proceedings of the

Twenty-First National Conference on Artificial Intelligence

(pp. 500-505). Boston, MA: AAAI Press.

H. Poon & P. Domingos, Sound and Efficient Inference

with Probabilistic and Deterministic Dependencies”, in

Proc. AAAI-06, Boston, MA, 2006.

P. Hoifung (2006). Efficent inference. In Proceedings of the

Twenty-First National Conference on Artificial Intelligence.
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Segmentation

Parag Singla and Pedro Domingos, “Memory-Efficient

Inference in Relational Domains” (AAAI-06). 

Singla, P., & Domingos, P. (2006). Memory-efficent

inference in relatonal domains. In Proceedings of the

Twenty-First National Conference on Artificial Intelligence

(pp. 500-505). Boston, MA: AAAI Press.

H. Poon & P. Domingos, Sound and Efficient Inference

with Probabilistic and Deterministic Dependencies”, in

Proc. AAAI-06, Boston, MA, 2006.

P. Hoifung (2006). Efficent inference. In Proceedings of the

Twenty-First National Conference on Artificial Intelligence.

Author

Title

Venue
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Entity Resolution

Parag Singla and Pedro Domingos, “Memory-Efficient

Inference in Relational Domains” (AAAI-06). 

Singla, P., & Domingos, P. (2006). Memory-efficent

inference in relatonal domains. In Proceedings of the

Twenty-First National Conference on Artificial Intelligence

(pp. 500-505). Boston, MA: AAAI Press.

H. Poon & P. Domingos, Sound and Efficient Inference

with Probabilistic and Deterministic Dependencies”, in

Proc. AAAI-06, Boston, MA, 2006.

P. Hoifung (2006). Efficent inference. In Proceedings of the

Twenty-First National Conference on Artificial Intelligence.
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Entity Resolution

Parag Singla and Pedro Domingos, “Memory-Efficient

Inference in Relational Domains” (AAAI-06). 

Singla, P., & Domingos, P. (2006). Memory-efficent

inference in relatonal domains. In Proceedings of the

Twenty-First National Conference on Artificial Intelligence

(pp. 500-505). Boston, MA: AAAI Press.

H. Poon & P. Domingos, Sound and Efficient Inference

with Probabilistic and Deterministic Dependencies”, in

Proc. AAAI-06, Boston, MA, 2006.

P. Hoifung (2006). Efficent inference. In Proceedings of the

Twenty-First National Conference on Artificial Intelligence.
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State of the Art

 Segmentation

 HMM (or CRF) to assign each token to a field

 Entity resolution

 Logistic regression to predict same field/citation

 Transitive closure

 Alchemy implementation: Seven formulas
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Types and Predicates

token = {Parag, Singla, and, Pedro, ...}

field = {Author, Title, Venue}

citation = {C1, C2, ...}

position = {0, 1, 2, ...}

Token(token, position, citation)

InField(position, field, citation)

SameField(field, citation, citation)

SameCit(citation, citation)
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Types and Predicates

token = {Parag, Singla, and, Pedro, ...}

field = {Author, Title, Venue, ...}

citation = {C1, C2, ...}

position = {0, 1, 2, ...}

Token(token, position, citation)

InField(position, field, citation)

SameField(field, citation, citation)

SameCit(citation, citation)

Optional
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Types and Predicates

Evidence

token = {Parag, Singla, and, Pedro, ...}

field = {Author, Title, Venue}

citation = {C1, C2, ...}

position = {0, 1, 2, ...}

Token(token, position, citation)

InField(position, field, citation)

SameField(field, citation, citation)

SameCit(citation, citation)
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token = {Parag, Singla, and, Pedro, ...}

field = {Author, Title, Venue}

citation = {C1, C2, ...}

position = {0, 1, 2, ...}

Token(token, position, citation)

InField(position, field, citation)

SameField(field, citation, citation)

SameCit(citation, citation)

Types and Predicates

Query
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Token(+t,i,c) => InField(i,+f,c)

InField(i,+f,c) <=> InField(i+1,+f,c)

f != f’ => (!InField(i,+f,c) v !InField(i,+f’,c))

Token(+t,i,c) ^ InField(i,+f,c) ^ Token(+t,i’,c’)

^ InField(i’,+f,c’) => SameField(+f,c,c’)

SameField(+f,c,c’) <=> SameCit(c,c’)

SameField(f,c,c’) ^ SameField(f,c’,c”)

=> SameField(f,c,c”)

SameCit(c,c’) ^ SameCit(c’,c”) => SameCit(c,c”) 

Formulas
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Formulas

Token(+t,i,c) => InField(i,+f,c)

InField(i,+f,c) <=> InField(i+1,+f,c)

f != f’ => (!InField(i,+f,c) v !InField(i,+f’,c))

Token(+t,i,c) ^ InField(i,+f,c) ^ Token(+t,i’,c’)

^ InField(i’,+f,c’) => SameField(+f,c,c’)

SameField(+f,c,c’) <=> SameCit(c,c’)

SameField(f,c,c’) ^ SameField(f,c’,c”)

=> SameField(f,c,c”)

SameCit(c,c’) ^ SameCit(c’,c”) => SameCit(c,c”)
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Formulas

Token(+t,i,c) => InField(i,+f,c)

InField(i,+f,c) <=> InField(i+1,+f,c)

f != f’ => (!InField(i,+f,c) v !InField(i,+f’,c))

Token(+t,i,c) ^ InField(i,+f,c) ^ Token(+t,i’,c’)

^ InField(i’,+f,c’) => SameField(+f,c,c’)

SameField(+f,c,c’) <=> SameCit(c,c’)

SameField(f,c,c’) ^ SameField(f,c’,c”)

=> SameField(f,c,c”)

SameCit(c,c’) ^ SameCit(c’,c”) => SameCit(c,c”)
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Formulas

Token(+t,i,c) => InField(i,+f,c)

InField(i,+f,c) <=> InField(i+1,+f,c)

f != f’ => (!InField(i,+f,c) v !InField(i,+f’,c))

Token(+t,i,c) ^ InField(i,+f,c) ^ Token(+t,i’,c’)

^ InField(i’,+f,c’) => SameField(+f,c,c’)

SameField(+f,c,c’) <=> SameCit(c,c’)

SameField(f,c,c’) ^ SameField(f,c’,c”)

=> SameField(f,c,c”)

SameCit(c,c’) ^ SameCit(c’,c”) => SameCit(c,c”)
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Token(+t,i,c) => InField(i,+f,c)

InField(i,+f,c) <=> InField(i+1,+f,c)

f != f’ => (!InField(i,+f,c) v !InField(i,+f’,c))

Token(+t,i,c) ^ InField(i,+f,c) ^ Token(+t,i’,c’)

^ InField(i’,+f,c’) => SameField(+f,c,c’)

SameField(+f,c,c’) <=> SameCit(c,c’)

SameField(f,c,c’) ^ SameField(f,c’,c”)

=> SameField(f,c,c”)

SameCit(c,c’) ^ SameCit(c’,c”) => SameCit(c,c”)

Formulas
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Token(+t,i,c) => InField(i,+f,c)

InField(i,+f,c) <=> InField(i+1,+f,c)

f != f’ => (!InField(i,+f,c) v !InField(i,+f’,c))

Token(+t,i,c) ^ InField(i,+f,c) ^ Token(+t,i’,c’)

^ InField(i’,+f,c’) => SameField(+f,c,c’)

SameField(+f,c,c’) <=> SameCit(c,c’)

SameField(f,c,c’) ^ SameField(f,c’,c”)

=> SameField(f,c,c”)

SameCit(c,c’) ^ SameCit(c’,c”) => SameCit(c,c”) 

Formulas
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Formulas

Token(+t,i,c) => InField(i,+f,c)

InField(i,+f,c) <=> InField(i+1,+f,c)

f != f’ => (!InField(i,+f,c) v !InField(i,+f’,c))

Token(+t,i,c) ^ InField(i,+f,c) ^ Token(+t,i’,c’)

^ InField(i’,+f,c’) => SameField(+f,c,c’)

SameField(+f,c,c’) <=> SameCit(c,c’)

SameField(f,c,c’) ^ SameField(f,c’,c”)

=> SameField(f,c,c”)

SameCit(c,c’) ^ SameCit(c’,c”) => SameCit(c,c”)
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Formulas

Token(+t,i,c) => InField(i,+f,c)

InField(i,+f,c) ^ !Token(“.”,i,c) <=> InField(i+1,+f,c)

f != f’ => (!InField(i,+f,c) v !InField(i,+f’,c))

Token(+t,i,c) ^ InField(i,+f,c) ^ Token(+t,i’,c’)

^ InField(i’,+f,c’) => SameField(+f,c,c’)

SameField(+f,c,c’) <=> SameCit(c,c’)

SameField(f,c,c’) ^ SameField(f,c’,c”)

=> SameField(f,c,c”)

SameCit(c,c’) ^ SameCit(c’,c”) => SameCit(c,c”)
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Results: Segmentation on Cora
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Results:

Matching Venues on Cora
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Overview

 Representation

 Inference

 Learning

 Applications

 Discussion
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Foundations for

Probabilistic Models

 Graphs are not enough

 We need logic

75Pedro Domingos, Kristian Kersting 

Combining Logic and Probability: Languages, Algorithms and Applications



Logical Models vs.

Graphical Models (I)

Graphical models Logical models

Required by 

probability theory

No Yes

Representable 

distributions

All (BNs)

Positive (MNs)

All

Context-free 

independences

Some All

Context-specific 

independences

None All

Normalization 

constraints

Some All
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Logical Models vs.

Graphical Models (II)

Graphical models Logical models

Inference Exp(treewidth) Circuit 

complexity

Visual aid Yes No

Densely 

connected distrs.

Unreadable Readable

First-order Plates All

Lifted inference No Yes

Available 

technology

Lots, used Lots, unused
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