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General Take-Away Message

= Graphs are not enough

= We need logic
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Roadmap

1. Motivation

2. Statistical Relational Learning / Al:
a short overview

3. Markov Logic Networks
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MOTIVATION



Rorschach Test
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Etzioni’s Rorschach Test for Computer Scientists
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Moore’'s Law?

uai2011
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Storage Capacity?

uai2011
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Number of Scientific Publications?
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Number of Facebook Users?
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Number of Web Pages?
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The World-Wide Mind

N

Y TextRunner Search http://www.cs.washington.edu/research/textrunner/

TextRunner took 3 seconds.
Retrieved 256 results for paper in argument 1 ap&
Grouping resuits by argument 1. Group by o&g

Gpic in argumeg
e | argument 2

fCusses (65), covers (54 ore... the

paper discusses (34), covers (30), contains (7), 6 more... the following topics
paper focuses on (9), discusses (5), addresses (5), 6 more... two topics

paper focuses on (9), discusses (6), will discuss (4), 4 more... three topics

paper provides (11), presents (7), is provides (2), 2 more... an overview of the topic
paper covers (6), addresses (3), considers (2) a wide range of topics

paper discusses (3), examines (2), will cover (2), 2 more... four topics

paper was (8) part of the third topic

paper describes clustering (3), discusses (2), and choose (2) related topics

paper covers (5), addresses (2) a number of topics

paper will cover (5), explores (2) a variety of topics

Paper presented at (7) the Theme issue topic

Paper presented at (7) the Special topic

white paper provides (6) a high-level overview of the critical topic of backup-to-disk including a clear definition
paper addresses (5) the topic of World Bank procedures

paper describes (3), recommends (2) the specific research topics

22
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Object Relation Uncertainty Object

Search again:

Argument 1
paper
Predicate

Argument 2
topic

Jump to:

paper (81)

research paper (4

term paper (2)

paper briefly (3)

invited review paper (1)
Paper proposals (2
paper title . abstract (1)
paper clip (1)

revised paper no (1)

Each position paper (1
| enath of the naner (1)
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So, Tasks Are Often Structural

= Objects are not just feature vectors
= They have parts and subparts
= Which have relations with each other
= They can be trees, graphs, etc.

= Objects are seldom i.i.d.

(independent and identically distributed)

= They exhibit local and global dependencies

= They form class hierarchies (with multiple
inheritance)

= Objects’ properties depend on those of related
objects

= Deeply interwoven with knowledge

[How do computer systems deal with
structural problems?




[slide inspired by Russell]
(First-order) Logic handles Structures

= Main theoretical foundation of computer science

= General language for describing complex structures and
knowledge: trees, graphs, hierarchies, etc.

= Inference algorithms (satisfiability testing, resolution,
theorem proving, etc.)

More compact knowledge representation. Consider e.q.

classicial examples such as chess or wumpus:
FOL << PL << atomic

Y x,y father-of(x,y) N\ female(y)
daugther-of(cecily,john)
daugther-of(lily,tom) < daughter-of(y,x)

Many types of entities
Relations between them

Explicit enumeration Arbitrary knowledge
Logic 5th C B.C.
true/false
>
atomic propositional first-order/relational
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Tasks are also often Statistical

= Information are ambiguous
= Our information is always incomplete
= Qur predictions are uncertain

How do computer systems deal with
uncertainty?

Pedro Domingos, Kristian Kersting
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[slide inspired by Russell]

Probability handles Uncertainty

' @

Probability 17th C 20th C

Sensor noise
Human error
Inconsistencies
Unpredictability

Explicit enumeration

Mixture models

Hidden Markov models
Bayesian networks
Markov random fields
Maximum entropy models
Conditional random fields

Many types of entities
Relations between them
Arbitrary knowledge

>

Logic 5th C B.C. 19th C
true/false % e ,
atomic propositional first-order/relational

Pedro Domingos, Kristian Kersting
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[slide inspired by Russell]

So, will traditional (U)AI scale ?

Probability

Logic
true/false

W -

17th C 20th C

Sensor noise
Human error
Inconsistencies
Unpredictability

Explicit enumeration

Many types of entities
Relations between them
Arbitrary knowledge

>

5th C B.C. 19th C
i
™ \
atomic propositional first-order/relational

Pedro Domingos, Kristian Kersting
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Propositional vs. Relational Data

= Traditional work in robotics, YK X, X,
machine learning and Z,
knowledge discovery assume +11 r ... 32

data instances form a single
table.

« Traditional statistical models
assume independence
among instances (rows) and
find associations among the
values of multiple variables
within a single instance. +12 g .. 29

U1y 3 ... *t

« Relational models assume
dependence among instances in different rows and
tables and find associations among these values.

[slide adapted from David Jensen]
Pedro Domingos, Kristian Kersting
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[inspired by Friedman and Koller]

Let’'s consider a simple relational
domain: Reviewing Papers

= The grade of a paper at a conference
depends on the paper’s quality and the
difficulty of the conference.

= Good papers may get A’s at easy
conferences

= Good papers may get D’s at top
conference

= Weak papers may get B’s at good
conferences

Pedro Domingos, Kristian Kersting
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(Reviewing) Bayesian Network

Random Variables

Direct Influence

P(Qual) P(Diff)
low | middle | high middle | high
0.3 0.5 0.2 0.3 0.5

P(X,,...
P(Grade)
Qual Diff C b a
low low 0.2 | 0.5 ] 0.3
low | middle | 0.1 | 0.7 | 0.2

Pedro Domingos, Kristian Kersting
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[slide inspired by Friedman and Koller]

The real world, however, ...
... has inter-related objects

These ‘instance’ are not independent !

Grade_Paper2_IJCAI

Pedro Domingos, Kristian Kersting
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So, will traditional (U)AI scale ?No !

“Scaling up the environment
will inevitably overtax the
resources of the traditional
(U)AI architecture.”

v

Probability 17th C 20th C

Sensor noise
Human error
Inconsistencies
Unpredictability

Many types of entities
Relations between them
Arbitrary knowledge

Explicit enumeration

Logic 5th C B.C. 19th C
true/false ,
] @m
>
atomic propositional first-order/relational

Pedro Domingos, Kristian Kersting
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Statistical Relational Learning and Al

Let's deal with uncertainty, objects, relations, and

learning jointly

Probability
Statistics

-

The study and design of intelligent agents that act

Robotics

in noisy worlds composed of objects and relations
among the objects

Pedro Domingos, Kristian Kersting
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[slide inspired by de Salvo Braz]

The Big Picture on Al

Commonsense Natural Language  Robotics Vision
reasoning Processing

Domain & Objects &
Robot Optics
Knowledge Knowledge

Domain Language
Knowledge Knowledge

Inference Inferel.ce Infarence Inference
and and and and
Learning L3Aarning cearniry Learning

Lifted Inference
and
Learning

Pedro Domingos, Kristian Kersting
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Why the Tutorial?

= A very active, multi-disciplinary research area

= Involves all sub-disciplines of Al: reasoning and
acting under uncertainty, knowledge
representation, constraint satisfaction, machine
learning, ...

= Unfortunately, can be hard to follow:
they all speak a different language

= A success story
= Often outperforms state-of-the-art

= Novel ways of using the structure for faster
and/or more robust solutions

= Growth path for (U)AI in general

Pedro Domingos, Kristian Kersting
Combining Probability and Logic: Languages, Algorithms and Applications

26



STATISTICAL RELATIONAL LEARNING / AI:
A SHORT OVERIEW



Applications to Date

Natural language -
processing =
Information extraction =
Entity resolution =
Link prediction =

Collective classification =
Social network analysis =

Robot mapping
Activity recognition
Scene analysis
Computational biology
Probabilistic Cyc
Personal assistants
Etc.




Information Extraction

Parag Singla and Pedro Domingos, “Memory-Efficient
Inference in Relational Domains” (AAAI-06).

Singla, P., & Domingos, P. (2006).Memory-efficent
inference in relatonal domains. In Proceedings of the
Twenty-First National Conference on Artificial Intelligence
(pp. 500-505). Boston, MA: AAAI Press.

H. Poon & P. Domingos, Sound and Efficient Inference
with Probabilistic and Deterministic Dependencies”, in
Proc. AAAI-06, Boston, MA, 2006.

P. Hoifung (2006). Efficent inference. In Proceedings of the
Twenty-First National Conference on Artificial Intelligence.



Information Extraction
Paper

Parag Singla and Pedro Domingos, “Memory-Efficient
Inference in Relational Domains” (AAAI-06).

Singla, P., & Domingos, P. (2006).Memory-efficent
inference in relatonal domains. In Proceedings of the
Twenty-First National Conference on Artificial Intelligence
(pp. 500-505). Boston, MA: AAAI Press.

H. Poon & P. Domingos, Sound and Efficient Inference
with Probabilistic and Deterministic Dependencies”, in
Proc. AAAI-06, Boston, MA, 2006.

P. Hoifung (2006). Efficent inference. In Proceedings of the
Twenty-First National Conference on Artificial Intelligence.




Author
Title

Paper Venue

Segmentation

-

Parag Singla and Pedro Domingos, TMemory-Efficient
Inference in Relational Domains” (AAAI-06).

N

Singla, P,, & Domingos, P. (2006).Memory-efficent
inference in relatonal domains. In Proceedings of the
Twenty-First National Conference on Artificial Intelligence
(pp. 500-505). Boston, MA: AAAI Press.

H. Poon & P. Domingos, | Sound and Efficient Inference
with Probabilistic and Deterministic Dependencies”, in
Proc. AAAI-06, Boston, MA, 2006.

P. Hoifung (2006). Efficent inference. In Proceedings of the
Twenty-First National Conference on Artificial Intelligence.




Author
Title

Paper Venue

ParaggSingla and Pedro Dggpingos, TMemory-Efficient
Infergnce ig Relationaldgfmains” (ALdL6).

Entity Resolution

-

N

Singld, P, & Daq god, P. (20Q#). gry-efficent
inference iN relgtonalfomaips. In Pfoceedings of the
Twenty-First Ngtiongfl Conj
(pp. 500-505)f Bogto

H. Poon & P. WC « Sound angl Efficient Inference
with Probabili md Determinjstig Dgpendencies”, in
Prqdc. AAAI-@@"Boston, MA, 20p6.

P.WHoifung (2006). EMNgent infBrenge JIn Proceedings of the
Twenty-First National CormMrence ¥nWArtificial Intelligence.

( Relations are at the heart of entity resolution J




Gene Localization

= Predict the localization
of a given gene in a cell
among 15 distinct
positions

= Relations important as

sequence similarity does

not help

/Relational Kernels A

better then Hayashi

et al.s KDD Cup
2001 winning

\approach J

Pedro Domingos, Kristian Kersting
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Semantic Labeling of 3D Scan Data

= Neighbouring pixels/voxels have the same
semantic label

Pedm[ Relations as constraints }

Combi T =4 =4 =4 T =4 = 34




1. EKemel Machines R8|(1 ),

hitp:/fais. gmd.de/~thorsten/svm light/

(3<2)

( ) http://jbolivar. i 5.com/

(7<4), 3 SUALLight Sapport Vector Machine Rel(3),
(7<9)

(7<6)

3. Support Vector Machine and Eernel ... References

http://svm_research bell-labs.com/S VMrefs html N Ot Re I ( 6 )
]

6. Archives of SUPPORT-VECTOR-MACHINES ..
http:rwww Jisemail ac.uk/Tists/SUPPORT. . Rel .f 7 ‘)
7. Lucent Technologies: SVM demo applet
http:/svm research bell-labs com/SVT/SVMsvt html
8. Royal Holloway Support Vector Machine
hitp:/svm.des.vhbne.ac.uk

more
relevant

simila

http:/isvm first. gmd.de
2. Slli]por;;:\j’lé;lol'?\:lflziclljne NOtREI(z),

4. An Introduction to Suppert Vecter Machines NOtRe |(4 )’
hitp:/fwww_support-vector.net/ NOtR e I ( 5)

Web Search

£y Live Search || "search [STR
YaHOO!
Web | Images | Video | Local | Shopping more

Google 5

Googla Sazicn m Lucky s Tas

Relational approaches outperfom

traditional ranking approaches
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Social Recommendation / Collaborative Filtering

Predict whether a user likes a movie given attributes of
users and movies, as well as known ratings and
complex link structures

- - g Vs “ -
engineer L s artist
(N ;
AP W
like
- like
like like ) like
IIIIIIIII M WILL SMITH ‘ ‘ ‘ H ‘ ‘
T H ‘u;j :‘ H I‘\E“l‘v v“v H ‘
BAD BOYS (ASABLANA
} ‘ "8 drama

thriller

i /) B
nE\’ ! HICHXX

N \
.4 -
Sty

Relational approaches outperfom set-
based recommendation systems 6




What is the world talking about ?

Google news timeline News . ([Add query | About Timeline
8 labs i _ Signin
Example: Barack Obama

Hews save ] Time Magazine &1 Wikipedia Events £ Add More Queries @2 Link
Show: Month ~  Size: Medium ~  Date: ’ Go ]'é) ’ This week ]
< October 2007 November 2007 December 2007 January 2008 February 2008 March 2008

==

Tl.-\i-

e

Howisa

October 2nd

@.% South Korean

@5 4¢ President Roh
Moo-hyun and Morth Korean
leader Kim Jong-il meetin
Pyongyang, forthe second
Inter-Korean Summit.
Wikipedia

October 4th

[ spanish authorities
e Arrest 22 people
associated with the banned
Batasuna party, which
campaigns for Basque
independence, but also has

November 3rd
President Pervez

Musharraf declares a
state of emergency in

Pakistan. Wikipedia

November 5th

i) he Writers Guild of
S Amierica goes on a
strike that lasts until .
Wikipedia

November Gth
|3A suicide bomber
A kills atleast 50
people in Mazari
Sharif, Afghanistan, including
6 members of the National
Assembly. Wikipedia

November 13th
An explosion hits the south
wing ofthe House of

22010 Google - Google News Terms of Use - Google Labs Terms of Use - Privacy Policy - Report an Issue

December 2nd
“—' kipedia

December 3rd

bring record amounts of rain
fall in the Pacific Morthwest,
causing flooding and closing
a 20-mile portion of Interstate
5 for several days. At least ...
Wikipedia

December 3rd

The United Mations Climate
Change Conference is held at
Musa Dua in Bali, Indonesia.

Timeline results are generated by a computer program, and we do
g ¥ 9

Pedro Domingos, Kristian Kersting
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January 1st
o Cyprus and Malta
“  adoptthe euro.
Wikipedia

January 1st
A suicide bombing occurs in
Zayouna, Baghdad, killing
over 25 people during a
funeral aver the deaths from
the preceding attack.

pedia

January 2nd

The price of petroleum hits
$100 per barrel for the first
time. Wikipedia

January 3rd

A car bomb detonates, killing
atleast4 and injuring 68, in
Diyarbakir, Turkey. Police
blame Kurdish rebels.

Wikinadia

February 2nd

I Rebels attack the
capital of Chad,

N'Djamena. Wikipedia

February 4th
[ ran opens its first
- pace center and

launches a rocket into space.

Wikipedia

February 4th

& o A Palestinian suicide

ﬁ-‘ bomber kills 1 and
waounds 13ina

Dimona, Israel shopping
center. Wikipedia
February 5th
U.5. stock market indices
plunge more than 3% after a
report shows signs of

econamic recession in the
senire sartnr The 2RP BAN

March 1st

Rizing food and fuel prices
trigger riots and unrestin the
Third World. Wikipedia

March 1st
- In Gaza Strip, at least
. 52 Palestinians and 2
" Israeli soldiers are
* killed in the most
intense Israeli air strikes
since 2005. Wikipedia

March 2nd
2008 Andean
diplomatic crisis:

n't guarantee the completeness or accuracy of the information you may see. Dates may be wrong.

April 8th
%o Privy Council of S
L@, dismantles its fel

~ gystemto comply
the European Convention
Human Rights. and the fil
elections under the new |
w... Wikipedia

April 15th

FETEE A Hewa Bora Air
DC-9 crashesinto a
residential area of Goma,
Democratic Republic of tr
Congo. Wikipedia

April 17th

Raila Odinga
becomes the nev

) Prime Minister of

® kK enya after the
formation of a
coalition government, enc il

tha nalitical Fricic in Kanw
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Topic Models
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Relational approaches estimate better
low-dimensional embeddings
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How do you spend your spare time?

(11 Tube

YouTube like media portals have changed the way
users access media content in the Internet

Every day, millions of people visit social media
sites such as Flickr, YouTube, and Jumpcut,
among others, to share their photos and videos,

while others enjoy themselves by searching,
watching, commenting, and rating the photos and
videos; what your friends like will bear great
significance for you.

Pedro Domingos, Kristian Kersting
Combining Probability and Logic: Languages, Algorithms and Applications 39



How do you efficiently broadcast
information?

facebook You L)

Lifted inference faster than belief
propagation

40



Predicting Coronary Artery Calcification Levels

= Cardiovascular disease cost the EU EURO169 billion in 2003 and the
USA about EUR0O310.23 billion in direct and indirect annual costs.

= By comparison, the estimated cost of all cancers is EUR0146.19
billion and HIV infections EURO22.24 billion.

Algorithm | Accuracy | AUC-ROC

J48 0.667 0.607
SVM 0.667 0.5

AdaBoost 0.667 0.608
Bagging 0.677 0.613
NB 0.75 0.653
RPT 0.669% 0.778
RFGB 0.667% 0.819

So, what are relations?

Left—True
sex(a,Male) Right - False
age_bw(a,35,45,7) smoke(a,No,5)
0.05 Idl_bw(a,0,100,7)
Idl_bw(a,0,100,0) chol_bw(a,200,400,7)
hbp(a,No,7)
0.79
smoke(a,No,0) trig_bw(a,100,1000,5)

0.830

/ 0.2
]
age_bw(a,30,35,5)
Nnac

[Relational models provide new insightsl

1




What are Relations?

= There are several types of relations and in turn
there are several views on what (statitical)
relational learning is

1. Relations provide additional correlations/
regularization

= If two words occure frequently in the same context
(page, paragraph, sentence, ...) then there must be
some semantic relation between them

2. Often extensional (data) only, for one
relation

=  Covariance function, distance functions, kernel
functions, graphs, tensors, random walks with
restarts...

Pedro Domingos, Kristian Kersting
Combining Probability and Logic: Languages, Algorithms and Applications
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What are Relations?

3. Relations are symmetries/redundancies
in the model
I E.g. lifted inference based on bisimulation

4. Hypergraph representations of data
=  Multiple (extensional) relations

= Random walks with restarts as similarity measure or
to produce path features

5. Full-fledged relational (or logical)
knoweldge as considered in this tutorial
= Multiple (often typed) relations

= Intensional formulas (often Horn clauses)
ancestor(X,Z) ™ parent(Z,Y) = ancestor(X,Y)

Pedro Domingos, Kristian Kersting
Combining Probability and Logic: Languages, Algorithms and Applications



The SRL Alphabet Soup

Relational Gaussian Processes

Infinite Hidden Relational Models

[names in alphabetical order]

"90

'93'94'9596
L1 |

10 PSL: Broecheler, Getoor, Mihalkova

'97 "99°00 "02°03

07 RDNs: Jensen, Neville

| Relational Markov Networks

I ‘ “| Logical Bayesian Networks:
Blockeel,Bruynooghe,

Object-Oriented Bayes Nets

Fierens,Ramon,

BUGS/PIateS o

IBAL Figaro LOHMMs: De Raedt, Kersting,

. 1BC(2): Flach, ;
First KBMClap proach{as: Lachiche Raiko
Bresse, =1
Bacchus, Z'I;‘Zlb- ':_0"“ Pool I I RMMs: Anderson,Domingos,
Charniak uction: Fooie - - Weld
Glesner, ! I I Multi-Entity Bayes Nets
GoIdmarPLP Hadd . ‘ SPOOK
Koll : Haddawy, Ngo

et 4 | | t— LPAD: Bruynooghe

Poole, Wellmﬂnn

,[ PRM!:: Friedman,Getoor,Koller, 'ennekens,Verbaeten

Pfeffer,Segal, Taskar

DAPER

PRISM: Kameya, Sato
| |

[TMark

Curch

SLPs: Cussens,Muggleton

v Logic: Domingos,
Richardson

_Podra Daomit

Prob. CLP: Eisele, Riezler I. CLP(BN): Cussens,Page,

Probabilistic Entity-Relationship Models Fat

Qazi,Santos Costajy




Key Dimensions with some prototypes

directed undirected
O BLPs O ICL O
Q CLP(BN) SLPs Q BLOG Q MLNs RMNs
RDN RGPs
(Oprism O prMs ONTIY O rens (O 1HRM
ProbLog
() BuGs
Pedro Domingos, Kristian Kersting
Combining Probability and Logic: Languages, Algorithms and Applications 45



[Getoor et al. 2002; Kersting De Raedt 2007]

Directed: Probabilistic Relational Models (PRMs)
Bayesian logic Programs (BLPs)

Vvx author(x, p) Asmart(x) = high __quality(p)
Vvx high__quality(p) = accepted(p)

Macro for conditional probability table

high quality (Y) smart (X)
(0.9,0.1) yes

Placeholders
X @

Rule Graph

Deterministic
background
knowledge

N
1 Predicates

high_quality
Probabilistic rule

1 9

high_quality/1 _aamd  accepted/1
Pedro Do s crsting

Combining Probability and Logic: Languages, Algorithms and Applications 46



Inference on BN constructed by
instantiating the rules/ macros using back-
or forward chaining

smart(alice) smart(bob)

author(alice,pl) author(bob,p2)

high_quality(p1) high_quality(p2)

accepted(p2)

accepted(pl)

[But what happens if instead we have author(bob,p1)? J

So, we can deal with a variable nhumber of objects.
The induced BN depends on the domain elements and
the background knowledge we have.




Directed: Aggregate Dependencies

smart(alice) smart(bob)

author(alice,pl) author(bob,pl)

high_quality(p1)

accepted(pl)

Pedro Domingos, Kristian Kersting
Combining Probability and Logic: Languages, Algorithms and Applications 48



Directed: Aggregate Dependencies

smart(alice) smart(bob)

author(bob,p1)

aggr = Sum, min, max,
avg, mode, count

author(alice,pl)

4 N\
A | PHQ|A) \
t 0.9 0.1 high_quality(p1)
9 f 0.2 0.8

accepted(pl)

[ Still, the induced model is assumed to be acyclic J49




[Neville, Jensen 2007]
Option 1 : Relational Dependency Networks (RDNs)

Vvx author (X, p) A smart(x) = high _quality(p)
Vvx high _quality(p) = accepted (p)

fency
dependency VX, y co _author(x, y) A smart(x) = smart(y)

VX, y 3p author(x, p) Aauthor(y, p) = co _author(x, y)

co-author/2 smart/1

O
1 Run approximate

._, —_— Gibbs sample

Pedro Domingos, Kristian Kersting
Combining Probability and Logic: Languages, Algorithms and Applications 50




Relational Dependency Networks

author(alice,pl) author(bob,p1)

co_author(alice,bob) co_author(bob,alice)

smart(alice) smart(bob)

high_quality(p1) Run approximate
Gibbs sample

Pedro Domingos, Kristian Kersting accepted(pl)
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[Richardson, Domingos MLJ 62(1-2): 107-136, 2006]

Option 2: Markov Logic Networks

Suppose we have constants: alice, bob and p1

15 | |vxauthor(x, p) A smart(x) = high _quality (p)

1.1 || vxhigh _quality (p) = accepted (p)

1.2 || vx,y co_author(x,y) = (smart(x) < smart(y))

o0 VX, y 3p author (X, p) A author(y, p) = co _author(Xx, y)

co_author(bob,alice) co_author(alice,bob)

co_author(alice,alice) I co_author(bob,bob)
author(pl,alice) smart(alice) smart(bob) author(p1,bob)

= =

high_quality(pl)

accepted(pl)

[ Compile to an undirected model j c5




Key Dimensions with some prototypes

directed ®:.- o™ undirected
O CLP(BN) SLPs_ O sLoG ® vins O rRMNs
(prism @ () Lpap ¥RDN() ppns RGPS ()
SO BUGS ProbLog
macro proofs

® vins ®:- Omrm O BLog () ProbLog O sLps
. PRMe .RDN Q RGPSO RBNs QPRISM Q L PAD

O 1
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0.10 :: edges(x_gene, disease2)
0.66 :: edge(x_gene, diseasel)
0.39 :: edges(diseasel,disease2)

.diseasez
ProbLog ..o

X_gene
path(X,Y) :- edge(X,Y)

0.66 path(X,Y) :- edges(X,Z), path(Z,Y)

diseasel

Label of a clause/fact c is the probability that c belongs to the
target program; Facts/clauses independent of each other

Defines a distribution over programs P(L|Program) = [] »: [] (1 - »))

CZEL Cj QL

P(path(x_gene,disease2) )= sum of probs of all programs that entail the query

P=0.1*0.66*0.39 + P=(1-0.1)*0.66*0.39 + P=0.1*%0.66*(1-0.39)
0.39
X_gene X_gene X_gene s EE
. X

Exponentially many subprograms! To avoid explosion,

consider proofs/paths only + store them in a BDD in
order to count correctly 4

N




Many other approaches !!

directed o . o™
B

Q CLP(BN) SLPs LOG
Oprism ® () Lpap ““RPN( ) ppNs
PRMSO BUGS ProbLog
mMacro

Q MLNs Q oL pe Q IHRM O BLOG
Q - ORDN Q RGPsQ RBNs
S

parametric or M
robLog

MLNsQ BLPs () LpaD () BLOG U
Q stps (OrbpN (pRIsM O RBNS

PRMs

CWA O ProbLog Q RBNs

O BLPs Q
() MLNs LPAD () IHRM
O stps ()ron (pRISM O SPSICL

PRMs

Pedro Domingos, Kristian Kersting
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undirected

Q MLNs O RMNs

RGPs O THRM

proofs

O ProbLog O SLPs
OPRISM O LPAD
O 1a

non-parametric

O 1HrRM () rRGPs

O NP-BLOG

OWA

O NP-BLOG

() mEBNs O BLoe
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And actually they span the whole AI spectrum

= Relational topic models

= Mixed-membership models

= Relational Gaussian processes

= Relational reinforcement learning
= (Partially observable) MDPs

= Systems of linear equations

= Kalman filters

= Declarative information networks

No, this is very much like in the early
days of UAI !

(So, should we worry about the soup? J




The early days of UAI

Maximum entropy inference
Odds-likelihood updating

Dempster-Shafer Belief Functions

Mycin's Certainty Factors
Bayesian Networks

Expert-rating
Decision-theoretic metrices
Belief Maintenance System Bayes’ Theorem
Prospector

Probabilistic Logic

Fuzzy Set Theory Incidence Calculus

[B. Wise, M. Henrion. A Framework for Comparing Uncertain Inference Systems to Probability. UAI-85]
[A. Bundy. Incidence Calculus: A Mechanism for Probabilistic Reasoning. UAI-85]

[D. Hunter. Uncertain. Reasoning Using Maximum Entropy Inference. UAI-85]

[D. Heckerman. Probabilistic Interpretations for MYCIN's Certainty Factors. UAI-85]

[S. Ursic. Generalizing Fuzzy Logic Probabilistic Inferences. UAI-86]

[N.J. Nilsson. Probabilistic Logic. Artificial Intelligence 28(1): 71-87, 1986]

[B. Falkenheiner. Towards a General-Purpose Belief Maintenance System. UAI-86]

[D. Heckerman. An Empirical Comparison of Three Inference Methods. UAI-88]

Pedro Domingos, Kristian Kersting
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This soup boiled down to Graphical Models
as intermediate representation

Distributions can naturally be represented as Factor Graphs

T T2 L3 Random variable

(x) = fa(z1,22) fo(21, 22) fe(T2, 73) fa(23)

%fs x,)

unnormalized !

fa fd

Factor resp. potential

= There is an edge between a circle and a box if the
variable is in the domain/scope of the factor

Pedro Domingos, Kristian Kersting
Combining Probability and Logic: Languages, Algorithms and Applications 58



Factor Graphs from Graphical Models

1 2 fc
fa fb
p(x) = p(x1)p(x2) fa(z1) = p(a1)
r3|T1,T2
plas|ry, 22) folws) = plas)
fc(3313332,33‘3) = P(333|33‘1,332)
T To z1 Z2
<>\ f /<>
3 T3
V(a1 x2,23) (@, @2, 23)

= Y(z1,22,23)

Similar “"boiling down” process is going on in SRL!/

Pedro Domingos, Kristian Kersting
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Boiled-Down SRL Alphabet Soup

= Given a relational model in your language
of choice, a set of constants and a query,
compile everything into an intermediate
respresentation

= Factor graphs

= BDDs, Artihmetic Circuits, d-DNNFs, ...
= Weighted CNFs

= Run inference

Pedro Domingos, Kristian Kersting
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[Poole 2003; de Salvo Braz et al. 2005]

Rules + Potential: Logically Parameterized
Factors

popular

vX. ¢; (popular, attends(X))

Logical Variables
parameterize RV

attends(p,) ) ( attends(p,) attends(p,,)

vX. ¢,(attends(X), series)

Atoms represent a set of
random variables

Parfactors
parameterized
factors

There can also be contraints
to logical variables such as
X=/=UAI11l

Pedro Domingos, Kristian Kersting
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[Domingos et al.]

Rules + Weights: Weighted CNF

Weighted MAX-SAT as mode finding for log-linear
distributions

Each configuration has a cost: the sum of the
weights of the unsatisfied (ground) clauses.

An infinite cost gives a ‘hard’ clause.

Goal: find an assignment with minimal cost.
Factor Graph:

Weigthed CNF
wl w2

xy f.xy) EZ_Ex2)
00 0 00 w2
01 wl 01 w2
10 wl 10 O
11 wl 11 w2

Pedro Domingos, Kristian Kersting
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ILP= Machine Learning + Logic Programming

-

Find a set of general rules

mutagenic(X) :- atom(X,A,n),...

o

mutagenic(X) :- atom(X,A,c),charge(X,A,0.82)

~

)

\
/
/

n

/-
{

c—C

C

Pedro Domingos, Kristian Kersting

[ N

pos(mutagenic(m,))
neg(mutagenic(m,))
pos(mutagenic(ms;))

Examples E

- /

Background Knowledge B

molecule(m,)
atom(m,,a,;,C)
atom(m,a;,,n)
bond(my,a;;,a;,)

molecule(m,)
atom(m,,a,;,0)
atom(m,,a,,,n)
bond(m,,a,;,a,,)

charge(m,,a,;,0.82) charge(m,,a,;,0.82)

Combining Probability and Logic: Languages, Algorithms and Applications
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Example ILP Algorithm: FOIL

[Quinlan MLJ 5:239-266, 1990]

[mutagenic(X) - atom(X,A,n),charge(A,O.82)]

[mutagenic(X) :-atom(X,A,c),bond(A,B)] vl 1

Veu.
- atom(X,A,c)
Coverage = 0.5,0.7 - atom(X,A,c),bond(A,B) ]

Coverage = 0.8

:- atom(X,A,n) ]‘\-[ .- atom(X,A,n),charge(A,0.82) ]

- atom(X,A,f) ]
Coverage = 0.4,0.6

Some objective function, e.g.

pedro Domingos, Kristian Kersting ~ PE€FC€Ntage of covered positive examples
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Vanilla SRL Approach

[mutagenic(X) - atom(X,A,n),charge(A,O.82)]

=0.882

[mutagenic(X) - atom(X,A,c),bond(A,B)]

= Traverses the hypotheses space a la ILP

= Replaces ILP’s 0-1 covers relation by a
“smooth”, probabilistic one [0,1]

cover(e, H,B) = P(e|H,B)
cover(F,H,B) = H EEcover(e?H}B)

Pedro Domingos, Kristian Kersting
Combining Probability and Logic: Languages, Algorithms and Applications 65



MARKOV LOGIC



MARKOQOYV LOGIC



Overview

e Representation
e Inference
e Learning

e Applications
e Discussion

Pedro Domingos, Kristian Kersting
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Propositional Logic

e Atoms: Symbols representing propositions
e Logical connectives: 7, A, V, etc.

e Knowledge base: Set of formulas

e World: Truth assignment to all atoms

e Every KB can be converted to CNF
e CNF: Conjunction of clauses
e Clause: Disjunction of literals
e Literal: Atom or its negation

e Entailment: Does KB entall query?

Pedro Domingos, Kristian Kersting
Combining Logic and Probability: Languages, Algorithms and Applications



First-Order Logic

e Atom: Predicate(Variables,Constants)
E.g.: Friends(Anna, x)

e Ground atom: All arguments are constants

e Quantifiers: V, 3

e This talk: Finite, Herbrand interpretations

Pedro Domingos, Kristian Kersting
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Markov Networks
e Undirected graphical models

Smoking Cancer
N\

Asthma Cough

e Potential functions defined over cliques
1 Smoking | Cancer P(S,C)
P(X) - 21:[(1)‘: (XC) False False 4.5
False True 4.5
7 = ZH(DC(XC) True False 2.7
¢ True True 4.5

Pedro Domingos, Kristian Kersting
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Markov Networks

e Undirected graphical models

Smoking Cancer
N\

Asthma Cough

e Log-linear model:

P(X) = e (L/ i f\(x)j

Weight of Feature i Feature i

1 if — Smoking v Cancer

f.(Smoking, Cancer ) = _
! J ) {O otherwise

w, = 0.51

Pedro Domingos, Kristian Kersting
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Probabilistic Knowledge Bases

PKB = Set of formulas and their probabillities
+ Consistency + Maximum entropy
= Set of formulas and their weights
= Set of formulas and their potentials
(1 if formula true, @ if formula false)

P(world) = % H ¢ini (world)

Pedro Domingos, Kristian Kersting
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Markov Logic

e A Markov Logic Network (MLN) Is a set of
pairs (F, w) where
e FIs aformula in first-order logic
e W IS a real number

e An MLN defines a Markov network with

e One node for each grounding of each predicate
In the MLN

e One feature for each grounding of each formula F
In the MLN, with the corresponding weight w

Pedro Domingos, Kristian Kersting
Combining Logic and Probability: Languages, Algorithms and Applications 8



Example

—Friends(Anna, Bob)

Friends(Anna, Bob)

—Happy(Bob) Happy(Bob)

Pedro Domingos, Kristian Kersting
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Example

—Friends(Anna, Bob) | —Friends(Anna, Bob)
v Happy(Bob)

Friends(Anna, Bob)

—Happy(Bob) Happy(Bob)

Pedro Domingos, Kristian Kersting
Combining Logic and Probability: Languages, Algorithms and Applications



Example

P(—Friends(Anna, Bob) v Happy(Bob)) =0.8

—Friends(Anna, Bob) | —Friends(Anna, Bob)
v Happy(Bob)

Friends(Anna, Bob)

—Happy(Bob) Happy(Bob)

Pedro Domingos, Kristian Kersting
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Example

d(—Friends(Anna, Bob) v Happy(Bob)) =1
®d(Friends(Anna, Bob) A—Happy(Bob)) =0.75

—Friends(Anna, Bob) 1 1

Friends(Anna, Bob) O 7 5 1

—Happy(Bob)  Happy(Bob)

Pedro Domingos, Kristian Kersting 12
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Example

w(d(—Friends(Anna, Bob) v Happy(Bob)))
=1og(1/0.75) =0.29

—Friends(Anna, Bob) 1 1

Friends(Anna, Bob) O 7 5 1

—Happy(Bob) Happy(Bob)

Pedro Domingos, Kristian Kersting
Combining Logic and Probability: Languages, Algorithms and Applications
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Overview

Representation
nference

_earning

e Applications
e Discussion

Pedro Domingos, Kristian Kersting
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Theorem Proving

TP(KB, Query)
KBq < KB U {™ Query}
return "SAT(CNF(KB))

Pedro Domingos, Kristian Kersting
Combining Logic and Probability: Languages, Algorithms and Applications
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Satisfiability (DPLL)

SAT(CNF)
If CNF Is empty return True
If CNF contains empty clause return False

choose an atom A
return SAT(CNF(A)) V SAT(CNF(—A))

Pedro Domingos, Kristian Kersting 16
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First-Order Theorem Proving

e Propositionalization
1. Form all possible ground atoms
2. Apply propositional theorem prover

e Lifted Inference: Resolution
e Resolve pairs of clauses until empty clause derived
e Unify literals by substitution, e.g.: X=Bob unifies
Friends(Anna, x) and Friends(Anna, Bob)

—Friends(Anna, x) v Happy(x)

Friends(Anna, Bob)
Happy(Bob)

Pedro Domingos, Kristian Kersting 17
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Probabilistic Theorem Proving

Given Probabilistic knowledge base K
Query formula Q

Output P(Q|K)

Pedro Domingos, Kristian Kersting
Combining Logic and Probability: Languages, Algorithms and Applications
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Weighted Model Counting

e ModelCount(CNF) = # worlds that satisfy CNF
e Assign a weight to each literal

o Weight(world) = 'l weights(true literals)

e Weighted model counting:
Given CNF C and literal weights W

Output 2 weights(worlds that satisfy C)

PTP is reducible to lifted WMC

Pedro Domingos, Kristian Kersting
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Example

Friends (Anna, Bob)

—Friends(Anna, Bob)

Friends(Anna, Bob) O 7 5 1

—Happy(Bob) Happy(Bob)

Pedro Domingos, Kristian Kersting
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Example

P(Happy(Bob) | Friends(Anna, Bob)):1 L ~ 0.57

+0.75

—Friends(Anna, Bob)

Friends(Anna, Bob) O 7 5 1

—Happy(Bob)  Happy(Bob)

Pedro Domingos, Kristian Kersting
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Example

It P(=Friends(Anna, Bob) v Happy(Bob)) = 0.8

Then P(Happy(Bob) | Friends(Anna, Bob)):1 L ~ 0.57

+0.75

—Friends(Anna, Bob)

Friends(Anna, Bob) O 7 5 1

—Happy(Bob)  Happy(Bob)

Pedro Domingos, Kristian Kersting 22
Combining Logic and Probability: Languages, Algorithms and Applications



Example
P(—Friends(Anna, x) v Happy(x)) =0.8

—Friends (Anna, x) —Friends(Anna, x)
v Happy(x)

Friends (Anna, x)

—Happy(x) Happy(x)
Pedro Domingos, Kristian Kersting
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Example

P(—Friends(Anna, x) v Happy(x)) =0.8
Friends(Anna, Bob)

—Friends(Anna, x) —Friends(Anna, x)

v Happy(x)
X # Bob

Friends(Anna, x)

—Friends(Anna, Bob) —Happy(x) Happy(x)

Friends(Anna, Bob) O . 7 5 1

—Happy(Bob)  Happy(Bob)

Pedro Domingos, Kristian Kersting
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Inference Problems
LWSAT PTP =LWMC

TP, LMC

MPE = WSAT Pl = WMC

Counting
TP,= SAT MC

Pedro Domingos, Kristian Kersting Combining Logic and Probability: Languages, Algorithms
and Applications




Propositional Case

e All conditional probabilities are ratios
of partition functions:

Zlworlds Query(WorId)H O, (WOrld)
Z (PKB)

~ Z(PKB U{(Query,0)})
- Z (PKB)

P(Query| PKB)=

e All partition functions can be computed
by weighted model counting

Pedro Domingos, Kristian Kersting 26
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Conversion to CNF + Weights

WCNF(PKB)
for all (F;, @) e PKBs.t. ®,>0do
PKB «— PKB U {(F, & A, 0} \{(F,, )}
CNF «— CNF(PKB)
for all 7A, literals do W_,;— @,
for all other literals L do w « 1
return (CNF, weights)

Pedro Domingos, Kristian Kersting
Combining Logic and Probability: Languages, Algorithms and Applications
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Probabilistic Theorem Proving

PTP(PKB, Query)
PKBq < PKB U {(Query,0)}

return WMC(WCNF(PKB,))
| WMC(WCNF(PKB))

Pedro Domingos, Kristian Kersting
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Probabilistic Theorem Proving

PTP(PKB, Query)
PKBq < PKB U {(Query,0)}

return WMC(WCNF(PKB,))
| WMC(WCNF(PKB))

Compare:

TP(KB, Query)
KBq < KB U {™ Query}
return 7"SAT(CNF(KB))

Pedro Domingos, Kristian Kersting
Combining Logic and Probability: Languages, Algorithms and Applications
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Weighted Model Counting

WMC(CNF, weights)
if all clauses in CNF are satisfied |Base

return HAEA(CNF) (WA T WﬁA) Lase
If CNF has empty unsatisfied clause return O

Pedro Domingos, Kristian Kersting 30
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Weighted Model Counting

WMC(CNF, weights)
If all clauses in CNF are satisfied

return HAeA(CNF) (W, +W_,)

If CNF has empty unsatisfied clause return O
-S Cy,..., Cy

If CNF can be partitioned into CN
sharing no atoms

return T, WMC(C,, weights)

Decomp.
Step

Pedro Domingos, Kristian Kersting
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Weighted Model Counting

WMC(CNF, weights)
If all clauses in CNF are satisfied

return HAeA(CNF) (W, +W_,)

If CNF has empty unsatisfied clause return O
If CNF can be partitioned into CNFs C,,..., C,

sharing no atoms

return T, WMC(C,, weights)
choose an atom A
return w, WMC(CNF | A, weights)

Splitting
Step

+w_, WMC(CNF | —A, weights)

Pedro Domingos, Kristian Kersting
Combining Logic and Probability: Languages, Algorithms and Applications
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First-Order Case

e PTP schema remains the same

e Conversion of PKB to hard CNF and weights:
New atom in F; & A Is now
Predicate,(variables in F;, constants in F))

e New argument in WMC.:
Set of substitution constraints of the form
X=AXFA X=Y, XFY

e Lift each step of WMC

Pedro Domingos, Kristian Kersting 33
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Lifted Weighted Model Counting

LWMC(CNF, substs, weights)
If all clauses in CNF are satisfied

N, (substy
return 1_[AeA(CNF) (WA +WﬁA) ’

Base
Case

If CNF has empty unsatisfied clause return O

Pedro Domingos, Kristian Kersting
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Lifted Weighted Model Counting

LWMC(CNF, substs, weights)
If all clauses in CNF are satisfied

return HAeA(CNF) (WA T WﬁA)nA(SUbStS)
If CNF has empty unsatisfied clause return O

If there exists a lifted decomposition of CNF
return [T ,[LWMC(CNF ,, substs, weights )]™

Decomp.
Step

Pedro Domingos, Kristian Kersting
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Lifted Weighted Model Counting

LWMC(CNF, substs, weights)
If all clauses in CNF are satisfied

return HAeA(CNF) (WA T WﬁA)nA(SUbStS)
If CNF has empty unsatisfied clause return O

If there exists a lifted decomposition of CNF

return [T, [LWMC(CNF, ,, substs, weights)]™

choose an atom A
return

Splitting
Step

_ nwiw', LWMC(CNF | o, substs, , weights )

Pedro Domingos, Kristian Kersting
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Extensions

e Unit propagation, etc.
e Caching / Memoization
e Knowledge-based model construction

Pedro Domingos, Kristian Kersting
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Approximate Inference

WMC(CNF, weights)
If all clauses in CNF are satisfied

return HAEA(CNF) (WA T WﬁA)

If CNF has empty unsatisfied clause return O
If CNF can be partitioned into CNFs C,,..., C,

sharing no atoms
return T, WMC(C,, weights)
choose an atom A

WA
return :
Q(A|CNF,weights)

Splitting
Step

WMC(CNF | A, weights)

with probability Q(A|CNF, weights), €tc.

Pedro Domingos, Kristian Kersting
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MPE Inference

e Replace sums by maxes
e Use branch-and-bound for efficiency
e Do traceback

Pedro Domingos, Kristian Kersting
Combining Logic and Probability: Languages, Algorithms and Applications
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More on Sunday at Noon

Session on First-Order Inference

e Probabilistic Theorem Proving
V. Gogate and P. Domingos

e Inference in Probabilistic Logic
Programs Using Weighted CNF

D. Flerens, G. van den Broeck, I. Thon,
B. Gutmann and L. de Raedt

Pedro Domingos, Kristian Kersting
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Even More on Monday

|l JCAI-11 Tutorial on Lifted Inference In
Probabilistic Logical Models

e Eyal Amir e Sriraam Natarajan
e Pedro Domingos e David Poole

e Lise Getoor e Rodrigo de S. Braz
e Kiristian Kersting e Prithviraj Sen

Pedro Domingos, Kristian Kersting
Combining Logic and Probability: Languages, Algorithms and Applications
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Overview

Representation
nference

_earning

e Applications
e Discussion

Pedro Domingos, Kristian Kersting
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Learning

e Data Is a relational database
e Closed world assumption (if not: EM)

e Learning parameters (weights)
e Generatively
e Discriminatively

e Learning structure (formulas)

Pedro Domingos, Kristian Kersting
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Generative Weight Learning

e Maximize likelihood
e Use gradient ascent or L-BFGS

e No local maxima

Z_log P, (x) = n, () — E, [, ()]

/
No. of true groundings of clause i in data \

Expected no. true groundings according to model

e Requires inference at each step (slow!)

Pedro Domingos, Kristian Kersting 44
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Pseudo-Likelihood
PL(x) =] | P(x | neighbors (x;))

e Likelihood of each variable given its
neighbors in the data [Besag, 1975]

e Does not require inference at each step
e Consistent estimator
e Widely used in vision, spatial statistics, etc.

e But PL parameters may not work well for
long inference chains

Pedro Domingos, Kristian Kersting
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Discriminative Weight Learning

e Maximize conditional likelihood of query ()
given evidence (x)

% log P, (y %) = (X, y) — E[m (x, y)]

| /
No. of true groundings of clause i in data \

Expected no. true groundings according to model

e Expected counts can be approximated
by counts in MAP state of y given x

Pedro Domingos, Kristian Kersting 46
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Voted Perceptron

e Originally proposed for training HMMs
discriminatively [Collins, 2002]

e Assumes network is linear chain

A P
fort«—1to Tdo i g g i

Yuap < Viterbi(x)

W; «— W; + 1 [counti(Ypgae) — counti(Yyap)]
return > w,/ T

Pedro Domingos, Kristian Kersting
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Voted Perceptron for MLNSs

e HMMs are special case of MLNs
e Replace Viterbi by prob. theorem proving
e Network can now be arbitrary graph

w, «— 0
fort<—1to Tdo
Ymap < PTP(MLN U {x}, y)

W; «— W; + 1 [counti(Ypge) — counti(Yyap)]
return > w,/ T

Pedro Domingos, Kristian Kersting
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Structure Learning

e Generalizes feature induction in Markov nets

e Any inductive logic programming approach can be
used, but . ..

e Goal is to induce any clauses, not just Horn
e Evaluation function should be likelihood

e Requires learning weights for each candidate
e Turns out not to be bottleneck

e Bottleneck is counting clause groundings

e Solution: Subsampling
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Structure Learning

e Initial state: Unit clauses or hand-coded KB
e Operators: Add/remove literal, flip sign

e Evaluation function:
Pseudo-likelihood + Structure prior

e Search:
e Beam, shortest-first [Kok & Domingos, 2005]

e Bottom-up [Mihalkova & Mooney, 2007]
e Relational pathfinding [Kok & Domingos, 2009, 2010]
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Alchemy

Open-source software including:

e Full first-order logic syntax

e MAP and marginal/conditional inference

e Generative & discriminative weight learning
e Structure learning

e Programming language features

alchemy.cs.washington.edu
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Alchemy Prolog [BUGS
Represent- |F.O. Logic + |Horn Bayes
ation Markov nets |clauses |nets
Inference Probabllistic | Theorem |[Gibbs

thm. proving |proving |sampling
Learning Parameters |No Params.

& structure
Uncertainty | Yes No Yes
Relational |Yes Yes No
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Overview

Representation
nference

_earning

e Applications
e Discussion
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Applications to Date

e Natural language e Robot mapping
processing e Activity recognition

e Information extraction e Scene analysis

e Entity resolution e Computational biology

e Link prediction e Probabilistic Cyc

e Collective classification ¢ personal assistants
e Social network analysis o Etc.
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Information Extraction

Parag Singla and Pedro Domingos, “Memory-Efficient
Inference in Relational Domains” (AAAI-06).

Singla, P., & Domingos, P. (2006). Memory-efficent
Inference in relatonal domains. In Proceedings of the
Twenty-First National Conference on Atrtificial Intelligence
(pp. 500-505). Boston, MA: AAAI Press.

H. Poon & P. Domingos, Sound and Efficient Inference
with Probabilistic and Deterministic Dependencies’, in
Proc. AAAI-06, Boston, MA, 2006.

P. Hoifung (2006). Efficent inference. In Proceedings of the
Twenty-First National Conference on Atrtificial Intelligence.
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Author
Title

. Venue

Segmentation

Parag Singla and Pedro Domingos, “Memory-Efficient
Inference in Relational Domains’ :

Singla, P.,/ & Domingos, P. (2006). Memory-efficent
inference in relatonal domains. In

(pp. 500-505). Boston, MA: AAAI Press.

H. Poon & |P. Domingos, Sound and Efficient Inference
with Probabilistic and Deterministic Dependencies”, in

PProc. AAAI-06, Boston, MA, 2006.

P. Hoifung (2006). Efﬁcent inference. In -
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Entity Resolution

13

emory-Efficient

ﬁ bry-efficent

Parag Singla and/ Pedro mlngos
Infereince in Relations

Singla, P., & Dory
inference iri rela

i fficient Inference
Jependencies’, in

with [Probabiliglierand 4 Determifist
Boston, MA, 2006

P. HOlfung|(2006). EffiCent
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Entity Resolution

13

Parag Singlaand Pedro D mlngos emory Efficient

Inference in Relations

U4 bry-efficent
3 doma
(pp. 500-505). B W v
H. Ppon & P. Dopingds, Sound at

with [Probabiliglierand Determiist
Boston, MA, 2006

P. HOlfung|(2006). EffiCent

Singla, P., & Dory
inference iri rela

i fficient Inference
Jependencies’, in

eregce. In
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State of the Art

e Segmentation
e HMM (or CRF) to assign each token to a field

e Entity resolution
e Logistic regression to predict same field/citation
e Transitive closure

e Alchemy implementation: Seven formulas
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Types and Predicates

token = {Parag, Singla, and, Pedro,
field = {Author, Title, Venue}
citation = {Cl, C2, ...}

position = {0, 1, 2, ...}

Token (token, position, citation)
InField (position, field, citation)
SameField(field, citation, citation)
SameCit (citation, citation)
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Types and Predicates

token = {Parag, Singla, and, Pedro,
field = {Author, Title, Venue, ...}
citation = {Cl, C2, ...}
position = {0, 1, 2, ...}

Token (token, position, citation)
InField (position, field, citation)
SameField(field, citation, citation)
SameCit (citation, citation)
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Types and Predicates

token = {Parag, Singla, and, Pedro, ...}
field = {Author, Title, Venue}

citation = {Cl, C2, ...}

position = {0, 1, 2, ...}

Token (token, position, citation) |«—— FEyidence
InField( 4 — i std—citation)
SameField(field, citation, citation)

SameCit (citation, citation)
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Types and Predicates

token = {Parag, Singla, and, Pedro,

field = {Author,

citation = {Cl, C2, ...}

position {0, 1,

Token (token, position,

2, ...}

Title, Venue}

citation)

InField (position,

SameCit (citation,

field, citation)
SameField (field, citation,

citation)

citation)
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Formulas

Token(+t,i,c) => InField(i,+f,c)
InField(i,+£f,c) <=> InField(i+l,+f,c)
f '= £’ => ('InField(i,+£f,c) v !'InField(i,+f’,c))

Token(+t,i,c) ~ InField(i,+£f,c) » Token(+t,i’ ,c’)
A InField (i’ ,+£f,c’) => SameField(+f,c,c’)
SameField(+£f,c,c’) <=> SameCit(c,c’)
SameField(f,c,c’) * SameField(f,c’,c”)
=> SameField(f,c,c”)
SameCit(c,c’) » SameCit(c’,c”) => SameCit(c,c”)
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Formulas

Token(+t,i,c) => InField(i,+f,c)
InField(i,+£f,c) <=> InField(i+l,+f,c)
f '= £’ => ('InField(i,+£f,c) v !'InField(i,+f’,c))

Token(+t,i,c) #» InField(i,+f,c) * Token(+t,i’,c’)
A InField (i’ ,+£f,c’) => SameField(+£f,c,c’)
SameField(f,c,c’) * SameField(f,c’,c”)
=> SameField(f,c,c”)
SameCit(c,c’) * SameCit(c’,c”) => SameCit(c,c”)

Pedro Domingos, Kristian Kersting

68
Combining Logic and Probability: Languages, Algorithms and Applications



Formulas

Token(+t,i,c) => InField(i,+f,c)
InField(i,+£f,c) <=> InField(i+l,+f,c)
f '= £’ => ('InField(i,+£f,c) v !'InField(i,+f’,c))

Token(+t,i,c) * InField(i,+f,c) * Token(+t,i’,c’)
A InField(i’ ,+f,c’) => SameField(+f,c,c’)
SameField(+£f,c,c’) <=> SameCit(c,c’)

4 4 4 4 )

=> SameField(f,c,c”)
SameCit(c,c’) * SameCit(c’,c”) => SameCit(c,c”)
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Formulas

Token(+t,i,c) => InField(i,+f,c)

InField(i,+£f,c) ~ 'Token(“.”,i,c) <=> InField(i+l,+£f,c)

- = - . ] ’ ’ . ’ :Ic))

Token(+t,i,c) ~ InField(i,+£f,c) » Token(+t,i’ ,c’)
A InField (i’ ,+£f,c’) => SameField(+f,c,c’)
SameField(+£f,c,c’) <=> SameCit(c,c’)
SameField(f,c,c’) * SameField(f,c’,c”)
=> SameField(f,c,c”)
SameCit(c,c’) » SameCit(c’,c”) => SameCit(c,c”)
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Results: Segmentation on Cora
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Results:
Matching Venues on Cora

1

0.8

0.6

04 - —o— Similarity

—— Sim. + Relations

Precision

0.2 - Sim. + Transitivity
& Sim. + Rel. + Trans.

O I I I I
0 0.2 0.4 0.6 0.8 1

Recall



Overview

Representation
nference

_earning

e Applications
e Discussion

Pedro Domingos, Kristian Kersting

Combining Logic and Probability: Languages, Algorithms and Applications

74



Foundations for
Probabilistic Models

e Graphs are not enough

e We need logic
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Logical Models vs.
Graphical Models (1)

Graphical models

Logical models

constraints

Required by No Yes
probability theory

Representable All (BNSs) All
distributions Positive (MNS)
Context-free Some All
Independences

Context-specific |[None All
Independences

Normalization Some All
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Logical Models vs.
Graphical Models (II)

Graphical models

Logical models

Inference Exp(treewidth) Circuit
complexity

Visual aid Yes No

Densely Unreadable Readable

connected distrs.

First-order Plates All

Lifted inference No Yes

Available Lots, used Lots, unused

technology
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