Combining Logic and Probability

Languages, Algorithms and Applications

Acknowledgements

- Statistical Relational Learning (SRL) and AI (StarAI) are a synthesis of ideas of many individuals who have participated in various SRL/StarAI events, workshops and classes.
- Thanks to all of you!

General Take-Away Message

- Graphs are not enough
- We need Iogic

Roadmap

1. Motivation

2. Statistical Relational Learning / AI: a short overview

3. Markov Logic Networks

MOTIVATION

Rorschach Test

Etzioni's Rorschach Test for Computer Scientists

Moore's Law?

Storage Capacity?

Number of Scientific Publications?

Number of Facebook Users?

Number of Web Pages?

The World-Wide Mind

TextRunner Search http://www.cs.washington.edu/research/textrunner/

Object Relation Uncertainty Object

TextRunner took 3 seconds

Search again:

Argument 1
paper
Predicate

Argument 2
topic
Search

Jump to:
paper (81)
research paper (4)
term paper (2)
paper briefly (3)
invited review paper (1)
Paper proposals (2)
paper title, abstract (1)
paper clip (1)
revised paper no (1)
Each position paper (1)
I enoth of the naner (1)

So, Tasks Are Often Structural

- Objects are not just feature vectors
- They have parts and subparts
- Which have relations with each other
- They can be trees, graphs, etc.
- Objects are seldom i.i.d.
(independent and identically distributed)
- They exhibit local and global dependencies
- They form class hierarchies (with multiple inheritance)
- Objects' properties depend on those of related objects
- Deeply interwoven with knowledge How do computer systems deal with structural problems?

(First-order) Logic handles Structures

- Main theoretical foundation of computer science
- General language for describing complex structures and knowledge: trees, graphs, hierarchies, etc.
- Inference algorithms (satisfiability testing, resolution, theorem proving, etc.)

More compact knowledge representation. Consider e.g. classicial examples such as chess or wumpus: FOL << PL << atomic

```
daugther-of(cecily,john)
daugther-of(lily,tom)
```


Explicit enumeration

Logic true/false
$\forall x, y$ father-of $(x, y) \wedge$ female (y)
\Leftrightarrow daughter-of (y, x)

Many types of entities Relations between them Arbitrary knowledge

first-order/relational

Tasks are also often Statistical

- Information are ambiguous
- Our information is always incomplete
- Our predictions are uncertain

How do computer systems deal with uncertainty?

Probability handles Uncertainty

Mixture models Hidden Markov models Bayesian networks

Combining Probability and Logic: Languages, Algorithms and Applications

So, will traditional (U)AI scale ?

Pedro Domingos, Kristian Kersting

Propositional vs. Relational Data

- Traditional work in robotics, machine learning and knowledge discovery assume data instances form a single table.
- Traditional statistical models assume independence among instances (rows) and find associations among the values of multiple variables within a single instance.
- Relational models assume
 dependence among instances in different rows and tables and find associations among these values.
[slide adapted from David Jensen]

Let's consider a simple relational domain: Reviewing Papers

- The grade of a paper at a conference depends on the paper's quality and the difficulty of the conference.
- Good papers may get A's at easy conferences
- Good papers may get D's at top conference
- Weak papers may get B's at good conferences

(Reviewing) Bayesian Network

Qual	Diff	P(Grade)		
		b	a	
		0.2	0.5	0.3
low	middle	0.1	0.7	0.2
\ldots				

The real world, however,

... has inter-related objects

These 'instance' are not independent !

So, will traditional (U)AI scale ? No !

Statistical Relational Learning and AI

Let's deal with uncertainty, objects, relations, and learning jointly

The study and design of intelligent agents that act in noisy worlds composed of objects and relations among the objects

The Big Picture on AI

Why the Tutorial?

- A very active, multi-disciplinary research area
- Involves all sub-disciplines of AI: reasoning and acting under uncertainty, knowledge representation, constraint satisfaction, machine learning, ...
- Unfortunately, can be hard to follow: they all speak a different language
- A success story
" Often outperforms state-of-the-art
- Novel ways of using the structure for faster and/or more robust solutions
- Growth path for (U)AI in general

STATISTICAL RELATIONAL LEARNING / AI: A SHORT OVERIEW

Applications to Date

- Natural language processing
- Information extraction - Scene analysis
- Entity resolution
- Link prediction
- Collective classification - Personal assistants
- Social network analysis - Etc.

Information Extraction

Parag Singla and Pedro Domingos, "Memory-Efficient Inference in Relational Domains" (AAAI-06).

Singla, P., \& Domingos, P. (2006).Memory-efficent inference in relatonal domains. In Proceedings of the Twenty-First National Conference on Artificial Intelligence (pp. 500-505). Boston, MA: AAAI Press.
H. Poon \& P. Domingos, Sound and Efficient Inference with Probabilistic and Deterministic Dependencies", in Proc. AAAI-06, Boston, MA, 2006.
P. Hoifung (2006). Efficent inference. In Proceedings of the Twenty-First National Conference on Artificial Intelligence.

Information Extraction

Parag Singla and Pedro Domingos, "Memory-Efficient Inference in Relational Domains" (AAAI-06).

Singla, P., \& Domingos, P. (2006).Memory-efficent inference in relatonal domains. In Proceedings of the Twenty-First National Conference on Artificial Intelligence (pp. 500-505). Boston, MA: AAAI Press.
H. Poon \& P. Domingos, Sound and Efficient Inference with Probabilistic and Deterministic Dependencies", in Proc. AAAI-06, Boston, MA, 2006.
P. Hoifung (2006). Efficent inference. In Proceedings of the Twenty-First National Conference on Artificial Intelligence.

Parag Singla and Pedro Domingos, "Memory-Efficient Inference in Relational Domains" (AAAI-06).

Singla, P., \& Domingos, P. (2006).Memory-efficent inference in relatonal domains. In Proceedings of the Twenty-First National Conference on Artificial Intelligence (pp. 500-505). Boston, MA: AAAI Press.
H. Poon \& P. Domingos, Sound and Efficient Inference with Probabilistic and Deterministic Dependencies", in Proc. AAAI-06, Boston, MA, 2006.
P. Hoifung (2006). Efficent inference. In Proceedings of the Twenty-First National Conference on Artificial Intelligence.

Entity Resolution

Paper

Relations are at the heart of entity resolution

Gene Localization

- Predict the localization of a given gene in a cell among 15 distinct positions
- Relations important as sequence similarity does not help

Relational Kernels better then Hayashi et al.'s KDD Cup 2001 winning approach

[Anguelov et al. CVPR05, Triebel et al. ICRA06, ...]

Semantic Labeling of 3D Scan Data

- Neighbouring pixels/voxels have the same semantic label

Relations as constraints

$(3<2)$,
$(7<2)$,
$(7<4)$,
$(7<5)$,
$(7<6)$

[^0]$\operatorname{Rel}(1)$ ，
NotRel（2），
Rel（3）， NotRel（4）， NotRel（5）， NotRel（6）， Rel（7）

Web Search

Web images Video News Maps MSN More ，
（9）Live Search 1 search ortans．

YAHOO！
Web \mid Images \mid Video \mid Local \mid Shooging \mid more - \qquad

ΔGoogle Bai $i^{\circ \circ}{ }^{\circ}$ 百度 Geosob Seect im Fowngluch
?Query: - " - ?Query
more relevant Similar

2月ールロール
－$\square-\square$

Relational approaches outperfom traditional ranking approaches

Social Recommendation / Collaborative Filtering

- Predict whether a user likes a movie given attributes of users and movies, as well as known ratings and complex link structures

Relational approaches outperfom setbased recommendation systems

What is the world talking about?

Topic Models

Relational approaches estimate better low-dimensional embeddings

How do you spend your spare time?

You (Tule

> YouTube like media portals have changed the way users access media content in the Internet Every day, millions of people visit social media sites such as Flickr, YouTube, and Jumpcut, among others, to share their photos and videos,
> while others enjoy themselves by searching, watching, commenting, and rating the photos and videos; what your friends like will bear great significance for you.

How do you efficiently broadcast information?

facebook

Google

BitTorrent

Lifted inference faster than belief propagation

Predicting Coronary Artery Calcification Levels

- Cardiovascular disease cost the EU EURO169 billion in 2003 and the USA about EURO310.23 billion in direct and indirect annual costs.
- By comparison, the estimated cost of all cancers is EURO146.19 billion and HIV infections EURO22.24 billion.

Algorithm	Accuracy	AUC-ROC
J48	0.667	0.607
SVM	0.667	0.5
AdaBoost	0.667	0.608
Bagging	0.677	0.613
NB	0.75	0.653
RPT	0.669^{*}	0.778
RFGB	0.667^{*}	0.819

So, what are relations?

What are Relations?

- There are several types of relations and in turn there are several views on what (statitical) relational learning is

1. Relations provide additional correlations/ regularization

- If two words occure frequently in the same context (page, paragraph, sentence, ...) then there must be some semantic relation between them

2. Often extensional (data) only, for one relation

- Covariance function, distance functions, kernel functions, graphs, tensors, random walks with restarts...

What are Relations?

3. Relations are symmetries/redundancies in the model

- E.g. lifted inference based on bisimulation

4. Hypergraph representations of data

- Multiple (extensional) relations
- Random walks with restarts as similarity measure or to produce path features

5. Full-fledged relational (or logical) knoweldge as considered in this tutorial

- Multiple (often typed) relations
- Intensional formulas (often Horn clauses)
ancestor (X,Z) ^ parent $(Z, Y) \Rightarrow$ ancestor (X, Y)

The SRL Alphabet Soup

Relational Gaussian Processes
[names in alphabetical order]

Infinite Hidden Relational Models

10 PSL: Broecheler, Getoor, Mihalkova 90 '93' $94^{\prime} 9596$ " 97 ' $99^{\prime \prime} 00$ '02'03 07 RDNs: Jensen, Neville \begin{tabular}{l}
Relational Markov Networks

| Object-Oriented Bayes Nets |
| :--- |

\hline
\end{tabular}

 2011

DAPER PRISM: Kameya, Sato Pfeffer,Segal,Taskar llmarkov Logic: Domingos,

Key Dimensions with some prototypes

undirected
〇MLNs
RMNs
RGPs
IHRM
[Getoor et al. 2002; Kersting De Raedt 2007]

Directed: Probabilistic Relational Models (PRMs) Bayesian logic Programs (BLPs)

$$
\begin{aligned}
& \forall x \text { author }(x, p) \wedge \operatorname{smart}(x) \Rightarrow \text { high_quality }(p)^{\forall x \text { high_quality }(p) \Rightarrow \operatorname{accepted}(p)}
\end{aligned}
$$

Macro for conditional probability table

Rule Graph

Deterministic background knowledge

high_quality / $1 \rightarrow \square \longrightarrow$ accepted / 1
Pedro Domiry

Inference on BN constructed by

 instantiating the rules/ macros using backor forward chaining

But what happens if instead we have author(bob,p1)?
So, we can deal with a variable number of objects. The induced BN depends on the domain elements and the background knowledge we have.

Directed: Aggregate Dependencies

Directed: Aggregate Dependencies

Still, the induced model is assumed to be acyclic
[Neville, Jensen 2007]

Option 1 : Relational Dependency Networks (RDNs)

$\begin{aligned} \text { Cyclic } & \begin{array}{l}\forall x \operatorname{high} \text { _quality }(p) \Rightarrow \operatorname{accepted}(p) \\ \text { dependency }\end{array} \begin{array}{l}\forall x, y \text { co_author }(x, y) \wedge \operatorname{smart}(x) \Rightarrow \operatorname{smart}(y) \\ \\ \\ \forall x, y \exists p \text { author }(x, p) \wedge \operatorname{author}(y, p) \Rightarrow c o _\operatorname{author}(x, y)\end{array}\end{aligned}$

Run approximate Gibbs sample

Relational Dependency Networks

[Richardson, Domingos MLJ 62(1-2): 107-136, 2006]

Option 2: Markov Logic Networks

Suppose we have constants: alice, bob and p1

```
\(1.5 \mid \forall x\) author \((x, p) \wedge \operatorname{smart}(x) \Rightarrow\) high_quality \((p)\)
\(1.1 \| \forall x\) high_quality \((p) \Rightarrow \operatorname{accepted}(p)\)
\(1.2 \| \forall x, y\) co_author \((x, y) \Rightarrow(\operatorname{smart}(x) \Leftrightarrow \operatorname{smart}(y))\)
\(\infty \quad \forall x, y \exists p\) author \((x, p) \wedge\) author \((y, p) \Rightarrow\) co _author \((x, y)\)
```


Compile to an undirected model

Key Dimensions with some prototypes

ProbLog

0.10 :: edges(x_gene, disease2)
0.66 :: edge(x_gene, disease1)
0.39 :: edges(disease1,disease2)
path(X, Y) :- edge(X, Y) path (X, Y) :- edges (X, Z), path (Z, Y)

- Label of a clause/fact c is the probability that c belongs to the target program; Facts/clauses independent of each other
- Defines a distribution over programs $P(L \mid$ Program $)=\prod_{c, \in L} p_{c} \prod_{c, 4 L}\left(1-p_{j}\right)$
$\mathbf{P}($ path(x_gene,disease2)) $=$ sum of probs of all programs that entail the query

$$
P=0.1 * 0.66 * 0.39+P=(1-0.1) * 0.66 * 0.39
$$

$$
+P=0.1 * 0.66 *(1-0.39)
$$

Exponentially many subprograms! To avoid explosion, consider proofs/paths only + store them in a BDD in order to count correctly

Many other approaches !!

And actually they span the whole AI spectrum

- Relational topic models
- Mixed-membership models
- Relational Gaussian processes
- Relational reinforcement learning
- (Partially observable) MDPs
- Systems of linear equations
- Kalman filters
- Declarative information networks

No, this is very much like in the early days of UAI!
So, should we worry about the soup?

The early days of UAI

Maximum entropy inference

> Odds-likelihood updating
> Dempster-Shafer Belief Functions

Mycin's Certainty Factors

Bayesian Networks

Expert-rating

> Decision-theoretic metrices

Belief Maintenance System
 Prospector

Fuzzy Set Theory

Probabilistic Logic
Incidence Calculus
[B. Wise, M. Henrion. A Framework for Comparing Uncertain Inference Systems to Probability. UAI-85]
[A. Bundy. Incidence Calculus: A Mechanism for Probabilistic Reasoning. UAI-85]
[D. Hunter. Uncertain. Reasoning Using Maximum Entropy Inference. UAI-85]
[D. Heckerman. Probabilistic Interpretations for MYCIN's Certainty Factors. UAI-85]
[S. Ursic. Generalizing Fuzzy Logic Probabilistic Inferences. UAI-86]
[N.J. Nilsson. Probabilistic Logic. Artificial Intelligence 28(1): 71-87, 1986]
[B. Falkenheiner. Towards a General-Purpose Belief Maintenance System. UAI-86]
[D. Heckerman. An Empirical Comparison of Three Inference Methods. UAI-88]
Pedro Domingos, Kristian Kersting
Combining Probability and Logic: Languages, Algorithms and Applications

This soup boiled down to Graphical Models as intermediate representation

Distributions can naturally be represented as Factor Graphs

- There is an edge between a circle and a box if the variable is in the domain/scope of the factor

Factor Graphs from Graphical Models

$$
\begin{aligned}
p(\mathbf{x})= & p\left(x_{1}\right) p\left(x_{2}\right) \\
& p\left(x_{3} \mid x_{1}, x_{2}\right)
\end{aligned}
$$

$\psi\left(x_{1}, x_{2}, x_{3}\right)$

$$
\begin{aligned}
f_{a}\left(x_{1}\right) & =p\left(x_{1}\right) \\
f_{b}\left(x_{2}\right) & =p\left(x_{2}\right) \\
f_{c}\left(x_{1}, x_{2}, x_{3}\right) & =p\left(x_{3} \mid x_{1}, x_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& f\left(x_{1}, x_{2}, x_{3}\right) \\
& \quad=\psi\left(x_{1}, x_{2}, x_{3}\right)
\end{aligned}
$$

Similar "boiling down" process is going on in SRL!

Boiled-Down SRL Alphabet Soup

- Given a relational model in your language of choice, a set of constants and a query, compile everything into an intermediate respresentation
- Factor graphs
- BDDs, Artihmetic Circuits, d-DNNFs, ...
- Weighted CNFs
- Run inference

Rules + Potential: Logically Parameterized Factors

Atoms represent a set of random variables

Parfactors parameterized factors

There can also be contraints to logical variables such as X=/=UAI11

Rules + Weights: Weighted CNF

- Weighted MAX-SAT as mode finding for log-linear distributions
- Each configuration has a cost: the sum of the weights of the unsatisfied (ground) clauses.
- An infinite cost gives a 'hard' clause.
- Goal: find an assignment with minimal cost.

Factor Graph:

ILP= Machine Learning + Logic Programming

[Muggleton, De Raedt JLP96]

Find a set of general rules

mutagenic (X) :- atom($X, A, C)$, charge $(X, A, 0.82)$
mutagenic(X) :- atom(X,A,n),...

Examples E

pos(mutagenic(m_{1})) neg(mutagenic $\left(m_{2}\right)$) pos(mutagenic $\left(m_{3}\right)$)

Background Knowledge B

$\operatorname{molecule}\left(m_{1}\right)$	$\operatorname{molecule}\left(m_{2}\right)$
atom $\left(m_{1}, a_{11}, c\right)$	atom $\left(m_{2}, a_{21}, 0\right)$
$\operatorname{atom}\left(m_{1}, a_{12}, n\right)$	atom $\left(m_{2}, a_{22}, n\right)$
$\operatorname{bond}\left(m_{1}, a_{11}, a_{12}\right)$	$\operatorname{bond}\left(m_{2}, a_{21}, a_{22}\right)$
$\operatorname{charge}\left(m_{1}, a_{11}, 0.82\right)$	charge $\left(m_{2}, a_{21}, 0.82\right)$
\ldots	\ldots

Example ILP Algorithm: FOIL

[Quinlan ML 5:239-266, 1990]
mutagenic (X) :- atom (X, A, n),charge($A, 0.82)$
mutagenic (X) :- atom $(X, A, c), b o n d(A, B)$

Some objective function, e.g. percentage of covered positive examples

Vanilla SRL Approach ${ }_{\text {[De Raedt, } \text { K ALT04] }}$

mutagenic(X) :- atom(X,A,n),charge(A,0.82)

mutagenic(X) :- atom $(\mathrm{X}, \mathrm{A}, \mathrm{c})$, bond($\mathrm{A}, \mathrm{B})$
$=0.882$

- Traverses the hypotheses space a la ILP
- Replaces ILP's 0-1 covers relation by a "smooth", probabilistic one [0,1]

$$
\begin{aligned}
\operatorname{cover}(e, H, B) & =P(e \mid H, B) \\
\operatorname{cover}(E, H, B) & =\prod_{e \in E} \operatorname{cover}(e, H, B)
\end{aligned}
$$

MARKOV LOGIC

MARKOV LOGIC

Overview

- Representation
- Inference
- Learning
- Applications
- Discussion

Propositional Logic

- Atoms: Symbols representing propositions
- Logical connectives: ᄀ, $\wedge, ~ \vee$, etc.
- Knowledge base: Set of formulas
- World: Truth assignment to all atoms
- Every KB can be converted to CNF
- CNF: Conjunction of clauses
- Clause: Disjunction of literals
- Literal: Atom or its negation
- Entailment: Does KB entail query?

First-Order Logic

- Atom: Predicate(Variables,Constants)
E.g.: Friends (Anna, x)
- Ground atom: All arguments are constants
- Quantifiers: \forall, \exists
- This talk: Finite, Herbrand interpretations

Markov Networks

- Undirected graphical models

Smoking Cancer

Asthma

Cough

- Potential functions defined over cliques

$$
\begin{gathered}
P(x)=\frac{1}{Z} \prod_{c} \Phi_{c}\left(x_{c}\right) \\
Z=\sum_{x} \prod_{c} \Phi_{c}\left(x_{c}\right)
\end{gathered}
$$

Smoking	Cancer	$\boldsymbol{\Phi (S , C)}$
False	False	4.5
False	True	4.5
True	False	2.7
True	True	4.5

Markov Networks

- Undirected graphical models

Smoking Cancer

Asthma

Cough

- Log-linear model:

$$
\begin{array}{r}
P(x)=\frac{1}{Z} \exp \left(\sum_{i} w_{i} f_{i}(x)\right. \\
\text { Weight of Feature } i \\
\text { Feature } i
\end{array}
$$

f_{1} (Smoking, Cancer $)= \begin{cases}1 & \text { if } \neg \text { Smoking } \vee \text { Cancer } \\ 0 & \text { otherwise }\end{cases}$ $w_{1}=0.51$

Probabilistic Knowledge Bases

PKB = Set of formulas and their probabilities + Consistency + Maximum entropy
= Set of formulas and their weights
= Set of formulas and their potentials (1 if formula true, $\boldsymbol{\phi}_{i}$ if formula false)

$$
P(\text { world })=\frac{1}{Z} \prod_{i} \phi_{i}^{n_{i}(\text { world })}
$$

Markov Logic

- A Markov Logic Network (MLN) is a set of pairs (F, w) where
- F is a formula in first-order logic
- w is a real number
- An MLN defines a Markov network with
- One node for each grounding of each predicate in the MLN
- One feature for each grounding of each formula F in the MLN, with the corresponding weight w

Example

\neg Friends(Anna, Bob)		
Friends(Anna, Bob)		
	\checkmark Happy(Bob)	Happy(Bob)

Example

\neg Friends(Anna, Bob)	$\begin{aligned} & \neg \text { Friends }(\text { Anna }, \text { Bob }) \\ & \vee \text { Happy }(\text { Bob }) \end{aligned}$
Friends (Anna, Bob)	
	Happy(Bob) Happy(Bob

Example

$P(\neg$ Friends $($ Anna, Bob $) \vee \operatorname{Happy}($ Bob $))=0.8$

\neg Friends(Anna, Bob)	$\begin{aligned} & \neg \text { Friends }(\text { Anna, Bob }) \\ & \vee \text { Happy }(\text { Bob }) \end{aligned}$
Friends(Anna, Bob)	
	$\operatorname{Happy}(\mathrm{Bob}) \quad \mathrm{Happy}(\mathrm{Bob}$

Example

$$
\begin{aligned}
& \Phi(\neg \text { Friends }(\text { Anna }, \text { Bob }) \vee \text { Happy }(\text { Bob }))=1 \\
& \Phi(\text { Friends }(\text { Anna }, \text { Bob }) \wedge \neg \text { Happy }(\text { Bob }))=0.75
\end{aligned}
$$

Example

$$
\begin{aligned}
& w(\Phi(\neg \text { Friends }(\text { Anna }, \text { Bob }) \vee \operatorname{Happy}(\text { Bob }))) \\
& \quad=\log (1 / 0.75)=0.29
\end{aligned}
$$

Overview

- Representation
- Inference
- Learning
- Applications
- Discussion

Theorem Proving

TP(KB, Query)
 $K B_{Q} \leftarrow K B \cup\{\neg$ Query\} return $\neg \operatorname{SAT}\left(\operatorname{CNF}\left(K B_{Q}\right)\right)$

Satisfiability (DPLL)

SAT(CNF)

if CNF is empty return True
if CNF contains empty clause return False choose an atom A
return $\operatorname{SAT}(\operatorname{CNF}(A)) \vee \operatorname{SAT}(\operatorname{CNF}(\neg A))$

First-Order Theorem Proving

- Propositionalization

1. Form all possible ground atoms
2. Apply propositional theorem prover

- Lifted Inference: Resolution
- Resolve pairs of clauses until empty clause derived
- Unify literals by substitution, e.g.: $x=B o b$ unifies

Friends (Anna, x) and Friends(Anna,Bob)

$$
\neg \text { Friends }(\text { Anna }, x) \vee \text { Happy }(x)
$$

Friends(Anna, Bob)
Happy(Bob)

Probabilistic Theorem Proving

Given Probabilistic knowledge base K Query formula Q
 Output $P(Q / K)$

Weighted Model Counting

- ModelCount(CNF) = \# worlds that satisfy CNF
- Assign a weight to each literal
- Weight(world) = Π weights(true literals)
- Weighted model counting: Given CNF C and literal weights W
Output Σ weights(worlds that satisfy C)
PTP is reducible to lifted WMC

Example

Friends(Anna, Bob)

Example

$$
P(\operatorname{Happy}(\text { Bob }) \mid \operatorname{Friends}(\text { Anna, Bob }))=\frac{1}{1+0.75} \approx 0.57
$$

Example

If $P(\neg$ Friends $($ Anna, Bob $) \vee$ Happy $(B o b))=0.8$
Then $P($ Happy $($ Bob $) \mid$ Friends $($ Anna, Bob $))=\frac{1}{1+0.75} \approx 0.57$
\neg Friends(Anna, Bob)

Friends(Anna, Bob)

Example

$P(\neg$ Friends $($ Anna,$x) \vee \operatorname{Happy}(x))=0.8$

\neg Friends(Anna, x)

Friends(Anna, x)

Example

$P(\neg$ Friends $($ Anna,$x) \vee \operatorname{Happy}(x))=0.8$
Friends(Anna,Bob)

Inference Problems

Propositional Case

- All conditional probabilities are ratios of partition functions:

$$
\begin{aligned}
P(\text { Query } \mid P K B) & =\frac{\sum_{\text {worlds }} 1_{\text {Query }}(\text { world }) \prod_{i} \Phi_{i}(\text { world })}{Z(P K B)} \\
& =\frac{Z(P K B \cup\{(\text { Query }, 0)\})}{Z(P K B)}
\end{aligned}
$$

- All partition functions can be computed by weighted model counting

Conversion to CNF + Weights

WCNF ($P K B$)

for all $\left(F_{i}, \Phi_{i}\right) \in P K B$ s.t. $\Phi_{i}>0$ do

$$
P K B \leftarrow P K B \cup\left\{\left(F_{i} \Leftrightarrow A_{i}, 0\right)\right\} \backslash\left\{\left(F_{i}, \Phi_{i}\right)\right\}
$$

$C N F \leftarrow \operatorname{CNF}(P K B)$
for all $\neg A_{i}$ literals do $W_{\neg A i} \leftarrow \Phi_{i}$ for all other literals L do $W_{L} \leftarrow 1$ return (CNF, weights)

Probabilistic Theorem Proving

$$
\begin{aligned}
& \operatorname{PTP}(P K B, \text { Query }) \\
& P K B_{Q} \leftarrow P K B \cup\{(\text { Query }, 0)\} \\
& \text { return } \operatorname{WMC}\left(\operatorname{WCNF}\left(P K B_{Q}\right)\right) \\
& \quad / \operatorname{WMC}(\operatorname{WCNF}(P K B))
\end{aligned}
$$

Probabilistic Theorem Proving

PTP(PKB, Query)
$P K B_{Q} \leftarrow P K B \cup\{($ Query, 0$)\}$
return WMC(WCNF $\left.\left(P K B_{Q}\right)\right)$ / WMC(WCNF(PKB))

Compare:

TP(KB, Query)
 $K B_{Q} \leftarrow K B \cup\{\neg$ Query $\}$
 return $\neg \operatorname{SAT}\left(\operatorname{CNF}\left(K B_{Q}\right)\right)$

Weighted Model Counting

WMC(CNF, weights)

if all clauses in CNF are satisfied

Base

return $\prod_{A \in \mathrm{~A}(C N F)}\left(w_{A}+w_{-A}\right)$
Case if $C N F$ has empty unsatisfied clause return 0

Weighted Model Counting

WMC(CNF, weights)

if all clauses in CNF are satisfied
return $\prod_{A \in \mathrm{~A}(C N F)}\left(w_{A}+w_{-A}\right)$
if CNF has empty unsatisfied clause return 0
if $C N F$ can be partitioned into $\mathrm{CNFs} C_{1}, \ldots, C_{k}$ sharing no atoms return $\prod_{i=1}^{k} W M C\left(C_{i}\right.$, weights $)$
Decomp.
Step

Weighted Model Counting

WMC(CNF, weights)

if all clauses in CNF are satisfied
return $\prod_{A \in \mathrm{~A}(C N F)}\left(w_{A}+w_{-A}\right)$
if CNF has empty unsatisfied clause return 0
if CNF can be partitioned into CNFs C_{1}, \ldots, C_{k} sharing no atoms
return $\prod_{i=1}^{k} W M C\left(C_{i}\right.$,weights $)$
choose an atom A
return $w_{A} W M C(C N F \mid A$, weights $)$

$$
+w_{-A} W M C(C N F \mid \neg A, \text { weights })
$$

First-Order Case

- PTP schema remains the same
- Conversion of PKB to hard CNF and weights:

New atom in $F_{i} \Leftrightarrow A_{i}$ is now Predicate ${ }_{i}\left(\right.$ variables in F_{i}, constants in F_{i})

- New argument in WMC:

Set of substitution constraints of the form $x=A, x \neq A, x=y, x \neq y$

- Lift each step of WMC

Lifted Weighted Model Counting

LWMC(CNF, substs, weights)

 if all clauses in CNF are satisfied return $\prod_{A \in \mathrm{~A}(C N F)}\left(w_{A}+w_{-A}\right)^{n_{A}(\text { substs })}$ if CNF has empty unsatisfied clause return 0
Lifted Weighted Model Counting

LWMC(CNF, substs, weights)

if all clauses in CNF are satisfied return $\prod_{A \in \mathrm{~A}(C N F)}\left(w_{A}+w_{-A}\right)^{n_{A}(\text { substs })}$
if CNF has empty unsatisfied clause return 0
if there exists a lifted decomposition of CNF return $\prod_{i=1}^{k}\left[L W M C\left(C N F_{i, 1} \text {, substs, weights }\right)\right]^{m_{i}}$

Decomp.

Lifted Weighted Model Counting

LWMC(CNF, substs, weights)
if all clauses in CNF are satisfied
return $\prod_{A \in \mathrm{~A}(C N F)}\left(w_{A}+w_{-A}\right)^{n_{A} \text { (substs) }}$
if CNF has empty unsatisfied clause return 0
if there exists a lifted decomposition of CNF return $\prod_{i=1}^{k}\left[L W M C\left(C N F_{i, 1} \text {, substs, weights }\right)\right]^{m_{i}}$ choose an atom A return
Splitting
Step

$$
\sum_{i=1}^{l} n_{i} w_{A}^{t_{i}} w_{-A}^{f_{i}} L W C\left(C N F \mid \sigma_{j}, \text { substs }_{j}, \text { weights }\right)
$$

Extensions

- Unit propagation, etc.
- Caching / Memoization
- Knowledge-based model construction

Approximate Inference

WMC(CNF, weights)

if all clauses in CNF are satisfied
return $\prod_{A \in \mathrm{~A}(C N F)}\left(w_{A}+w_{\neg A}\right)$
if CNF has empty unsatisfied clause return 0
if CNF can be partitioned into $\mathrm{CNFs} C_{1}, \ldots, C_{k}$ sharing no atoms return $\prod_{i=1}^{k} W M C\left(C_{i}\right.$,weights $)$ choose an atom A

Splitting
Step
return
$\frac{w_{A}}{Q(A \mid C N F, \text { weights })}$
with probability $Q(A \mid C N F$, weights $)$, etc.

MPE Inference

- Replace sums by maxes
- Use branch-and-bound for efficiency
- Do traceback

More on Sunday at Noon

Session on First-Order Inference

- Probabilistic Theorem Proving V. Gogate and P. Domingos
- Inference in Probabilistic Logic Programs Using Weighted CNF D. Fierens, G. van den Broeck, I. Thon, B. Gutmann and L. de Raedt

Even More on Monday

IJCAI-11 Tutorial on Lifted Inference in Probabilistic Logical Models

- Eyal Amir
- Pedro Domingos
- Lise Getoor
- Kristian Kersting
- Sriraam Natarajan
- David Poole
- Rodrigo de S. Braz
- Prithviraj Sen

Overview

- Representation
- Inference
- Learning
- Applications
- Discussion

Learning

- Data is a relational database
- Closed world assumption (if not: EM)
- Learning parameters (weights)
- Generatively
- Discriminatively
- Learning structure (formulas)

Generative Weight Learning

- Maximize likelihood
- Use gradient ascent or L-BFGS
- No local maxima

- Requires inference at each step (slow!)

Pseudo-Likelihood

$$
P L(x) \equiv \prod_{i} P\left(x_{i} \mid \text { neighbors }\left(x_{i}\right)\right)
$$

- Likelihood of each variable given its neighbors in the data [Besag, 1975]
- Does not require inference at each step
- Consistent estimator
- Widely used in vision, spatial statistics, etc.
- But PL parameters may not work well for long inference chains

Combining Logic and Probability:
Languages, Algorithms and Applications

Discriminative Weight Learning

- Maximize conditional likelihood of query (y) given evidence (x)

Expected no. true groundings according to model

- Expected counts can be approximated by counts in MAP state of y given x

Voted Perceptron

- Originally proposed for training HMMs discriminatively [Collins, 2002]
- Assumes network is linear chain

$$
\begin{aligned}
& w_{i} \leftarrow 0 \\
& \text { for } t \leftarrow 1 \text { to } T \text { do } \\
& y_{\text {MAP }} \leftarrow \operatorname{Viterbi}(x) \\
& w_{i} \leftarrow w_{i}+\eta\left[\operatorname{count}_{i}\left(y_{\text {Data }}\right)-\operatorname{count}_{\mathrm{i}}\left(y_{\text {MAP }}\right)\right] \\
& \text { return } \sum_{t} w_{i} / T
\end{aligned}
$$

Voted Perceptron for MLNs

- HMMs are special case of MLNs
- Replace Viterbi by prob. theorem proving
- Network can now be arbitrary graph

Structure Learning

- Generalizes feature induction in Markov nets
- Any inductive logic programming approach can be used, but . . .
- Goal is to induce any clauses, not just Horn
- Evaluation function should be likelihood
- Requires learning weights for each candidate
- Turns out not to be bottleneck
- Bottleneck is counting clause groundings
- Solution: Subsampling

Structure Learning

- Initial state: Unit clauses or hand-coded KB
- Operators: Add/remove literal, flip sign
- Evaluation function: Pseudo-likelihood + Structure prior
- Search:
- Beam, shortest-first [Kok \& Domingos, 2005]
- Bottom-up [Mihalkova \& Mooney, 2007]
- Relational pathfinding [Kok \& Domingos, 2009, 2010]

Alchemy

Open-source software including:

- Full first-order logic syntax
- MAP and marginal/conditional inference
- Generative \& discriminative weight learning
- Structure learning
- Programming language features

alchemy.cs.washington.edu

	Alchemy	Prolog	BUGS
Represent- ation	F.O. Logic + Markov nets	Horn clauses	Bayes nets
Inference	Probabilistic thm. proving	Theorem proving	Gibbs sampling
Learning	Parameters \& structure	No	Params.
Uncertainty	Yes	No	Yes
Relational	Yes	Yes	No

Overview

- Representation
- Inference
- Learning
- Applications
- Discussion

Applications to Date

- Natural language processing
- Information extraction
- Entity resolution
- Link prediction
- Collective classification
- Social network analysis
- Robot mapping
- Activity recognition
- Scene analysis
- Computational biology
- Probabilistic Cyc
- Personal assistants
- Etc.

Information Extraction

Parag Singla and Pedro Domingos, "Memory-Efficient Inference in Relational Domains" (AAAI-06).

Singla, P., \& Domingos, P. (2006). Memory-efficent inference in relatonal domains. In Proceedings of the Twenty-First National Conference on Artificial Intelligence (pp. 500-505). Boston, MA: AAAI Press.
H. Poon \& P. Domingos, Sound and Efficient Inference with Probabilistic and Deterministic Dependencies", in Proc. AAAI-06, Boston, MA, 2006.
P. Hoifung (2006). Efficent inference. In Proceedings of the Twenty-First National Conference on Artificial Intelligence.

Segmentation

Title

Venue

Parag Singla and Pedro Domingos, "Memory-Efficient Inference in Relational Domains" (AAAI-06).

Singla, P., \& Domingos, P. (2006). Memory-efficent inference in relatonal domains. In Proceedings of the Twenty-First National Conference on Artificial Intelligence (pp. 500-505). Boston, MA: AAAI Press.
H. Poon \& P. Domingos, Sound and Efficient Inference with Probabilistic and Deterministic Dependencies", in Proc. AAAI-06, Boston, MA, 2006.
P. Hoifung (2006). Efficent inference. In Proceedings of the Twenty-First National Conference on Artificial Intelligence.

Entity Resolution

Entity Resolution

State of the Art

- Segmentation
- HMM (or CRF) to assign each token to a field
- Entity resolution
- Logistic regression to predict same field/citation
- Transitive closure
- Alchemy implementation: Seven formulas

Types and Predicates

```
token = {Parag, Singla, and, Pedro, ...}
field = {Author, Title, Venue}
citation = {C1, C2, ...}
position = {0, 1, 2, ...}
Token(token, position, citation)
InField(position, field, citation)
SameField(field, citation, citation)
SameCit(citation, citation)
```


Types and Predicates

```
token = {Parag, Singla, and, Pedro, ...}
field = {Author, Title, Venue, ...}
citation = {C1, C2, ...}
position = {0, 1, 2, ...}
```

Token(token, position, citation) InField(position, field, citation) SameField(field, citation, citation) SameCit(citation, citation)

Types and Predicates

```
token = {Parag, Singla, and, Pedro, ...}
field = {Author, Title, Venue}
citation = {C1, C2, ...}
position = {0, 1, 2, ...}
Token(token, position, citation) \longleftarrow Evidence
InField(position, field, citation)
SameField(field, citation, citation)
SameCit(citation, citation)
```


Types and Predicates

```
token = {Parag, Singla, and, Pedro, ...}
field = {Author, Title, Venue}
citation = {C1, C2, ...}
position = {0, 1, 2, ...}
Token(token, position, citation)
InField(position, field, citation)
SameField(field, citation, citation)
SameCit(citation, citation)

\section*{Formulas}
```

Token (+t,i, c) => InField(i,+f,c)
InField (i, $+\mathrm{f}, \mathrm{c}$) $<=>$ InField (i+1, $+\mathrm{f}, \mathrm{c}$)
f ! $=\mathrm{f}^{\prime}=>(!\operatorname{InField}(\mathrm{i},+\mathrm{f}, \mathrm{c}) \mathrm{v}$! InField(i,+f',c))
Token (+t,i,c) ^ InField(i,+f,c) ^ Token(+t,i', $\left.c^{\prime}\right)$
\wedge InField (i', +f, \mathbf{c}^{\prime}) => SameField (+f,c, \mathbf{c}^{\prime})
SameField(+f,c, c') <=> SameCit(c, c')
SameField(f,c, c') ^ SameField(f, c' , c")
=> SameField (f,c,c")
SameCit(c, c') ^ SameCit(c', $\left.c^{\prime \prime}\right)$ => SameCit(c, c")

```

\section*{Formulas}
```

Token(+t,i,c) => InField(i,+f,c)
InField(i,+f,c) << InField(i+1,+f,c)
f != f' => (!InField(i,+f,c) v !InField(i,+f',c))
Token(+t,i,c) ^ InField(i,+f,c) ^ Token(+t,i', c')
^ InField(i',+f,c') => SameField(+f,c,c')
SameField(+f,c,c') <=> SameCit(c,c')
SameField(f,c,c') ^ SameField(f,c' ,c')
=> SameField(f,c,c')
SameCit(c,c') ^ SameCit(c', c') => SameCit(c, c')

```

\section*{Formulas}
```

 Token (\(+\mathrm{t}, \mathrm{i}, \mathrm{c}\)) \(=>\) InField \((i,+f, c\))
 InField (i, \(+\mathrm{f}, \mathrm{c}\)) \(<=\) InField (i+1, \(+\mathrm{f}, \mathrm{c}\))
    ```

```

 Token (+t,i,c) ^ InField (i,+f,c) ^ Token (+t, \(\mathrm{i}^{\prime}, \mathrm{c}^{\prime}\))
 \(\wedge\) InField (i', +f, \(\mathbf{c}^{\prime}\)) => SameField (+f,c, \(\mathbf{c}^{\prime}\))
 SameField(+f,c, c') <=> SameCit(c, c')
 SameField(f,c, c') ^ SameField (f, c' , c")
 => SameField(f,c,c")
 SameCit(c, c') ^ SameCit(c', \(\left.c^{\prime \prime}\right)=>\) SameCit(c, \(\left.c^{\prime \prime}\right)\)
    ```

\section*{Formulas}
```

 Token (+t,i, C\()=>\) InField (i, \(+\mathrm{f}, \mathrm{c}\))
 InField (i, \(+\mathrm{f}, \mathrm{c}\)) \(<>\) InField (i+1, \(+\mathrm{f}, \mathrm{c}\))
 f ! = \(\mathrm{f}^{\prime}=>\left(!\operatorname{InField}(\mathrm{i},+\mathrm{f}, \mathrm{c}) \mathrm{v}\right.\) ! InField(i, \(\left.+\mathrm{f}^{\prime}, \mathrm{c}\right)\))
    ```
    Token (+t,i,c) ^ InField (i,+f,c) ^ Token(+t,i', \(c^{\prime}\) )
    \(\wedge\) InField (i', +f, \(\mathbf{c}^{\prime}\) ) => SameField (+f,c, \(\mathbf{c}^{\prime}\) )
SameField(+f,c, \(\left.c^{\prime}\right)<=>\) SameCit(c, \(\left.c^{\prime}\right)\)
SameField(f,c, c') ^ SameField(f, \(\left.c^{\prime}, c^{\prime \prime}\right)\)
    => SameField (f,c,c")
SameCit(c, c') ^ SameCit(c', \(\left.c^{\prime \prime}\right)=>\) SameCit (c, \(\left.c^{\prime \prime}\right)\)

\section*{Formulas}
```

 Token (+t,i,c) => InField(i,+f, \(C\))
 InField (i, \(+\mathrm{f}, \mathrm{c}\)) \(<=>\) InField (i+1, \(+\mathrm{f}, \mathrm{c}\))
 f ! \(=\mathrm{f}^{\prime}=>(!\operatorname{InField(i,+f,c)} \mathrm{v}\) ! InField(i,+f',c))
    ```
    Token (+t,i,c) ^ InField(i,+f,c) ^ Token(+t,i', c')

SameField \(\left(+f, c, c^{\prime}\right) \Leftrightarrow\) SameCit \(\left(c, c^{\prime}\right)\)
SameField(f,c, c') ^ SameField(f, \(\left.c^{\prime}, c^{\prime \prime}\right)\)
    => SameField(f,c,c")
SameCit(c, c') ^ SameCit(c', c") => SameCit(c, c")

\section*{Formulas}
```

 Token (+t,i,c) => InField(i,+f, \(C\))
 InField (i, \(+\mathrm{f}, \mathrm{c}\)) \(<=>\) InField (i+1, \(+\mathrm{f}, \mathrm{c}\))
 f ! \(=\mathrm{f}^{\prime}=>(!\operatorname{InField(i,+f,c)} \mathrm{v}\) ! InField(i,+f',c))
 Token (+t,i,c) ^ InField(i,+f,c) ^ Token(+t,i', \(\left.c^{\prime}\right)\)
 ^ InField(\(\left.\mathbf{i}^{\prime},+f, c^{\prime}\right)=>\) SameField (\(+\mathrm{f}, \mathrm{c}, \mathrm{c}^{\prime}\))
 SameField (+f, c, \(\left.c^{\prime}\right)<=>\) SameCit (\(C, c^{\prime}\))
 SameField(f,c, \(\left.c^{\prime}\right) ~ \wedge\) SameField (\(\left.f, c^{\prime}, c^{\prime \prime}\right)\)
 => SameField (f,c,c")
 SameCit(c, c') ^ SameCit(c', c") => SameCit(c, c")

```

\section*{Formulas}
```

Token (+t,i, C) $=>$ InField (i, $+\mathrm{f}, \mathrm{c}$)
InField (i, $+\mathrm{f}, \mathrm{c}$) $<=>$ InField (i+1, $+\mathrm{f}, \mathrm{c}$)
f ! $=\mathrm{f}^{\prime}=>(!\operatorname{InField}(\mathrm{i},+\mathrm{f}, \mathrm{c}) \mathrm{v}$! InField(i,+f',c))
Token (+t,i,c) ^ InField (i,+f,c) ^ Token (+t, $\mathrm{i}^{\prime}, \mathrm{c}^{\prime}$)
\wedge InField (i', +f, \mathbf{c}^{\prime}) => SameField (+f,c, \mathbf{c}^{\prime})
SameField(+f, c, $\left.c^{\prime}\right)<=>$ SameCit (c, $\left.c^{\prime}\right)$
SameField(f,c, c') ^ SameField(f, $\left.c^{\prime}, c^{\prime \prime}\right)$
=> SameField (f,c,c")
SameCit (c, c') ^ SameCit (c' , c") => SameCit (c, c")

```

\section*{Formulas}

Token ( \(+\mathrm{t}, \mathrm{i}, \mathrm{c}\) ) \(\Rightarrow>\operatorname{InField}(i,+f, c)\)
InField (i, +f, c) ^ ! Token(".",i, c) <=> InField(i+1, +f, c)
f ! \(=\mathrm{f}^{\prime} \Rightarrow\left(!\operatorname{InField}(i,+f, C) v\right.\) ! InField \(\left(i,+f^{\prime}, C\right)\) )

Token (+t,i, c) ^ InField(i,+f, c) ^ Token(+t, \(\left.\mathrm{i}^{\prime}, \mathrm{c}^{\prime}\right)\)
^ InField(i', +f, \(\mathbf{c}^{\prime}\) ) => SameField (+f,c, \(\mathbf{c}^{\prime}\) )
SameField(+f,c, c') <=> SameCit(c, c')
SameField(f,c, c') ^ SameField(f, \(\left.c^{\prime}, c^{\prime \prime}\right)\)
=> SameField (f,c,c")
SameCit (c, c') ^ SameCit( \(\left.c^{\prime}, c^{\prime \prime}\right)\) => SameCit (c, \(c^{\prime \prime}\) )

\section*{Results: Segmentation on Cora}


\section*{Results: Matching Venues on Cora}


\section*{Overview}
- Representation
- Inference
- Learning
- Applications
- Discussion

\section*{Foundations for Probabilistic Models}
- Graphs are not enough
- We need logic

\section*{Logical Models vs. Graphical Models (I)}
\begin{tabular}{|l|l|l|}
\hline & Graphical models & Logical models \\
\hline \begin{tabular}{l} 
Required by \\
probability theory
\end{tabular} & No & Yes \\
\hline \begin{tabular}{l} 
Representable \\
distributions
\end{tabular} & \begin{tabular}{l} 
All (BNs) \\
Positive (MNs)
\end{tabular} & All \\
\hline \begin{tabular}{l} 
Context-free \\
independences
\end{tabular} & Some & All \\
\hline \begin{tabular}{l} 
Context-specific \\
independences
\end{tabular} & None & All \\
\hline \begin{tabular}{l} 
Normalization \\
constraints
\end{tabular} & Some & All \\
\hline
\end{tabular}

\section*{Logical Models vs. Graphical Models (II)}
\begin{tabular}{|l|l|l|}
\hline & Graphical models & Logical models \\
\hline Inference & Exp(treewidth) & \begin{tabular}{l} 
Circuit \\
complexity
\end{tabular} \\
\hline Visual aid & Yes & No \\
\hline \begin{tabular}{l} 
Densely \\
connected distrs.
\end{tabular} & Unreadable & Readable \\
\hline First-order & Plates & All \\
\hline Lifted inference & No & Yes \\
\hline \begin{tabular}{l} 
Available \\
technology
\end{tabular} & Lots, used & Lots, unused \\
\hline
\end{tabular}```


[^0]:    1．Kernel Machines http：／／svm．first．gmd．de／
    Support Vector Machine
    http：／／jbolivar．freeservers．com／
    SVM－Light Support Vector Machine http：／／ais．gmd．de／～thorsten／svm light／
    4．An Introduction to Support Vector Machines http：／／www．support－vector．net／
    Support Vector Machine and Kernel ．．．References http：／／svm．research．bell－labs．com／SVMrefs．html Archives of SUPPORT－VECTOR－MACHINES http：／／www．jiscmailac．uk／lists／／SUPPORT．．
    Lucent Technologies：SVM demo applet Lucent Technologies：SVM demo applet
    http：／／svm．research．bell－labs．com／SVT／SVMsvt．html 8．Royal Holloway Support Vector Machine http：／／svm．dcs．rhbnc．ac．uk

