Rich Probabilistic Models for

l3’|Holistic Scene Understanding

Daphne Koller
Stanford University

IJCAI 2011

Sunday, August 21, 2011




A lale of Three Bridges™

Perception Understanding

Reasoning N | Learning

Probabilistic Relational

* Final slide, IJCAI 2001 Computers and Thought talk 8/7/01



From Perception to Understanding

“man wearing a backpack, "A cow walking
smoking a cigarette, through the grass
walking a dog” on a pasture by the sea”
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BaS|c ObJect Detectlon
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Outline

" Holistic scene models
= Tndoor scenes
= Qutdoor scenes

= Self-paced learning for latent variables
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'5’ Outline

Stephen
Gould

= Holistic scene models
= Thdoor scenes
= Qutdoor scenes

= Self-paced learning for latent variables
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v

Indoor Scene Reconstruction

= Goal: Recover
= Global geometry
= Furniture layout

= Challenge: Clutters occlude boundaries and
obscure the appearance of major faces
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'6’ Learning with Clutter

[Wang, Gould, Koller ECCV 2010]

Supervised learning
Hedau et al ICCV 2009

* Training data:

= Approach:

= Estimate “box”
C- Supervised classification

of surface labels

| atent variables
Our approach (ECCV 2010)

= Training data:

= Approach:

Model clutter layout as latent
variables

Max-margin learning of joint
model of clutter and “box”
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V Energy Function

[box parameters

[Iearned weights @

features: color, texture, latent variables (binary mask)
perspective, boundary, ... specify clutter layout
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[Wang, Gould, Koller ECCV 2010]

Latent Variables are Tricky

Inferred box

Preferred imputation makes

most of the room clutter
B
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[Wang, Gould, Koller ECCV 2010]

Grounding Latent Variables

Weights
and fixe

hd

Informed prior about latent variables
imposed on the learning process
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[Wang, Gould, Koller ECCV 2010]

'? Effect of Informed Prior

Learning with prior terms Learning w/o prior terms

Inferred box Inferred clutter Inferred box Inferred clutter
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VEX

[Wang, Gould, Koller ECCV 2010]

perimental Results

Pixel-wise classification error

27.0

Hedau '09 undegau '09 diang '10 WMsog '10 NMéapiddd 0 GT clutter
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[Wang, Gould, Koller ECCV 2010]

‘6’ Comparison to labeled clutter

Inferred box layout Inferred clutter layout Hand-labeled clutter layout
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[Wang, Gould, Koller ECCV 2010]

'6’ Comparison to labeled clutter

L~

can be suboptimal
L . S - | J

S
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Stephen Tianshi Pawan
Gould Gao Kumar

= Holistic scene models
= Tndoor scenes
= OQutdoor scenes

'5’ Outline

= Self-paced learning for latent variables
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% [Scene Segmentation

building

y* = argmin, E(x,y; w)

person
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[Gould, Fulton, Koller ICCV 09]

24 Region-Based Model

Variables
R,: pixel-to-region correspondence

A.: region appearance
S,: region semantic class
G,: region geometry

vhz: location of horizon

regions

pixels

Model assigns each pixel to a region
while respecting global coherence

[Gould, Fulton, Koller ICCV 09; Gould, Gao, Koller NIPS 09]
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[Gould, Fulton, Koller ICCV 09]

2*4 Region-Based Model

A,)

r

whorizon(vhz) wregion(sr, Gr’ th) lpboundary(A

: [
) ’.":;.lc
=+ lWric” !
Rty ey oF

Horizon Term Region Term Boundary Term
e.g., vanishing e.g., consistent e.g., difference in
lines appearance and color/texture
location between regions
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VAppIication: 3d Reconstruction

= Estimate camera tilt from location of horizon

= Predict region 3D position using ray projected through
camera plane

_____________________________________ image plane

horizon camera

image

ground plane

[Gould, Fulton, Koller, ICCV 2009]
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24 Example 3D Reconstructions
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2 Object Detection

objects

Si, G / regions

[Gould, Gao, Koller NIPS 09]

IPObjeCt(On,th ) wcontext(on’ Sk)

£ + : I
Object Model Context Term
e.g. wheel-like e.g., cars on road

appearance in
bottom corner
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v

Examples

Typical sliding-window detector results (top two detections per image)

[Gould, Gao, Koller NIPS 09]
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‘6’ Detection Performance

car’ GT regions Ppedestrian’ cow*
c T\, régions A\ ' | | ¥
O \ ; Ot \ 1 cofi} '
@) ) 9 2.
D N \ -
baseline (. Y] ST

recall

improved precision by only |
considerina reaions in context

With correct regions we’d get near perfect detection,
. but region model still has a way to go

* run on subset of 21-class MSRC dataset

[Gould, Gao, Koller NIPS 09]
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?\Lat_ Variables Revisited

= f--esa-.,”' “r Chassis
N o o

n'fé. “i
e e
: Windows
__EB—-L‘ Wheels
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v Latent Variables Revisited

Learn with latent variables encoding
pixel-to-region assignments

100
T
85
/70 o CLL
LSVM
55
40 |
\

MeanSky TreeRoadsras¥VateBldgMntn Fg

[Kumar, Turki, Preston, Koller ICCV11]
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? Real Multi-Class Segmentation

I ye—

Bsky P aero

d

Bbike Mibird [lboat [lbottie lbus [car [Pcat

Bchairlcow Md-tabldlldog horse mbike [ personfjplant jsheep
Bsofa [ trainlitv Mtree Broad @ grass jwaterfbldg Bmntn
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Vf‘FuIIy" Supervised Data

Spedific foreground classes, generic background class

B sky .aero .blke .bll“d Hhoat .bou;le .bus Wcar [Pcat
Blchairflcow d-tabllldog horse limbike [personffjplant fjsheep
Bsofa Wtrain[litv tree road | grass [waterlibldg limntn

PASCAL VOC Segmentation Datasets
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vr‘FuIIy" Supervised Data

$pecific background classes, generic foreground class

B sky laero llbike lbird llboat [lbottie llbus lcar [Jcat
Blchairflcow d-tabllldog horse limbike [personffjplant fjsheep
Bsofa [itrain[litv Mtree Mroad | grass [waterflibldg Jimntn

Stanford Background Datasets
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v Weakly Supervised Data

Bounding Boxes for Objects

M’__‘,.““‘m‘mi SWW’W =ms PASCAL VOC
= . : Detection
/7 i el Datasets

| Thousands of images
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i Weakly Supervised Data

Image-Level Labels

ImageNet,
Caltech...

Thousands of images
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V|Diverse Data
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lé’ Latent Variable Formulation:

" Specific classes

st agree with

W1 W generic classes
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Latent Variable Formulation:

Every row & column in bounding box must
contain pixel labeled with bounding-box class
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l'3’|Latent Variable Formulation:

y — “COW"

iJ
A '

> .
o o

h

Image must contain region labeled with image class
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i Learning with Diverse Data

Comparison to previous results

New

Staki Using weakly labeled data provides

Bac only marginal improvement

b 0
Dataset >3.1%

Imputing latent variables is hard

Padand can introduce significant noise
VOC 0ld

24.7%

Classes
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.3’ Outline n &

Pawan Ben
Kumar Packer

" Holistic scene models

= Self-paced learning for latent variables
= Thstance selection
= Model selection
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v Max-Margin Training
Multi-class SVM (Crammer & Singer, 2001)

learned weights
Feature vector]

Margin | |Slack

Maximize margin between ground truth and all other labels
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V Structured Max-Margin Training

Taskar, Guestrin, Koller, 2003; Tsochantaridis, Hofmann, Joachims, Altun, 2004

structured output

Loss-dependent MarginJ

Exponentially many constraints
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'(3' Max-Margin Structured Prediction

= Tractable models admit polynomial size formulation
[ Taskar, Guestrin, Koller, 2003]

= Cutting plane approach [Tsochantaridis et al., 2004]

= Often requires only MAP inference

= admits tractable algorithms that avoid computing the
partition function

= For many models, only polynomial # of cutting
planes required for “close to optimal” learning
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v

Latent SVM

Felzenswalb, McAllester, Ramanan 2008; Yu, Joachims 2009

Best imputation of h consistent with ground truth label
is better than any imputation and any other label
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v

CCCP

Felzenszwalb et al., NIPS 2007, Yu et al.,

IGMEARR an initial estimate W,

y.,h

|In erence

Update w,_ ; by solving a convex problem

How well can we impute h.?

"
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White sky Green grass Grey road

B sky [ aero lbike Bbird lboat Bbottie Bbus | car [ cat

BchairPcow Wd-tabldlldog horse Bimbike [ personfjplant isheep
Bsofa [train[litv  Mtree Mroad | grass [waterflibldg Bimntn
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White sky Green grass Blue water

Bsky aero lbike Bbird [lboat bottie Blbus [car [ cat
Bchairlcow d-tabldlldog horse Bmbike [ personjplant Jsheep
Bsofa Wtrainlitv  Mtree Mroad | grass [waterlibldg Jimntn
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HARD

Cow? Horse? Cat?

Bsky [laero lbike Bbird [liboat [bottle lbus lcar [Jcat
Bchairlicow Md-tabldlldog horse Jimbike [Wpersonjplant jsheep
Bsofa [trainlitv Mtree Mroad | grass [waterflibldg Jimntn
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HARD

F

Red Sky? Black Mountain?

B sky [ aero llbike Mibird [liboat [lbottile llbus [lcar [Jcat

Bchairlcow d-tabllldog [horse lmbike [ personffjplant jsheep
Bsofa Wtrainlitv  tree Mroad | grass [jwaterlibldg imntn
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[Kumar, Packer, Koller NIPS 2010]

'G'Inspiration: Human Learning

Real
Numbers

Math is for

FAILURE ... BAD LOCAL MINIMUM
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[Kumar, Packer, Koller NIPS 2010]

l'3’Inspiration: Human Learning

Real
Numbers

Euler was
a Genius!!

SUCCESS ... GOOD LOCAL MINIMUM
Curriculum Learning: Bengio et al, ICML 2009
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Bengio et al, ICML 2009
% (Curriculum Learning

Start with easy examples, then consider hard ones

Easy vs. hard???

Easy for human
= Easy for machine
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Self-Paced Learning

Easiness is a property of data sets and classifiers, not
of isolated instances

Computer should figure out for itself which instances
are hard for it right now
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Kumar, Packer and Koller, NIPS

% [self-Paced E«%ﬁ?ning
v. €{0,1}

Start with an initidl estimate w,

update (FEIRIEORE, i Vi/

Update w,,, by solving a convex problem

vi=1

Biconvex vex Se
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[Kumar, Packer, Koller NIPS 2010]

% [self-Paced Learning

Start with an initial estimate w, _
As simple

Update w,, ; by solving a biconvex problem

Decrease K < K/u
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[Kumar, Packer, Koller NIPS 2010]

% Self-Paced Learning
min 2, §w N u\/_ziv@

== v, =1 (use)

By = 0 (don't use)

® o
o

Large K Medium K

Small K
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[Kumar, Packer, Koller NIPS 2010]

"3’ Simple Example: Object Detection

Input x - Image
OutputyeY
Latent h - Box

A - 0/1 Loss

- ——

Y = {"Bison”, “"Deer”, "Elephant”, “Giraffe”, “Llama”, "Rhino”}

Feature W(x,y,h) — Standard HOG

(y*lh*) — I"naxer,heH WT‘P(XIYIh)
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[_1v, =1 (used) [_] v, = 0 (not used)

Imputation — [teration 1
~ Self-paced learning

. -
2

TKumar, Pac

e — ]

ker. Koller NIPS 20107
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[_1v, =1 (used) [_] v, = 0 (not used)

Imputation — Iteration 5
- Self-paced learning

Packer, Koller NIPS 2010]

TKumar,
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[_1v, =1 (used) [_] v, = 0 (not used)

Imputation — Iteration 9
~ Self-paced learning

[Kumar, Packer, Koller NIPS 2010]
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[_1v, =1 (used) [_] v, = 0 (not used)

Imputation — Iteration 13
Self-paced learning

- -
. §

-

.-
" B
L

— [Kumar, Packer, Koller NIPS 20107

Sunday, August 21, 2011




'6’ Self-Paced Learning

Object
detection

DNA motif
finding

17.0000
16.5000
16.0000
15.5000

AGACCTAACCACACATTGCTARTTAGE36.00
GAACAATGTAAATJAT TGARAGGGCTA,
TGATTAAT TAAK CCCATGGTTCGCTCT34.50
GCTCTTAATTAANGAACCCGCTCTTGG,
ATCTGGTCGTCTTACGGTAC'33 00

y = bind/no bind
h = Motif position 31.50

[Kumar, Packer, Koller NIPS 2010]

Test Error

Test Epror
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Kevin Miller, Rafi Witten

'6’ Self-Paced Learning

Object
detection
PASCAL
VOC 2007

y = "Car/No Car”

84.0000
83.2500
82.5000
81.7500
81.0000

Test Accuracy

CCCP

Test "‘lgsﬂtrecision
75.0000

73.5000
72.0000
70.5000
69.0000
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v Image Segmentation Revisited

SPL can make good use of weak annotations

CCCP SPL
24.7% 28.8%

CCCP SPL
53.8% 55.3%
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'5’ Outline H &

Pawan Ben
Kumar Packer

" Holistic scene models

= Self-paced learning for latent variables
= Tnstance selection
= Model selection
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VIModeI Selection

o .t - A .':

X =3 2 . _:f:'. :;'

i A, e e
Linear Cubic Quintic

Which kernel should I use?
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% [Human learning revisited

eneral theory
of relativity

Teach me
physics!!
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% [Human learning revisited

eneral theory
of relativity
says....
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%’ [Human learning revisited

Newton’s theory
Teach me
physics!!
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%’ [Human learning revisited

Newton’s theory
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% [Human learning revisited

Special theory
of relativity
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% [Human learning revisited

eneral theory
of relativity
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Linear

Kernel weights a, = 0

* Bach, Lanckriet, Jordan, ICML 2004

Multiple Kernel Learning

Quintic

qa—lqjl (xlyl h )\
\/a_Z‘PZ (xl yl h)

o Y
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Multiple Kernel Learning*

Minimizing & encourages most complex kernel !!

K=2aK  @,(xyh)= Va?llPl(x,y,h)\
Kernel weights a, > 0 Va,w,(x,y,h)

* Bach, Lanckriet, Jordan, ICML 2004 \ o /
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Self-Paced
v Multiple Kernel Learning

R(a)=2, 1,2,  r; = Rademacher complexity

K=2aK  @,(xyh)= VETl‘Pl(x,y,h)\
Kernel weights a, > 0 Va,w,(x,y,h)

- y
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Self-Paced
v Multiple Kernel Learning

Start with an initial estimate w,, a,

Update w,,, and a.,, by solving convex problem
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SPMKL Behavior

Early iterations:
= h, are incorrectly imputec

= & are large even for complex kernels
= Simple kernels are preferred to minimize R(a)
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SPMKL Behavior

Later iterations:
= h, are correctly imputed

= & is small for complex kernels

= Complex kernels are preferred to minimize &
No need to anneal i
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Imputation — Iteration 1

Bison in Southen Okkabhoma Bison in Southen Oklihoma

Sunday, August 21, 2011




Imputation — Iteration 3

e o4 i
5 r,"::f?;:z':"-‘ &)

Bison in Southen Okkabhoma
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Imputation — Iteration 6

Bison in Southen Okkahoma Bason in Southern Okkabhoma
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Imputation — Iteration 10

Bason in Southern Okkabhoma
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Imputation — At Convergence

Bason in Southern Okkabhoma
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%’ [Classification Accuracy

100.0000
75.0000
50.0000
25.0000

O _
Train Accuracy

= [inear kernel underfits

90.0000

67.5000

e8P0

B Cubic
B unh0

@ SPMKL

UniforrB _

Test Accuracy

= Stronger kernels overfit to noisy imputations and get stuck

at local optimum

= SPMKL only uses strong kernels when imputations are
accurate, avoiding local optimum
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Bounding Box Imputation

Area of Intersection of A and B

Score =

Area of A

0.95

» & o

Avg. Intersection

i
~
a

»

A

m=Cubic |
-"SPMKL

=
PN

10

20
lteration

30 40
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Iﬁ;’

DNA Binding Motif

Input x 73.0000
AGACCTAACCACACATTGCTARTTAGL.
GAACAATGTAAATTATTGARAGGGCTA  70-2°Y0
TGATTCCATGGTTCGCTCT' 675000
GCTCTTAATTAATGAACCCGCTCTTGG,
ATCTGGTCGTCTAATTAGLTACGGTAC  64.7500

y = bind/no bind 62.0000
h = Motif position

Test Accuracy

.. Linear
Cubic
Quintic

m Uniform
SPMKL
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?

Conclusion I

= Pixel-level scene understanding enforces coherent
scene interpretation and contextual consistency

= Training data is an issue

Pixel-level annotations come in I|m|teC| amounts
Human annotations not always ideal to task
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‘6’ Conclusion II

= We need to make better use of data:
= Weakly labeled data
= Diverse data with different levels of annotation
= Unsupervised data

= Latent variables critical
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Conclusion III

= Don't jump too quickly:
= Solve the hardest instances
= Use the richest model

= et the algorithm gradually adapt to increasing
levels of complexity
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'3’|The Future of Education

Janua‘ry 28 2077 | 70_33 Aﬁ',-" | BV 'rina Barseghian KQED | News | Radio | TV | Education | Arts | Food | Science | Community |

Future School Day: Self-Paced Learning,
Creating, and Collaborating

FILED UNDER: Learning Methods, Tech Tools, individualized learning, Khan Academy, project-based-learning,
salman Khan, School Day of the Future

m 1Comment 3 Tweet 47 53 Email Post @ Permalink

Salman Khan has an idea or two about what the future school day should be. In fact, the founder
of Khan Academy — a series of thousands of YouTube videos that teach everything from
calculus to the French Revolution — is working on making it happen as we speak.

It goes something like this:

o Every student working at his or her own pace.
e Students working in groups and helping each other.
e Teachers working one-on-one with students.

e And a school day full of creative, hands-on projects that give kids practical knowledge and
experience.
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|The Future of Machine Learning?

Janua‘ry 28 2077 | 70_33 Aﬁ',-" | BV 'rina Barseghian KQED | News | Radio | TV | Education | Arts | Food | Science | Community |

Future School Day: Self-Paced Learning,
Creating, and Collaborating

FILED UNDER: Learning Methods, Tech Tools, individualized learning, Khan Academy, project-based-learning,
salman Khan, School Day of the Future

m 1Comment 3 Tweet 47 53 Email Post @ Permalink

Salman Khan has an idea or two about what the future school day should be. In fact, the founder
of Khan Academy — a series of thousands of YouTube videos that teach everything from
calculus to the French Revolution — is working on making it happen as we speak.

It goes something like this:

algorithm
o Every stueertt working at his or her own pace.
Kernels
» Stydeats working in groups and helping each other.

al orlthms
¢ Teachers worklng one-on-one with

data set  diverse, weakly—labeled instances
e Anda M full of cma-t-we—ha-nde—cn-prqems that glvewpractlcal knowledge and
experience. algorithms
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