PRECISIATION OF MEANING- A KEY TO SEMANTIC COMPUTING

Lotfi A. Zadeh

Computer Science Division Department of EECS

UC Berkeley

Summer School on Semantic Computing (SSSC)

 Aug 9, 2011 Abridged versionURL: http://www-bisc,cs,berkeley,edu
URL: http://www,cs,berkeley,edu/~zadeh/
Email: Zadeh@eecs,berkeley,edu
Research svoported in part by ONR N00014-02-1-0294, BT Grant CT1080028046, Omron C-रt, Tekes Grant, Azerbaijan Ministry of Communications and Information Tecinolog) Grant, Azerbailan University of Azerbaifan Republic and the BISC Program of UC Berkeley.
Full version. Availabia
$1 / 71$

NOTE

- To facilitate understanding of the basic concepts which underlie precisiation of meaning, a clarification dialogue is included in the Appendix.

$3 / 71$

PRECISIATION OF MEANING-PREAMBLE

 KEY POINTS-What is information?

- Information is a restriction (constraints) on the values which a variable can take.
- Information is carried by propositions. - remples
p. Yera is middle-aged p: cerel fives in a small city near San Fram

CONTINUED

- What is the information which is carried by p?
- To answer this question it is necessary to understand the meaning of p.
- To compute with the information carried by p it is necessary to orecisiate the meaning of p.
- Preasistion of meaning of $p=$ corstiviction of a computational model of p.

SIMPLE EXAMPLESOF PROBLEM-SOLVING WITH INFORMATION DESCRIBED IN A NATURAL LANGUAGE

- Probably John is tall. What is the probability that John is short?
- Most Swedes are tall. What is the average height of Swedes?
Usually Robert leaves office at about Usually it takes Robert about an hor, toget home from work. At what time Ros Robert get home?

PRECISIATION OF MEANING-A KEY TO EVERYDAY REASONING AND DECISION-

MAKING

- The coming decade is Ifkely to be a decade of automation of everyday reasoning and decision-making. In the world of automated reasoning and decision-making, computation with itormation described in a natural lenswage is certain to play a prominent

CONTINUED

- Precisiation of meaning is a prerequisite to computation with information described in a natural language. In turn, understanding of meaning is a prerequisite to precisiattion of meaning.

MEANING VS. PRECISIATION OF MEANING-EXAMPLES

- Robert: Keep under refrigeration.

Lotff: I understand what you mean, but could you precisiate your meaning of "Keep under refrigeration?"

Robert: Vera is middle-aged I understand what you mean, but contcl you precisiate your meaning of "micrllesged?"

IMPRECISION OF NATURAL LANGUAGES

- Natural languages are intrinsically imprecise. Basically, a natural language is a system for describing perceptions. Perceptions are imprecise, reflecting the bounded ability of human sensory organs and ultimately the brain, to celve detail and store information. merocesision of perceptions is passed on to natural languages.

NATURAL LANGUAGE AND PERCEPTIONS

perception description N evocation perceptions

- p: perception

IMPRECISION OF NATURAL LANGUAGES

- There are many different forms of imprecision in natural languages. A principal source of imprecision is unsharpness of class boundaries.
Everyday examples:
Words(phrases, predicates)
atill
- notiveny tall
- mountain
$12 / 71$

CONTINUED

Propositions

- Most Swedes are tall
- Icy roads are slippery
- Speed limit is 65 mph
- Check out time is 1 pm

UNSHARPNESS OF CLASS BOUNDARIES=FUZZINESS

- Words and phrases are labels of classes with unsharp boundaries.
- Fuzziness of words is a concomitant of fuzziness of perceptions.
- Fuzziness of natural languages is roted in unsharpness of class ovindaries.
- Furzes set $=$ precisiated (graduated) class ith unsharp boundaries.

CONTINUED

- Graduation (precisiation)= association of a class which has unsharp boundaries with a scale of degreesmore concretely, with a membership function. Degrees are allowed to be fuzzy (fuzzy sets of type 2).

KEY POINT-REPRESENTATION OF FUZZY

DEGREES

degree
V

perception
 of degree
 (fuzzy)

z-mouse

Z-MOUSE-VISUAL FUZZY DATA ENTRY AND RETRIEVAL

- A Z-mouse is an electronic implementation of a spray pen. The cursor is a round fuzzy mark called an f-mark. The color of the mark is a matter of choice. A dot identiffes the centroid of the mark. The cross-section of an f-mark is a trapezoidal fuzzy set with adjustable parameters.

Age(Vera)

EXAMPLE-GRADUATION OF MIDDLE-AGE

- Imprecision of meaning = fuzziness of meaning
- Computational model of middle-age (trapezoidal fuzzy set)

IMPORTANT POINT

- Assume that Vera is 43 years old.
- The statement "Vera's grade of membership in middle-age is 0.8 ," may be interpreted as "the truth-value of the proposition "Vera is middle-age" given that she is 43, is 0.8. An equivalent interpretation is: Given that Vera is miod a-age, the possibility that she is

HMC-HONDA FUZZY LOGIC TRANSMISSION

Fuzzy Sets

Not Very Low
High

Rentiol Rules:

1. (s,jesed is low) and (shift is high) then (-3)
2. If (sosed is high) and (shift is low) then (+3)
3. If (throits low) and (speed is high) then (+3)
4. If (throt is fow) and (speed is low) then (+1)

BASIC STRUCTURE OF PRECISIATION precisiation language
p: object of precisiation

precisiend
cointension
precisiation
precisiand $=$ model of meaning

- extension= name-based meaning

Fritension = attribute-based meaning

- cotinension = qualitative measure of proximity of meanings
qualitative measure of proximity of the model (precisiand) and the object oftmodeling (precisiend)

GRADUATION OF PERCEPTIONS

- Humans have a remarkable capability to graduate perceptions without any measurements or any computations. More specifically, assume that I am given an object, a, and a class, A, and am asked to put a mark on a scale from indicating my perception of the des ee to which a ffits A. Generally, I wour have no difificulty in doing this.

CONTINUED

- This is what I do when I am asked to rate a restaurant on the scale from 0 to 10.

MORE ON Z-MOUSE

- If I am not sure what the degree is, and I am allowed to use a Z-mouse, I will put a fuzzy f-mark on the scale.
- A fuzzy fimark reflects imprecision of my perception.

CONTINUED

- For example, if I am asked to estimate the probability that Obama will be able to solve the financial crisis, and I put a crisp mark at .7, the crisp mark should be interpreted as the centroid of my fuzzy perception of the probability that oama will be able to solve the francial crisis. What this points to is that cioce often than not fuzzy realworlc. irobabilities are treated as if they were precise.

Z-MOUSE-AN EXAMPLE OF APPLICATION

- Consider the following problem.
- Question: What is the probability that Robert is home at 6:15pm?

Information set-information from nich the answer is to be inferred: Sually Robert leaves office at asout 5 pm .
p_{2} : Uscallyit takes Robert about an hour get home from work.

USE OF Z-MOUSE

NOTE

- A Z-mouse serves primarily as a means of visual fuzzy data entry and retrieval. Computation of an answer to a question is carried out through the use of the machinery of Computing with Words (CW or CWW).
Recisiation of meaning is a
precequisite to computation with
information described in natural langucse.

PHASES OF CW
 $C W=[$ PRECISIATION \longrightarrow COMPUTATION $]$

CW Granular computing

fuzzy logic

- Precisitaton and computation employ the machinaty of fuzzy logic.

GRADUATION OF PROPOSITIONS?

- What is meant by graduation of propositions? If I were asked to graduate the proposition, p: Most Swedes are tall, what would I do? What is the connection between graduation of p and precisiation of p ?

CONTINUED

- In general, a proposition, p, may be associated with a variety of attributes. A basic attribute is the truth-value of p, $t(p)$. In this perspective, graduation of p may be related to graduation of truthvalue of p. As will be seen later, s. aduation of truth-value of p is a Dyseroduct of precisiation of p.

CONTINUED

- The truth-value of p cannot be assessed in isolation. If I were asked what is the truth-value of p: Most Swedes are tall, I would have to know how most and tall are defined, and be given the distribution of heights of ucdes. Let us call the needed inontedge the Information Base, IB(p).

CONTINUED

- The question is: How can the truthvalue be computed given the information base, IB(p)? What is needed for this purpose is restrictionbased semantics, RS. Restrictionbased semantics is rooted in test-score

CONTINUED

- Restriction-based semantics is a generalization of truth-conditional and possible-world semantics. In the following, precisiation of propositions through the use of restriction-based remantics is discussed in greater

PR=CISIATION

OF

THE BASICS OF RESTRICTION-BASED

 SEMANTICS- The point of departure in restrictionbased semantics, RS, is an unconventional definition of the concept of a proposition.

DEFINITION OF A PROPOSITION

- A proposition, p, is a carrier of information.
- Information = a restriction on the values of a variable
- A proposition, p, is a restriction (generalized constraint) on the values of 2arjable, X, which is implicit in p. In Sturols.

CONTINUED

where R is a relation which restricts the values of X and, r, is an indexical variable which defines the way in which R restricts X.

KEY POINT

- In restriction-based semantics, the meaning of a proposition, p, is defined by answers to three questions. First, What is the restricted variable, X ? Second, what is the restricting relation, R? Third, how does R restrict X? In Tatural languages restrictions are pureodminantly possibilistic, expressed

EXAMPLES

p: Vera is middle-aged.
$p \longrightarrow$ Age(Vera) is middle-age

\uparrow
 R (fuzzy set)

Most of Robert's friends are rich.
$p-$ Proportion (rich.friends.Robert/
ivennds. Robert)

GANONICAL FORM of p: CF(p)

- When p is represented as a restriction, the expression X isr R is referred to as the canonical form of $p, C F(p)$. Thus,
CF(p): X isr R
- The concept of a canonical form of p hes a position of centrality in
Mecisjation of meaning of p.
- The cenonical form of p may be interpored as a generalized assignmentstatement.

CONCLUSION

- In conclusion, the concept of a restriction is the centerpiece of restriction-based semantics. The importance of the concept of a restriction derives from the fact that it makes it possible to standardize orecisiation of meaning by expressing ans.ecisiated form of p as a restriction.

THE CONCEPT OF EXPLANATORY DATABASE (ED)

- In restriction-based semantics, the restricted variable, X, and the restricting relation, R, are described in a natural language. The concept of explanatory database, ED, serves to precisiate the meaning of X and R. eenerally, ED is represented as a cortiction of relations, with the names of restions drawn, but not exclusively, from the constituents of p. (Zadeh 1984)

CONTINUED

- For example, for the proposition, p: Most Swedes are tall, ED may be represented as:
ED=POPULATION.SWEDES[Name; Height]+TALL[Height;j]+ MOST[Proportion; μ],

CONTINUED

- In relation to possible-world semantics, ED may be viewed as the description of a collection of possible-worlds, with the understanding that an instantiated is the description of a possible-

CONTINUED

- More generally, an instantiated ED may be viewed as the description of a scenario.
- In the spirit of Carnap, (Meaning and Necessity. Chicago: University of Chicago Press, 1952) an instantiated Eppray be viewed as a state of p, with Eis.raling the role of the state space

CONTINUED

- It is important to note that relations in ED are uninstantiated, that is, the values of database variables-entries in relationsare not specified. A database variable may be a scalar variable, and n-ary variable, a function or a relation. As an Itustration, the database variables in p: M.ast Swedes are tall, are $\mu_{\text {tall }} \mu_{\text {most }}$ and $\boldsymbol{h}_{1}, \ldots, h_{n}$ where h_{i} is the height of Name ${ }_{i z}$ $\boldsymbol{i = 1}, \ldots$, ipstantiated database variables constitute a state of p.

SUMMARY

ED(state space of p (SSp))

THE CONCEPT OF A PRECISIATED CANONICAL FORM, CF*(p)

- After X and R have been identiffed and the explanatory database, ED, has been constructed, X and R may be deffined as functions of ED. As was noted earlier, definition of X and R may be viewed as ecisiation of X and R. Precisiated X arro Rare denoted as X^{*} and R^{*},
respectioly.

CONTINUED

- A canonical form, CF $^{*}(p)$, with precisiated values of X and R, X^{*} and R^{*}, will be referred to as a precisiated canonical form.
- In the following, construction of the precisiated canonical form of p is riscussed in greater detail.

FROM $\mathbf{X *}^{*} \operatorname{sr} R^{*}$

- The concepts discussed so far provide a basis for a relatively straightforward procedure for constructing the precisiated canonical form of a given proposition, p. The precisiated canonical form may be viewed as a computational model of p. Effectively, thenespisiated canonical form may be inte. , ted as a representation of precising
- A summary of the procedure for computing the precisiated canonical form of p is presented in the following.

PROCEDURE

- Step 1. Clarification

The first step is clarification, if needed, of the meaning of p. This step requires world knowledge.
Examples:
Overeating causes obesity $\xrightarrow{\text { clarification }}$ Most of those who overeat are obese.

- Obestiv is caused by overeating clarification Most on those who are obese, overeat.

CONTINUED

- Young men like young women $\xrightarrow{\text { clarification }}$ Most young men Iike mostly young women.
- Swedes are much taller than Italians
$\xrightarrow{\text { clarification }}$ Most Swedes are much taller than most Italians.

Step 2. Identification (explicitation) of X and

Iden wo the constrained variable, X, and the corresponding constraining relation, R.

CONTINUED

- Step 3. Construction of ED.

What information is needed-but not necessarily minimally-to precisiate (define) X and R? An answer to this question identiffes the explanatory database, ED. Equivalently, ED may be reared as an answer to the question: Whe thformation is needed-but not necescerity minimally-to compute the truth-value of p ?

CONTINUED

- Step 4. Precisiation of X and R.

How can the information in ED be used to precisiate the values of X and R ? This step leads to precisiated values of X and R, X^{*} and R^{*}, and thus results in the precisiated canonical form, CF*(p).

- Recisjated X^{*} and R^{*} may be expressed as ronctions of ED and, more specirialy, as functions of database variables,

A KEY POINT

- It is important to observe that in the case of possibilistic constraints, CF* (p) induces a possibilistic constraint on database variables, v_{1}, \ldots, v_{n}, in ED. This constraint may be interpreted as the possibility distribution of database variables in ED or, equivalently, as a essibility distribution on the state SS(p), of p-a possibility d/sintoution which is induced by p. The possio <ity distributtion induced by p may be viewed as the intension of p.

CONTINUED

- Step 5. (Optional) Computation of truthvalue of p. The truth-value of p depends on ED. The truth-value of $p, t(p, E D)$, may be computed by assessing the degree to which the generalized constraint, X^{*} isr R^{*}, is satisfied. It is important to observe that the possibility cin instantiated ED given p is equal to the ruth value of p given instantiated ED (2:dek 1981).
- End of rocedure.

NOTE

- It is important to note that humans have no difficulty in learning how to use the procedure. The principal reason is: Humans have world knowledge. It is hard to build world knowledge into machines.

SUMMARY

GC(X*)

GC(V)

- The generalized constraint on $X^{*}, G C\left(X^{*}\right)$, induces (converts into) a generalized constraint, GC(V), on the database variables, $V=\left(v_{1}, \ldots, v_{n}\right)$. For possibilistic constraints, GC(V) may be expressed

$f(V)$ is A

where is a unction of database variables and A is a fuzzs selation (set) in the space of database variables.

EXAMPLE

- Note. In the following example r=blank, that is, the generalized constraints are possibilistic.

1. p: Most Swedes are tall

Step 1. Clariffcation. Clarification not needed
Sus indentiffcation (explicitation) of X ano ?
X is recentifted as the proportion of tall Swedes among Swedes.

CONTINUED

Correspondingly, R is identified as Most.

Digression.
In fuzzy logic, proportion is defined as a relative ICount. (Zadeh 1983) More seceifically, if A and B are furzy sets in
U, $v:\left\{v_{1}, \ldots, u_{n}\right\}$, the ECount
(carcinality) of A is deffined as:
$\Sigma \operatorname{Count}(A)=\Sigma_{i} \mu_{A}\left(u_{i}\right)$

CONTINUED

The relative ICount of B in A is defined as:

$\Sigma \operatorname{Count}(B / A)=\frac{\Sigma \operatorname{Count}(A I B)}{\Sigma \operatorname{Count}(A)}$ Σ Count (A)

$$
=\frac{\Sigma_{i}\left(\mu_{A}\left(u_{i}\right) \wedge \mu_{B}\left(u_{i}\right)\right)}{\Sigma_{i} \mu_{A}\left(u_{i}\right)}
$$

where ${ }_{I}$-inersection and $\Lambda^{=\text {min }}$

CONTINUED

In application to the example under consideration, assume that the height of ith Swede, Name ${ }_{i}$ is h_{i} and that the grade of membership of h_{i} in $t_{\text {all }}$ is $\mu_{\text {tall }}\left(h_{i}\right), i=1$, ..., n. X may be expressed as:

Step . . construction of ED.

The neea id information is contained in the explarietory database, ED, where

CONTINUED

ED= POPULATION.SWEDES[Name; Height]+ TALL[Height; $\mu]+$ MOST[Proportion; μ]

Step 4. Precisiation of X and R. Pr-velition to ED, precisiated X and R may

beryeressed as:

$X^{*}=\frac{1}{n}\left(\Sigma_{i} \mu_{\text {tall }}\left(h_{i}\right)\right)$

CONTINUED

- The precisiated canonical form is expressed as:

$$
C F^{*} p=X^{*} \text { is } R^{*}
$$

where

$$
X^{*}=\frac{1}{n}\left(\sum_{i} \mu_{\text {tall }}\left(h_{i}\right)\right)
$$

CONTINUED

Step 5. The truth-value of $p, t(p, E D)$, is the degree to which the constraint in Step 4 is satisfied. More concretely,

$$
t(p, E D)=\mu_{\text {most }}\left(\frac{1}{n} \Sigma_{i} \mu_{\text {tal }}\left(h_{i}\right)\right)
$$

The right-hand side of this equation main be riewed as a constraint on database
varianis $h_{t,} \ldots, h_{n y} \mu_{\text {tall }}$ and $\mu_{\text {most }}$

SUMMATION

- Natural languages are pervasively imprecise, especially in the realm of meaning. The primary source of imprecision is unsharpness of class boundaries. In this sense, words, 3.hases, propositions and commands N inatural languages are preponserantly imprecise.

CONTINUED

- Precisiation of meaning is a prerequisite to achievement of higher levels of mechanization of natural language understanding. Precisiation of meaning plays a particularly important role in communication between humans and machines. -uthermore, precisiation of meaning is a precoulisite to problem-solving with inforeation which is described in a naturai ensuage.

CONTINUED

- Despite its intrinsic importance, precisiation of meaning has drawn little, if any, attention within Iinguistics and computational linguistics. There is a reason. In large measure, theories of natural languages are based on Divent logic.

INFORMAL EXPOSITION OF GCS

 CLARIFICATION DIALOGUE- The basic ideas which underlie precisiation of meaning and, more particularly, generalized-constraintbased semantics, are actually quite simple. To bring this out, it is expedient to supplement a formal exposition of forcios dialogue between Robert and Lotin k large measure, the narrative is self-contained.

DIALOGUE

Robert: Lotff, generalized-constraintbased semantics looks complicated to me. Can you explain in simple terms the basic ideas which underlie GCS?

CONTINUED

Lotff: I will be pleased to do so. Let us start with an example, p: Most Swedes are tall. p is a proposition. As a proposition, p is a carrier of information. Without loss of generality, we can assume that p is a carrier of foumation about a variable, X, which sumplicit in p. If I asked you what is this kerable, what would you say?

CONTINUED

Robert: As I see it, p tells me something about the proportion of tall Swedes among Swedes.
Lotff: Right. What does p tell you about the value of the variable?
Robert: To me, the value is not sharply ceitined. I would say it is furzy.

CONTINUED

Lotff: You are right. So what we see is that p may be interpreted as the assignment of a value "most" to the variable, X: Proportion of tall Swedes among Swedes.

CONTINUED

As you can see, a basic difference between a proposition drawn from a natural language and a proposition drawn from a mathematical language is that in the latter the variables and the values assigned to them are explicit, hereas in the former the variables and thenassigned values are implicit.

CONTINUED

There is an additional difference. When p is drawn from a natural language, the assigned value is not sharply definedtypically it is fuzzy, as "most" is. When p is drawn from a mathematical language, the assigned value is sharply ctinned.

CONTINUED

Lotff: There is another important point. When p is drawn from a natural language, the value assigned to X is not really a value of X-it is a constraint (restriction) on the values which X is allowed to take. This suggests an - n eonventional definition of a
proposition, p, drawn from a natural langerge Specifically, a proposition is an inmpliciconstraint on an implicit variables

CONTINUED

I should like to add that the constraints which I have in mind are not standard constraints-they are so-called generalized constraints.

CONTINUED

Robert: What is a generalized constraint? Why do we need generalized constraints?
Lotff: A generalized constraint is expressed as:

X isr R

$82 / 71$

CONTINUED

where X is the constrained variable, R is the constraining relation-typically a fuzzy set-and r is an indexical variable which defines how R constrains X. Let me explain why the concept of a generalized constraint is needed in ccisiation of meaning of a preposition drawn from a natural lane

CONTINUED

Standard constraints are hard in the sense that they have no elasticity. In a natural language, meaning can be stretched. What this implies is that to represent meaning, a constraint must have elasticity. To deal with richness of eaning, elasticity is necessary but not Surficient. Consider the proposition: USuaty riost filights leave on time.

CONTINUED

What is the constrained variable and

 what is the constraining relation in this proposition? Actually, for most propositions drawn from a natural language a large repertoire of constraints is not necessary. What is shificient are three so-called primary co The simery constraints are: possio
CONTINUED

Here are simple examples of primary

 constraints:- Possibilistic constraint:

Robert is possibly French and possibly German

- Probabilistic constraint: With probability 0.75 Robert is German NTh-probability 0.25 Robert is French
- Verstic constraint:

Rober Ns three-quarters German and
one-quak French

CONTINUED

The role of primary constraints is analogous to the role of primary colors: red, green and blue. In most cases, constraints are possibilistic. Possibilistic constraints are much easier to manipulate than probabilistic constraints.

CONTINUED

Robert: Could you clarify what you have in mind when you talk about elasticity of meaning?
Lotff: I admit that I did not say enough. Let me elaborate. In a natural language, meaning can be stretched. Consider a iniole example, Robert is young. Asrume that young is a furzy set and Robet is 30 .

CONTINUED

Furthermore, assume that in a particular context the grade of membership of 30 in young is 0.8. To apply young to Robert, the meaning of young must be stretched. To what degree? In fuzzy logic, the degree of retich is equated to (1-grade of Hembership of 30 in young.) Thus, the dege ef stretch is 0.2.

CONTINUED

Furthermore, the grade of membership of 30 in young is interpreted as the possibility that Robert is 30, given that Robert is young. What this implies is that the fuzzy set young defines the possibility distribution of the variable (Robert). Note that the fuzzy set
yound is a restriction on the values which the variable Age (Robert) can take.

CONTINUED

It is in this sense that the proposition Robert is young is a possibilistic constraint on Age (Robert).

Now, in a natural language almost all words and phrases are labels of fuzzy

What this means is that in a language the meaning of words arrophrases can be stretched, as in the Rober example.

CONTINUED

It is in this sense that words and phrases in a natural language have elasticity. Another important point. What I have said so far explains why in the realm of natural languages most constraints are possibilistic. This is Tsivalent to saying what I said aready, namely, that in a natural langsege most words and phrases are labels of गozzy sets.

CONTINUED

Robert: Many thanks. You clariffed what was not clear to me.

CONTINUED

Lotff: May I add that there is an analogy that may be of assistance. More specifically, the fuzzy set young may be represented as a chain linked to a spring, as shown in the next viewgraph. The left end of the chain is fixed and he position of the right end of the tirg represents the value of the Venerble, Age (Robert).

CONTINUED

The force that is applied to the right end of the spring is a measure of grade of membership. Initially, the length of the chain is 0 , as is the length of the spring.

CONTINUED

Robert: Many thanks for the explanation. The analogy helps to understand what you mean by elasticity of meaning.
Lotff: I should like to add that elasticity of meaning is a basic characteristic of natural languages. Elasticity of meaning is a neglected issue in the Ine 2 tures of linguistics, computational linguistics and philosophy of languases. There is a reason.

CONTINUED

Traditional theories of natural language are based on bivalent logic. Bivalent logic, by itself or in combination with probability theory, is not the right tool for dealing with elasticity of meaning. What is needed for this purpose is logic. In fuzzy logic everything is - 15 allowed to be a matter of degree.

CONTINUED

Robert: Thanks again for the clarification. Going back to where we left of suppose I figured out what is the constrained variable, X, and the constraining relation, R. Is there something else that has to be done?

CONTINUED

Lotff: Yes, there is. You see, X and R are described in a natural language. What this means is that we are not through with precisiation of meaning of p. What remains to be done is precisiation (definition) of X and R.

CONTINUED

For this purpose, we construct a socalled explanatory database, ED, which consists of a collection of relations in terms of which X and R can be defined. The entries in relations in ED are referred to as database variables. diness stated to the contrary, database vertioles are assumed to be uninstantiated.

CONTINUED

Robert: Can you be more specific?
Lotfi: To construct ED you ask yourself the question: What information-in the form of a collection or relations-is needed to precisiate (define) X and R ? Looking at p, we see that to precisiate we need two relations:
. QPULATION.SWEDES[Name; Height]
ancilall-LHeight; MI.

CONTINUED

In the relation TALL[Height; $\mu], \mu$ is the grade of membership of a value of Height, h, in the fuzzy set tall. So far as R is concerned, the needed relation is MOST[Proportion; $\mu]$, where μ is the grade of membership of a value of poportion in the fuzzy set Most.

CONTINUED

Equivalently, it is frequently helpful to ask the question: What is the information which is needed to assess the degree to which p is true?

CONTINUED

At this point, we can express ED as the collection:

ED= POPULATION.SWEDESIName; Height + TALL[Height; M]+ MOST/Proportion; M]

CONTINUED

Robert: So, we have constructed ED for the proposition, p: Most Swedes are tall. More generally, given a proposition, p, how difficult is it to construct ED for p?
Lotfi: For humans it is easy. A few examples suffice to learn how to onstruct ED. Construction of ED is easy Normans because humans have world knowledge. At this juncture, we do not have = algorithm for constructing ED.

CONTINUED

Robert: Now that we have ED, what comes next?
Lotff: We can use ED to precisiate (define) X and R. Let us start with X. In words, X is described as the proportion of tall Swedes among Swedes. Let us ume that in the relation OH ATION.SWFDES there are n names. Then the proportion of tall Sweat among Swedes would be the number of tall Swedes divided by n.

CONTINUED

Here we come to a problem. Tall Swedes is a fuzzy subset of Swedes. The question is: What is the number of elements in a fuzzy set? In fuzzy logic, there are different ways of answering this question. The simplest is referred to as the ECount. More concretely, if A fuzzy set with a membership
function μ_{A} then the ECount of A is deftice
membership in A.

CONTINUED

In application to the number of tall Swedes, the Count of tall Swedes may be expressed as:
¿Count(tall. Swedes) $=\sum_{i=1}^{n} \mu_{\text {al }}\left(\boldsymbol{h}_{\boldsymbol{i}}\right)$
where h_{i} is the height of Name $_{i}$. consequently, the proportion of tall Swedes among Swedes may be written aS:

$$
X=\frac{1}{n}\left(\sum_{i=1}^{n} \mu_{t a l}\left(h_{i}\right)\right)
$$

CONTINUED

This expression may be viewed as a precisiation (definition) of X in terms of ED. More specifically, X is expressed as a function of database variables $h_{1,}, \ldots$, $h_{n}, \mu_{\text {tall }}$ and $\mu_{\text {most }}$ Precisiation (definition) of R is simpler. shecifically, R=Most, where Most is a fures set. At this point, we have preckjated (defined) X and R in terms

CONTINUED

Robert: So what have we accomplished?
Lotff: We started with a proposition, p: Most Swedes are tall. We interpreted p as a generalized (possibilistic) constraint. We identiffed the constrained variable, X, as the oportion of tall Swedes among redes. We identiffed the constraining reaion, R, as a furzy set, Most. Next, we corstucted an explanatory database evp.

Finally, we precisiated (defined) X, R and q in terms of ED, that is, as function of database variables $h_{1,}, \ldots, h_{n,} \mu_{\text {tall }}$ and $\mu_{\text {most }}$ In this way, we precisiated the meaning of p, which was our objective. The precisiated meaning may be expressed as the constraint:

Robert. So, you precisiated the meaning
of p. Wikt opurpose does it serve?

CONTINUED

Lotfi: The principal purpose is the following. Unprecisiated (raw) propositions drawn from a natural language cannot be computed with. Precisiation is a prerequisite to computation. What is important to ugerstand is that precisiation of preaning opens the door to
computation with natural language.

CONTINUED

Robert: Sounds great. I am impressed. However, it is not completely clear to me what you have in mind when you say "opens the door to computation with natural language." Can you clarify it?

With pleasure. Computation with language or, more or less
equrerently, Computing with Words (CW a CWW), is largely unrelated to natural knguage processing.

CONTINUED

More specifically, computation with natural language is focused on computation with information described in a natural language. Typically, what is involved is solution of a problem which is stated in a natural language. Let me go back to our Prample, p: Most Swedes are tall. Given this information, how can you compute the a inase height of Swedes?

Robert: Frankly, your question makes no sense to me. Are you serious? How can you expect me to compute the average height of Swedes from the information that most Swedes are tall?
Lotfi: That is conventional wisdom. A athematician would say that the rooblem is ill-posed. It appears to be illposed for two reasons.

CONTINUED

First, because the given information: Most Swedes are tall, is fuzzy, and second, because you assume that I am expecting you to come up with a crisp answer like "the average height of Swedes is 5' 10." Actually, what I expect is a furzy answer-it would be

CONTINUED

Lotfi: I should like to add a key point. The problem becomes well-posed if p is precisiated. This is the essence of Computing with Words.

Robert: I am beginning to understand the need for precisiation, but my understanding is not complete as yet. Can you explain how the average height of Swedes can be computed from precisiated p?

CONTINUED

From the definition of a possibilistic constraint it follows that the constraint on X may be rewritten as:

$$
t=\mu_{\text {most }}\left(\frac{1}{n} \sum_{i=1}^{n} u_{\text {tall }}\left(h_{i}\right)\right)
$$

CONTINUED

It is this degree, t, that is the truth-value of p. Now, here is a key idea. The precisiated p constrains X. X is a function of database variables. It follows that indirectly p constrains database variables. This has important implications. Let me elaborate.

CONTINUED

What we see is that the constraint induced by p on the h_{i} is of the general form

$$
f\left(h_{1}, \ldots, h_{n}\right) \text { is Most }
$$

What we are interested in is the induced constraint on the average height of Swedes. The average height onswedes may be expressed as:

CONTINUED

This expression is of the general form $g\left(h_{1}, \ldots, h_{n}\right)$ is $? h_{\text {ave }}$

where ? $h_{\text {ave }}$ is a fuzzy set that we want to compute.

CONTINUED

At this stage, we can employ the Extension Principle of fuzzy logic to compute $h_{\text {ave }}$. (Zadeh 1975 I, II \& III) In general terms, this principle tells us that from a given possibilistic constraint of the form

$$
f\left(x_{1}, \ldots, x_{n}\right) \text { is } A
$$

In with A is a furzy y set, we can derive an inducer possibilistic constraint on $g\left(x_{1}, \ldots\right.$,
g $\left(x_{1}, \ldots, x_{n}\right)$ is ? B,
in which B is a fuzzy set defined by the solution of the mathematical program

$$
\mu_{B}(v)=\sup _{x_{1}, \ldots, x_{n}} \mu_{A}\left(f\left(x_{1}, \ldots, x_{n}\right)\right)
$$

subject to

$$
\mu_{B}(v)=\sup _{h_{1}, \ldots, h_{n}} \mu_{\operatorname{most}}\left(f\left(h_{1}, \ldots, h_{n}\right)\right)
$$

subject to

$$
v=\frac{1}{n}\left(\sum_{i=1}^{n} h_{i}\right)
$$

nefifect, this is the solution to the problem which I posed to you. As you can ee, reduction of the original probres to the solution of a mathenetical program is not so simple.

CONTINUED

However, solution of the mathematical program to which the original problem is reduced, is well within the capabilities of desktop computers.

CONTINUED

Robert: I am beginning to see the basic idea. Through precisiation, you have reduced the problem of computation with information described in a natural language-a seemingly ill-posed problem-to a well-posed tractable blem in mathematical programming.
nimpressed by what you have
accomplished, though I must say that the reduction is nontrivial.

CONTINUED

Without your explanation, it would be hard to see the basic ideas. I can also see why computation with natural language is a move into a new and largely unexplored territory. Thank you for clarifying the import of your statement: precisiation of meaning elo:-ns the door to computation with narcral Manguage.

CONTINUED

Lotff: I appreciate your comment. May I add that I believe—but have not veriffed it as yet-that in closed form the solution to the mathematical program may be expressed as:

$$
h_{\text {ave }} \text { is } \geq \text { Most } \times \text { Tall }
$$

Wrev Most $\times \mathrm{Tall}$ is the product of fuzt numbers Most and Tall.
Robert: wis is a very interesting result, if true. It airrees with my intuition.

CONTINUED

Lotff: I appreciate your comment. I would Ifke to conclude our dialogue with a prediction. As we move further into the age of machine intelligence and automated reasoning, the complex of problems related to computation with information described in a natural Anguage, is certain to grow in visibility ano -inoortance.

CONTINUED

The informal dialogue between Robert and Lotff has come to an end.

