Logic in Action

Johan van Benthem, Jan van Eijck and Jan Jaspars

23rd ESSLLI, Ljubljana, Aug 1-5 2011

All politicians are rich No student is rich

No student is politician

All politicians are rich No student is politician

No student is rich

All ∞約b are ♬ No 美伍 is ♬

No ☀伍 is ∞℘℔

All ∞約th are ♬ No 美伍 is ∞約th

No 美伍 is ♬

All ∞ ℘to are ♬ No ☀缶 is ♬

No ☀街 is ∞℘ħ

00

All ∞ ℘to are ♬ No ☀缶 is ♬

No ☀街 is ∞℘ħ

00

I NDEL OF MEMOIRES DE L'HOADEMIE KOIAE	Т	AB	LE	86	MEMOIRES	DE	L'ACADEMIE I	ROYALI
--	---	----	----	----	----------	----	--------------	--------

DES NOMBRES. ••••••••••••••••••••••••••••••••••••	bres entiers au-deffé plus haut degré. Co me fr on difoit, par ou 7 eft la fomme de Et que 1101 ou 13 eft l & un. Cette propriet pefer toutes fortes de & pourroit fervir dan ner plufieurs valeurs a Cette expression de	ous du dou lar icy, c'el e exemple, e quatre, d a fomme de é fert aux E maffes avec s les monno avec peu de les Nombre	t com- que 111 de deux 11 huit, quat flayeurs po peu de poid yes pour do pieces.	$\frac{1}{1}$	
• • 1000 • • 1000 • • 1001 • • 1010 • • 1010	Faire tres-facilement Pour l'Addition par exemple.	110 6 111 7	s d'operatio	1110 14 10001 17	
• • I • I I I II • • I 10 0 I2 • • I I 0 I I3 • • I I I C I4 • • I I I I I I	Pour la Sou- fraction. IIOI II IIOI II IIOOOI IG IIIII III				
• 1 0 0 0 0 16 • 1 0 0 0 1 17 • 1 0 0 1 0 18 • 1 0 0 1 1 19	Pour la Mul- tiplication.		101 5 11 3 101 101	101 5 101 5 101 101 1010	
• 1 0 1 0 1 21 • 1 0 1 1 0 22 • 1 0 1 1 1 23 • 1 1 0 0 24	Pour la Division.		ζ. 	1100.1125	
• I I O O I 25 • I I O I O 26 • I I O I I 27 • I I I O I 28 • I I O I 29	Et toutes ces operations sont si aisées, qu'on n'a jamais besoin de rien effayer ni deviner, comme il faut faire dans la division ordinaire. On n'a point besoin non-plus de rien apprendre par cœur icy, comme il faut faire dans le calcul ordinaire, où il faut scavoir, par exemple, que 6 & 7 pris ensemble sont 13; & que 5 multiplié par 3 donne 15, suivant la Table d'une sois un est un, qu'on ap- pelle Pythagorique. Mais icy tout cela se trouve & se prouve de source, comme l'on voit dans les exemples pré- cedens sous les signes D & O.				
• 1 1 1 1 0 30 • 1 1 1 1 1 31 1 0 0 0 0 0 32 &c. %c					

"... I'm not good at mathematics, but I don't bother. Numbers, triangles, functions .. it's just *not* my world. But, yes, logic I *bave to* be good at it. It's about my own thoughts!"

Student of the Amsterdam University College.

"... I'm not good at mathematics, but I don't bother. Numbers, triangles, functions .. it's just *not* my world. But, yes, logic I *bave to* be good at it. It's about my own thoughts!"

Student of the Amsterdam University College.

All men are mortal

- 1. At least one of them is guilty.
- 2. Not all of them are guilty.
- 3. Mrs White is guilty only if Colonel Mustard helped her (is guilty too).
- 4. If Miss Scarlet is innocent then so is Colonel Mustard.

1.
$$w \lor s \lor m$$

2. $\neg(w \land s \land m)$
3. $w \rightarrow m$
4. $\neg s \rightarrow \neg m$

innocent	innocent	innocent
innocent	innocent	guilty
innocent	guilty	innocent
innocent	guilty	guilty
guilty	innocent	innocent
guilty	innocent	guilty
guilty	guilty	innocent
guilty	guilty	guilty

0	0	0
0	0	I
0		0
0	I	I
I	0	0
I	0	I
I		0
I		I

0	0	0
0	0	I
0		0
0		I
I	0	0
I	0	I
I		0
I		

Colone Mustar

0	0	0
0	0	Ι
0		0
0		Ι
	0	0
	0	Ι
		0

0	0	0
0	0	Ι
0		0
0		Ι
Ι	0	0
Ι	0	Ι
Ι		0

0	0	0
0	0	Ι
0		0
0		Ι
	0	0
	0	Ι
		0

$w \, \lor \, s \, \lor \, m$

0	0	0
0	0	I
0		0
0	I	Ι
Ι	0	0
Ι	0	Ι
Ι		0

 $\mathbf{w} \lor \mathbf{s} \lor \mathbf{m}$

$\mathbf{\wedge}$	•	$\mathbf{\wedge}$	
0	0	0	
0	0	I	
0		0	
0		I	
	0	0	
	0	I	
		0	

 $\mathbf{w} \lor \mathbf{s} \lor \mathbf{m}$

\mathbf{A}	$\mathbf{\wedge}$	$\mathbf{\wedge}$	
0	0	0	
0	0		
0		0	
0			
	0	0	
	0		
		0	

0	0	0	
0	0	0	
0	0		
0		0	
0			
	0	0	
I	0	I	
		0	

 $w \rightarrow m$

$\mathbf{\wedge}$	$\mathbf{\cap}$	\land	
0			
0	0	I	
0	I	0	
0	I	Ι	
	0	\land	
	0	I	
	0		
	0	 	
	0	 	

$\boldsymbol{\wedge}$	\land	\land	
0			
0	0	I	
0	I	0	
0	I	Ι	
	Δ	0	
	0	 	
	0		
	0	 	
	0		

 $\neg s \rightarrow \neg m$

0	0		
0			
-0	0		
•		•	
0	I	0	
0		Ι	
		$\mathbf{\wedge}$	
-			
-	U		
		0	
	•		

Validity

An inference is *valid* if and only if its **conclusion** is **true** in every situation at which **all the assumptions** (premises) **hold**.

Counter-example

A *counter-example* of an inference is a situation at which **all the premises hold** but the **conclusion does not**.

Invalidity

An inference is *invalid* if and only if there **exists a counter-example** of it.

Invalidity

An inference is *invalid* if and only if there **exists a counter-example** of it.

⊭

Wednesday, 3 August 2011

Invalidity

An inference is *invalid* if and only if there **exists a counter-example** of it.

$$\phi_{I},...,\phi_{n} \not\models \psi$$

Validity

An inference is *valid* if and only if it has **no counter-examples**.

 $\phi_{I,\ldots,\phi_{n}} \models \psi$

Logical Equivalence

Two propositions/formulas are *logically equivalent*, if and only if they are true under **the same circumstances**.

Logical Equivalence

Two propositions/formulas are *logically equivalent*, if and only if they are true under **the same circumstances**.

$\phi \ \equiv \ \psi$

Logical Equivalence

Two propositions/formulas are *logically equivalent*, if and only if they are true under **the same circumstances**.

$$\phi \models \psi \quad and \quad \psi \models \phi$$
$$\phi \equiv \psi$$

Valid and satisfiable formulas

A formula is *valid* if it is true under all circumstances.

A formula is *satisfiable* if it is true under certain circumstances.

Valid and satisfiable formulas

A formula is *valid* if it is true under all circumstances. $\models \psi$

A formula is *satisfiable* if it is true under certain circumstances.

Valid and satisfiable formulas

A formula is *valid* if it is true under all circumstances. $\models \psi$

A formula is *satisfiable* if it is true under certain circumstances.

$$\not\models \neg \psi$$

 $\neg \phi$

Λ	Ι	Ο	V	Ι	0	\rightarrow	Ι	0	\Leftrightarrow	Ι	0		_
Ι	Ι	Ο	Ι	Ι	Ι	Ι	Ι	0	Ι	Ι	0	Ι	0
Ο	0	0	0	Ι	0	0	Ι	Ι	0	0	Ι	0	Ι

٨	Ι	0	V	Ι	0	\rightarrow	Ι	0	\Leftrightarrow	Ι	0			
Ι	Ι	0	Ι	Ι	I	Ι	I	0	Ι	Ι	0	Ι	0	
0	0	0	0	Ι	0	0	Ι	I	0	0	Ι	0	Ι	

 $\phi \oplus \psi \equiv \neg(\phi \leftrightarrow \psi) \equiv \neg\phi \leftrightarrow \psi$

$$\phi \oplus \psi \equiv \neg(\phi \leftrightarrow \psi) \equiv \neg\phi \leftrightarrow \psi$$
$$\phi \leftrightarrow \psi \equiv (\phi \rightarrow \psi) \land (\psi \rightarrow \phi)$$

$$\phi \oplus \psi \equiv \neg(\phi \leftrightarrow \psi) \equiv \neg\phi \leftrightarrow \psi$$
$$\phi \leftrightarrow \psi \equiv (\phi \rightarrow \psi) \land (\psi \rightarrow \phi)$$
$$\phi \rightarrow \psi \equiv \neg\phi \lor \psi \equiv \neg(\phi \land \neg\psi)$$

$$\phi \oplus \psi \equiv \neg(\phi \leftrightarrow \psi) \equiv \neg\phi \leftrightarrow \psi$$
$$\phi \leftrightarrow \psi \equiv (\phi \rightarrow \psi) \land (\psi \rightarrow \phi)$$
$$\phi \rightarrow \psi \equiv \neg\phi \lor \psi \equiv \neg(\phi \land \neg\psi)$$
$$\phi \land \psi \equiv \neg(\neg\phi \lor \neg\psi)$$

Expressivity

Expressivity

Expressivity

Also by \neg and \land .

Expressivity

Also by \neg and \land .

Also by \neg and \rightarrow .

Expressivity

Also by \neg and \land .

Also by \neg and \rightarrow .

Also by **†**!

Wednesday, 3 August 2011

Ρ	P	r	Ρ	٧	(q	٨	r)
0	0	0	0	0	0	0	0
0	0	I	0	0	0	0	
0	I	0	0	0		0	0
0	I	I	0				
I	0	0			0	0	0
I	0	I			0	0	
I	I	0				0	0
I	I	I		I			

Ρ	P	r	(р	٧	q)	٨	r
0	0	0	0		0		0
0	0		0		0		I
0	Ι	0	0		Ι		0
0	Ι	Ι	0		Ι		Ι
	0	0	I		0		0
I	0	Ι	Ι		0		Ι
	Ι	0	Ι		Ι		0
Ι	Ι	Ι	Ι		Ι		Ι

Ρ	P	r	(p	٧	q)	٨	r
0	0	0	0	0	0		0
0	0	Ι	0	0	0		Ι
0	Ι	0	0	I			0
0	Ι	Ι	0	Ι			Ι
	0	0		I	0		0
I	0	Ι		I	0		Ι
		0					0
I	Ι	Ι		I			Ι

Ρ	p	r	(P	٧	q)	٨	r
0	0	0	0	0	0	0	0
0	0	I	0	0	0	0	
0	Ι	0	0		_	0	0
0	I	I	0			Ι	
I	0	0			0	0	0
I	0	I			0	Ι	
Ι	Ι	0				0	0
Ι	Ι	I				Ι	

Ρ	P	r	Ρ	٧	(q	٨	r)	Ρ	p	r	(p	٧	q)	٨	r
0	0	0	С	0	0	0	0	0	0	0	0	0	0	0	0
0	0	Ι	С	0	0	0		0	0	I	0	0	0	0	
0		0	С	0		0	0	0		0	0			0	0
0	I	I	С					0	I	I	0			Ι	
I	0	0			0	0	0	Ι	0	0			0	0	0
I	0	I			0	0		I	0	I			0	Ι	
I	I	0				0	0	I	I	0				0	0
I	I	Ι	I	Ι				I	I	Ι				Ι	

 $(p \lor q) \land r \models p \lor (q \land r)$

$p \lor (q \land r) \nvDash (p \lor q) \land r$

Ρι	P 2	•••	Pn	f
0	0	•••	0	Ι
0	0	•••	Ι	Ι
•••	•••	•••	0	0
•••	•••	•••	•••	•••
		•••	0	0
		•••		

Ρι	P 2	•••	Pn	f
0	0	•••	0	Ι
0	0	•••	I	I
•••	•••	•••	0	0
•••	•••	•••	•••	•••
I		•••	0	0
I		•••		

 $\phi_f = (\neg p_I \land \dots \land \neg p_n) \lor$ $(\neg p_I \land \dots \land p_n) \lor$ V $(p_1 \wedge ... \wedge p_n)$

$$(-x) x = 0$$
 $x0 = 0$ $x I = x$
 $(-x) + x = I$ $x + 0 = x$ $x + I = I$

(not x) and x = false (not x) or x = true	x and false = false x or false = x	<i>x and true = x</i> <i>x or true = true</i>
x and $x = x$	x and $y = y$ and x	
x or x = x	x or y = y or x	

 $\begin{array}{ll} x \ and \ (y \ and \ z) = (x \ and \ y) \ and \ z \\ x \ or \ (y \ or \ z) = (x \ or \ y) \ or \ z \\ \end{array} \qquad \begin{array}{ll} x \ and \ (x \ or \ y) = x \\ x \ or \ (x \ and \ y) = x \end{array}$

not not x = x

not (x and y) = (not x) or (not y)not (x or y) = (not x) and (not y)

x and (y or z) = (x and y) or (x and z)x or (y and z) = (x or y) and (x or z)

- $(\neg \phi) \land \phi = false \qquad \phi \land false = false \qquad \phi \land true = \phi$ $(\neg \phi) \lor \phi = true \qquad \phi \lor false = \phi \qquad \phi \lor true = true$
 - $\phi \land \phi = \phi \qquad \phi \land \psi = \psi \land \phi$ $\phi \lor \phi = \phi \qquad \phi \lor \psi = \psi \lor \phi$
 - $\phi \land (\psi \land \chi) = (\phi \land \psi) \land \chi \qquad \phi \land (\phi \lor \psi) = \phi$ $\phi \lor (\psi \lor \chi) = (\phi \lor \psi) \lor \chi \qquad \phi \lor (\phi \land \psi) = \phi$

 $\neg \neg \phi = \phi$

 $\neg (\phi \land \psi) = (\neg \phi) \lor (\neg \psi)$ $\neg (\phi \lor \psi) = (\neg \phi) \land (\neg \psi)$

 $\phi \land (\psi \lor \chi) = (\phi \land \psi) \lor (\phi \land \chi)$ $\phi \lor (\psi \land \chi) = (\phi \lor \psi) \land (\phi \lor \chi)$

$$\begin{array}{cccc} (\neg \phi) \land \phi = \bot & \phi \land \bot = \bot & \phi \land \top = \phi \\ (\neg \phi) \lor \phi = \top & \phi \lor \bot = \phi & \phi \lor \lor = \top \\ \phi \land \psi = \phi & \phi \land \psi = \psi \land \phi \\ \phi \lor \phi = \phi & \phi \lor \psi = \psi \lor \phi \end{array}$$

 $\phi \land (\psi \land \chi) = (\phi \land \psi) \land \chi \qquad \phi \land (\phi \lor \psi) = \phi$ $\phi \lor (\psi \lor \chi) = (\phi \lor \psi) \lor \chi \qquad \phi \lor (\phi \land \psi) = \phi$

 $\neg \neg \phi = \phi$

 $\neg (\phi \land \psi) = (\neg \phi) \lor (\neg \psi)$ $\neg (\phi \lor \psi) = (\neg \phi) \land (\neg \psi)$

 $\phi \land (\psi \lor \chi) = (\phi \land \psi) \lor (\phi \land \chi)$ $\phi \lor (\psi \land \chi) = (\phi \lor \psi) \land (\phi \lor \chi)$

 $\phi \land \psi \vDash \phi$

 $\phi \land \psi \vDash \phi$

$(\phi \land \psi) \land \phi = \phi \land \psi$

 $\phi \land \psi \vDash \phi$

$$(\phi \land \psi) \land \phi =$$

$$(\psi \land \phi) \land \phi =$$

$$\psi \land (\phi \land \phi) =$$

$$\psi \land \phi =$$

$$\phi \land \psi$$

$$(\phi \land \psi) \land \phi = \phi \land \psi$$

 $\phi \land \psi \vDash \phi$

$$(\phi \land \psi) \land \phi = (\psi \land \phi) \land \phi = \psi \land (\phi \land \phi) = \psi \land (\phi \land \phi) = \psi \land \phi = \phi \land \psi$$

$$(\phi \land \psi) \land \phi = \phi \land \psi$$

$$I. \phi \rightarrow (\psi \rightarrow \phi)$$

2. $(\phi \rightarrow (\psi \rightarrow \chi)) \rightarrow ((\phi \rightarrow \psi) \rightarrow (\phi \rightarrow \chi))$
3. $(\neg \phi \rightarrow \neg \psi) \rightarrow (\psi \rightarrow \phi)$

1., 2. and 3. are theorems (for every ϕ , ψ and χ)

Every instance of a theorem is a theorem.

If ϕ and $\phi \rightarrow \psi$ are theorems then so is ψ (modus ponens).

Jan Łukasiewicz

Part III chapter 9

Natural Deduction, Proofs and Arguments

 ϕ

 $\psi \\ \phi \rightarrow \psi$

+ modus ponens = complete deduction system for propositional logic!

Gerhard Gentzen

 $\phi \rightarrow \psi$ ψ ϕ • $\phi \rightarrow \psi$ ϕ • ψ

Gerhard Gentzen

 \rightarrow Intro \rightarrow Elim \perp Elim

Gerhard Gentzen

 \rightarrow Intro \rightarrow Elim \perp Elim

Part III chapter 8

Tableaux, Testing Validity

Evert Beth

$\begin{array}{c} & ? \\ p \land (q \lor r) \vDash (p \land q) \lor r \end{array} \end{array}$

$p \land (q \lor r) \bullet (p \land q) \lor r$

Wednesday, 3 August 2011

 $p \land (q \lor r) \bullet (p \land q) \lor r$ $p, q \lor r \bullet (p \land q) \lor r$

$$P \land (q \lor r) \bullet (P \land q) \lor r$$
$$P, q \lor r \bullet (P \land q) \lor r$$
$$P, q \lor r \bullet P \land q, r$$

$$\neg q, P \rightarrow q | \neg P$$

$$q, P \rightarrow q, P |$$

$$P \rightarrow q, P | q$$

$$P \rightarrow q, P | q$$
$\neg q, p \rightarrow q \models \neg p$

$$\neg q, P \rightarrow q \ \neg P$$
$$\neg q, P \rightarrow q, P \ P \rightarrow q, P \ P \rightarrow q, P \ Q$$
$$P \rightarrow q, P \ Q$$
$$P \rightarrow q, P \ Q$$

$$\begin{array}{c} \neg P, P \rightarrow q \\ \neg P, P \rightarrow q, q \\ P \rightarrow q, q \\ q \quad P \rightarrow q, q \\ q \quad P, P \quad q, q \quad P \\ q \quad P, P \quad q, q \quad P \\ \end{array}$$

Both branches are open. They represent the same counterexample, i.e., the valuation V with V(q)=I and V(p)=o.

 $\phi_{I},...,\phi_{n} \models \psi$

if & only if

 $\phi_{I},...,\phi_{n}\circ\psi$

can be rewritten as a closing tableau (no counter-examples)

This property holds for propositional logic, and also for predicate logic.

 $\phi_{I},...,\phi_{n} \nvDash \psi$

if & only if

 $\phi_{I},...,\phi_{n}\circ\psi$

can be rewritten as a tableau with an open branch (repr. a counter-example)

This property holds for propositional logic, but not for predicate logic.

Logic in Action

Johan van Benthem, Jan van Eijck and Jan Jaspars

23rd ESSLLI, Ljubljana, Aug 1-5 2011

All ∞ ℘to are ♬ No ☀缶 is ♬

No ☀街 is ∞℘ħ

00

All ∞ ℘to are ♬ No ☀缶 is ♬

No ☀街 is ∞℘ħ

00

Aristotelian diagram (sem)

No student is politician

All politicians are rich No student is politician

No student is rich

Aristotle

No student is politician

All politicians are rich No student is politician

No student is politician

All politicians are rich No student is politician

No student is politician

All politicians are rich No student is politician

No student is politician

All politicians are rich No student is politician

No student is politician

All politicians are rich No student is politician

No student is politician

All politicians are rich No student is politician

No student is politician

All politicians are rich No student is politician

No student is politician

All politicians are rich No student is politician

Some students are rich

All politicians are rich Some students are rich

Some students are rich

All politicians are rich Some students are rich

Some students are rich

All politicians are rich Some students are rich

Some students are rich

All politicians are rich Some students are rich

Some students are rich

All politicians are rich Some students are rich

Some students are rich

All politicians are rich Some students are rich

Some students are rich

All politicians are rich Some students are rich

All politicians are rich Some students are rich

All politicians are rich Some students are rich

All politicians are rich Some students are rich

Some students are politician

All politicians are rich Some students are rich

Some students are politician

All politicians are rich Some students are rich

Some students are politician

 $\phi_{I},...,\phi_{n} \models \psi$

if & only if

 $\phi_{I},...,\phi_{n}\circ\psi$

can be rewritten as a closing tableau (no counter-examples)

This property holds for propositional logic, and also for predicate logic.

 $\phi_{I},...,\phi_{n} \nvDash \psi$

if & only if

 $\phi_{I},...,\phi_{n}\circ\psi$

can be rewritten as a tableau with an open branch (repr. a counter-example)

This property holds for propositional logic, but not for predicate logic.

Tuesday, 2 August 2011

$$\begin{array}{l} x^2 = x + I \\ \Leftrightarrow \\ x^2 - (x + I) = 0 \end{array}$$

A syllog. inference is valid if & only if its anti-logism not. sattisfiable.

Christine Ladd

A syllog. inference is valid if & only if its **anti**-logism_**not**_ sattisfiable.

Christine Ladd

All politicians are rich No student is rich

No student is politician

is valid if and only if

All politicians are rich No student is rich Some student is politician

is not satisfiable

Sattisfiability tests for sets of Aristotelean forms

=

Set up diagram/table of all combinations ... update with all the universal information (All, No = remove objects) ... then check whether you still can add objects to support all the existential forms (Some, Not-all).

₩

... symbolic version can be done in propositional logic with low complexity.

Language of predicate logic

Predicates P,Q,R,A,B,...
Names (constants) a,b,c,...
Variables x,y,z,....
Functional Symbols

Lexicon

Logical symbols

Basic (atomic) formulas

Mj Vm Hjm Gjxm

Basic (atomic) formulas

Predicate term₁ ... term_n

For now, term is either constant or variable

Tuesday, 2 August 2011

Basic (atomic) formulas (n=1)

Predicate term

Predicate stands for a property (unary or monadic predicate)

Basic (atomic) formulas (n=2)

Predicate term₁ term₂

Predicate stands for a relation (binary predicate)

Basic (atomic) formulas (n=3)

Predicate term₁ term₂ term₃

Ternary predicate

Tuesday, 2 August 2011

Basic (atomic) formulas

Predicate term₁ ... term_n

n-ary Predicate

Tuesday, 2 August 2011

Basic (atomic) formulas (n=0)

Predicate

0-ary Predicate = propositional variable as in propositional logic

Basic (atomic) formulas

Mj Wm Ljm Gjxm

John is a man

Mary is a woman

John loves Mary

John gives 'something unknown' (x) to Mary

Basic (atomic) formulas

Mj Wm Ljm Gjxm

l is odd

2 is even

I is smaller than 2

There is 'something unknown' (x) between I and 2

Connectives

- $\bullet Mj \ \land Wm$
- •Mj →¬Mm
- •(Mj∧Wm)→Ljm
- •Hmj→(Mj∨Ljj)
- •(Lmj∧¬Ljj)→Mj

Don't!

BFx Sj∧pf

x is a blue (B) bike (F) John (j) and Peter (p) are students of philosophy (f)

Write ...

$\mathbf{Bx} \wedge \mathbf{Fx} \qquad \qquad \mathbf{Sjf} \wedge \mathbf{Spf}$

x is a blue (B) bike (F) John (j) and Peter (p) are students of philosophy (f)

Don't

Sj∧pf∨w

John and Peter are students of philosophy or mathematics

(Sj∧pf) ∨ (Sj∧pm) [?] (Sjf∨m) ∧ (Spf∨m)

Write ...

(Sjf ∧ Spf) ∨ (Sjw ∧ Spw) Or (Sjf ∨ Sjw) ∧ (Spf ∨ Spw)

Quantifiers

- •∃x Mx
- ∙∃у ¬Lуу
- ∙∀x (Mx↔¬Vx)
- ∙∀x∃y Hxy
- • $\forall x(Hxx \rightarrow \exists y \neg Hyx)$

Quantifiers

∀x∃y Hxy ~ "everything R-s something".
∃y∀x Hxy ~ "there's something R-ed by everything".
∀x∃y Hyx ~ "everything is R-ed by something".
∃y∀x Hyx ~ "there's something which R-s everything".

∙∀x∃y Rxy	Everybody <i>loves</i> somebody
∙∀x∃y Ryx	Everybody is loved by somebody
•∃y∀x Rxy	There is at least one person who <i>is loved by</i> everybody
•∃y∀x Ryx	There is at least one person who <i>loves</i> everybody

Graphs

∀x∃yRxy

Graphs

∀x∃yR**yx**

Graphs

∃y∀xRxy

Graphs

∃y∀xR**yx**

"Arist. Tableau" diagram (lang.)

"Arist. Tableau" diagram (1)

"Arist. tableau" diagram (2)

$\forall x Px \rightarrow \forall x Qx \not\models \forall x (Px \rightarrow Qx)$

Tuesday, 2 August 2011

 $\forall x Px \rightarrow \forall x Qx \circ \forall x (Px \rightarrow Qx)$

$\forall x (Px \rightarrow Qx) \vDash \forall x Px \rightarrow \forall x Qx$

 $\forall x (Px \rightarrow Qx) \circ \forall x Px \rightarrow \forall x Qx$

Quantifier rules

Problem I

???

Solution I $\circ = 1$ $\circ = 1$

$\forall x \ Px \circ \exists x \ Px$

Solution I $\circ = 1$ $\circ = 1$

Solution I O = I O = I

Solution I $\circ = 1$ $\circ = 1$

Solution I O = I O = I

In every situation there is always at least one object!

 $\bullet \exists x (Tx \rightarrow \forall yTy)$

has not been applied to all objects (2)!

- Add a ϕ -er / non- ϕ -er, ánd
- re-activate all universals (all = \forall , no = \exists)

Rules for quantifiers (fin)

$\exists y \forall x Rxy \circ \forall x \exists y Rxy$

∀x ∃y Rxy ∘ ∃y ∀x Rxy

2

Extended Rules for existentials

Open branch: counter-example $R = \{\langle I, I \rangle, \langle 2, 2 \rangle\}$

$\forall x \exists y Rxy, \forall x \forall y \forall z((Rxy \land Ryz) \rightarrow Rxz) \nvDash \exists x \exists y(Rxy \land Ryx)$

....but there exist **only** counter-examples with **infinitely many** objects!

$\forall x \exists y Rxy, \forall x \forall y \forall z((Rxy \land Ryz) \rightarrow Rxz) \circ \exists x \exists y(Rxy \land Ryx)$

$\forall x \exists y Rxy, \forall x \forall y \forall z((Rxy \land Ryz) \rightarrow Rxz) \circ \exists x \exists y(Rxy \land Ryx)$

