Logic in Action

Johan van Benthem, fan van Eijck and Fan Faspars

23rd ESSLLI, Ljubljana, Aug I5 20 II

All politicians are rich No student is rich

No student is politician

All politicians are rich No student is politician

No student is rich

All ∞ §ib are β No 伍 is

No is ∞ 反伍
All ∞ 反olb are \boldsymbol{F} No－伍 is ∞ 反

No 漂伍 is

All ∞ §
No - is \boldsymbol{F}
 \bigcirc°

All ∞ §
No - is \boldsymbol{F}
 \bigcirc^{\bigcirc}

TABLE 86 Memoires de l'Academie Royale DES bres enticrs au-deffous du double du roola Nombres. plus haut degré. Car icy, c'eft com-

me fir on difoit, par exemple, que in ou 7 eft la fomme de quatre, de deux Et que inor ou ij eft la fomme de huit, quatre \& un. Cetre proprieté fert aux Effayeurs pour
pefer toutes fortes de mafles avec peu de poids, \& pourroit fervir dans les monnoyes pour donner plufieurs valeurs avec peu de pieces.

Cette expreffion des Nombres étant établie, fert à faire tres-facilement toutes fortes d'operations.

> Pour la SornAraction.
\qquad Et toutes ces operations font fi aifées, qu'on n'a jamais befoin de rien effayer ni deviner, comme il faut faire dans la divifion ordinaire. On n'a point befoin non-plus de rien apprendre par cocur icy, comme il faut faire dans le calcul ordinaire, où il faut fçavoir, par exemple, que $6 \& 7$ pris enfemble font 13 ; \& que s multiplié par 3 donne is, fuivant la Table d'une fois an eft wn, qu'on appelle Pythagorique. Mais icy tout cela fe trouve \& fe prouve de fource, comme l'on voit dans les exemples pré. cedens fous les fignes $D \& \odot$.
"... I'm not good at mathematics, but I don't bother. Numbers, triangles, functions .. it's just not my world. But, yes, logic I bave to be good at it. It's about my own thoughts!"

Student of the Amsterdam University College.
"... I'm not good at mathematics, but I don't bother. Numbers, triangles, functions .. it's just not my world. But, yes, logic I bave to be good at it. It's about my own thoughts!"

Student of the Amsterdam University College.

I. At least one of them is guilty.
2. Not all of them are guilty.
3. Mrs White is guilty only if Colonel Mustard helped her (is guilty too).
4. If Miss Scarlet is innocent then so is Colonel Mustard.

I. $w \vee s \vee m$
2. $\neg(w \wedge s \wedge m)$
3. $w \rightarrow m$
4. $\neg \mathrm{s} \rightarrow \neg \mathrm{m}$

innocent	innocent	innocent
innocent	innocent	guilty
innocent	guilty	innocent
innocent	guilty	guilty
guilty	innocent	innocent
guilty	innocent	guilty
guilty	guilty	innocent
guilty	guilty	guilty

$$
\neg(w \wedge s \wedge m)
$$

$w \vee s \vee m$

Validity

An inference is valid if and only if its conclusion is true in every situation at which all the assumptions (premises) hold.

Counter-example

A counter-example of an inference is a situation at which all the premises hold but the conclusion does not.

Invalidity

An inference is invalid if and only if there exists a counter-example of it.

Invalidity

An inference is invalid if and only if there exists a counter-example of it.

$$
\not \neq
$$

Invalidity

An inference is invalid if and only if there exists a counter-example of it.

$$
\phi_{1}, \ldots, \phi_{n} \not \neq \psi
$$

Validity

An inference is ralid if and only if it has no counter-examples.

$$
\phi_{I}, \ldots, \phi_{n} \models \psi
$$

Logical Equivalence

Two propositions/formulas are logically equivalent if and only if they are true under the same circumstances.

Logical Equivalence

Two propositions/formulas are logically equivalent if and only if they are true under the same circumstances.

$$
\phi \equiv \psi
$$

Logical Equivalence

Two propositions/formulas are logically equivalent if and only if they are true under the same circumstances.

$$
\begin{gathered}
\phi \models \psi \text { and } \psi \models \phi \\
\phi \equiv \psi
\end{gathered}
$$

Valid and satisfiable formulas

A formula is valid if it is true under all circumstances.

A formula is satisfiable if it is true under certain circumstances.

Valid and satisfiable formulas

A formula is valid if it is true under all circumstances.

$$
\models \psi
$$

A formula is satisfiable if it is true under certain circumstances.

Valid and satisfiable formulas

A formula is valid if it is true under all circumstances.

$$
\models \psi
$$

A formula is satisfiable if it is true under certain circumstances.

$$
\not \equiv \neg \psi
$$

T-1. Propostional Logic \longrightarrow design

[-1. Propostional Logic \longrightarrow design

T-1. Propostional Logic \longrightarrow design

T-1. Propostional Logic \longrightarrow design

$[$ - 1. Propostional Logic \longrightarrow design

T-1. Propostional Logic \longrightarrow design

T-1. Propostional Logic \longrightarrow design

T-1. Propostional Logic \longrightarrow design

$[$ - 1. Propostional Logic \longrightarrow design

$[$ - 1. Propostional Logic \longrightarrow design

$\neg(w \wedge m \wedge s), w \vee m \vee s, w \rightarrow m, \neg s \rightarrow \neg m \vDash \neg w \wedge s$
$[$-1. Propositional Logic

design

$[-1$. Propositional Logic \longrightarrow design

T-1. Propostional Logic \longrightarrow design

$\neg(w \wedge m \wedge s), w \vee m \vee s, w \rightarrow m, \neg s \rightarrow \neg m \not \vDash \neg m$
$[$ - 1. Propostional Logic \longrightarrow design

$\neg(w \wedge m \wedge s), w \vee m \vee s, w \rightarrow m, \neg s \rightarrow \neg m \neq \neg m$

T-1. Propostional Logic design

โ-1. Propostional Logic
 design

[-1. Propostional Logic

design

II
-4. Epistemic Logic

$$
m=n \pm 1
$$

$$
m, n=1,2,3, \ldots
$$

II
-4. Epistemic Logic

design

II
-4. Epistemic Logic

design

II

design

〕-4. Epistemic Logic

design

II
-4. Epistemic Logic

design

〕-4. Epistemic Logic

design

〕-4. Epistemic Logic

II
-4. Epistemic Logic

design

II
-4. Epistemic Logic

design

$$
\begin{aligned}
& 21{ }^{R} 23{ }^{L} 43{ }^{R} 45{ }^{L} 65
\end{aligned}
$$

II
-4. Epistemic Logic_design

II
-4. Epistemic Logic

L and R say: "no"

II
-4. Epistemic Logic

design

L and R say: "no"

once

II
-4. Epistemic Logic

L and R say: "no"

 once ${ }^{R} 23{ }^{L} 43$ 4 $4{ }^{L} 65 \ldots \ldots$II
-4. Epistemic Logic

L and R say: "no"

 once $23{ }^{L} 43{ }^{R} 45 L^{L} 65 \ldots \ldots$II
-4. Epistemic Logic

L and R say: "no" once, twice

 $23 L^{L} 43{ }^{R} 45{ }^{L} 6 \ldots \ldots$II
-4. Epistemic Logic

L and R say: "no" once, twice

$43{ }^{R} 45{ }^{L} 65 \cdots \cdots$

-4. Epistemic Logic
L and R say: "no"
once, twice, three times

II
-4. Epistemic Logic
L and R say: "no"
once, twice, three times
$45{ }_{4} 45$ 5......
-4. Epistemic Logic
L and R say: "no"
once, twice, three times

... then R says: "yes".
-4. Epistemic Logic
L and R say: "no"
once, twice, three times
... then R says: "yes".
-4. Epistemic Logic
L and R say: "no"
once, twice, three times

45

... then R says: "yes".

$\neg \phi$

Logical Equivalence

Logical Equivalence

$\phi \oplus \psi \equiv \neg(\phi \leftrightarrow \psi) \equiv \neg \phi \leftrightarrow \psi$

Logical Equivalence

$$
\begin{aligned}
& \phi \oplus \psi \equiv \neg(\phi \leftrightarrow \psi) \equiv \neg \phi \leftrightarrow \psi \\
& \phi \leftrightarrow \psi \equiv(\phi \rightarrow \psi) \wedge(\psi \rightarrow \phi)
\end{aligned}
$$

Logical Equivalence

$$
\begin{aligned}
& \phi \oplus \psi \equiv \neg(\phi \leftrightarrow \psi) \equiv \neg \phi \leftrightarrow \psi \\
& \phi \leftrightarrow \psi \equiv(\phi \rightarrow \psi) \wedge(\psi \rightarrow \phi) \\
& \phi \rightarrow \psi \equiv \neg \phi \vee \psi \equiv \neg(\phi \wedge \neg \psi)
\end{aligned}
$$

Logical Equivalence

$$
\begin{aligned}
& \phi \oplus \psi \equiv \neg(\phi \leftrightarrow \psi) \equiv \neg \phi \leftrightarrow \psi \\
& \phi \leftrightarrow \psi \equiv(\phi \rightarrow \psi) \wedge(\psi \rightarrow \phi) \\
& \phi \rightarrow \psi \equiv \neg \phi \vee \psi \equiv \neg(\phi \wedge \neg \psi) \\
& \phi \wedge \psi \equiv \neg(\neg \phi \vee \neg \psi)
\end{aligned}
$$

Expressivity

Expressivity

Every boolean function can be defined by using \neg, \wedge and \vee only.

Expressivity

Every boolean function can be defined by using \neg, \wedge and \vee only.

Also by \neg and \wedge.

Expressivity

Every boolean function can be defined by using \neg, \wedge and \vee only.

Also by \neg and \wedge.

Also by \neg and \rightarrow.

Expressivity

Every boolean function can be defined by using \neg, \wedge and \vee only.

Also by \neg and \wedge.

Also by \neg and \rightarrow.

Also by \dagger !

Truth tables

P	q	r	P	v	(9	\wedge	r)
0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	I
0	1	0	0	0	1	0	0
0	1	1	0	I	I	I	1
1	0	0	I	1	0	0	0
1	0	1	I	1	0	0	1
1	1	0	I	1	I	0	0
1	1	1	1	I	,	I	1

Truth tables

p	q	r
0	0	0
0	0	I
0	I	0
0	I	I
I	0	0
I	0	I
I	I	0
I	I	I

$(\mathrm{p}$	v	$\mathrm{q})$	\wedge	r
0		0		0
0		0		I
0		I		0
0		I		I
I		0		0
I		0		I
I		I		0
I		I		I

Truth tables

p	q	r
0	0	0
0	0	I
0	I	0
0	I	I
I	0	0
I	0	I
I	I	0
I	I	I

$(\mathrm{p}$	r	$\mathrm{q})$	\wedge	r
0	0	0		0
0	0	0		I
0	I	I		0
0	I	I		I
I	I	0		0
I	I	0		I
I	I	I		0
I	I	I		I

Truth tables

p	q	r
0	0	0
0	0	I
0	I	0
0	I	I
I	0	0
I	0	I
I	I	0
I	I	I

(P	v	q)	\wedge	r
0	0	0	0	0
0	0	0	0	1
0	1	I	0	0
0	I	I	1	I
I	I	0	0	0
1	I	0	1	1
I	I	I	0	0
I	I	I	I	1

Truth tables

p	q	r
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

p		(9)		r)
0	0	0	0	0
0	0	0	0	1
0	0	1	0	0
0	1	1	1	I
1	1	0	0	0
1	1	0	0	1
1	1	1	0	0
1	1	1	1	

p	q	r
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	I	0
1	1	1

(P		q)		r
0	0	0	0	0
0	0	0	0	1
0	I	I	0	0
0	I	1	1	1
1	I	0	0	0
1	1	0	1	1
1	I	1	0	0
1	1	1	1	1

Truth tables

p	q	r
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

P		(a		r)
0	0	0	0	0
0	0	0	0	1
0	0	1	0	0
0	1	I	1	1
1	1	0	0	0
1	1	0	0	1
1	1	1	0	0
1	1	1	1	1
	2			

p	q	r
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	I	0
1	1	1

(p)	v	q)		r
0	0	0	0	0
0	0	0	0	1
0	I	1	0	0
0	I	1	1	1
1	1	0	0	0
1	1	0	1	1
-	1	1	0	0
1	I	1	1	1
	1		2	

Truth tables

P	q	r	P	v	(9	\wedge	r)	P	q	r	(p	v	q)	\wedge	r
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	I	0	0	1	0	0	0	0	I
0	1	0	0	0	I	0	0	0	1	0	0	1	I	0	0
0	1	1						0	1	1	0	I	I	I	1
1	0	0	1	I	0	0	0	1	0	0	1	I	0	0	0
1	0	1						1	0	1	1	I	0	I	1
1	1	0		1	I	0	0	1	1	0	I	I	I	0	0
1	1	1						1	1	1	I	I	I	I	1
				2		1						\|		2	

$(p \vee q) \wedge r \vDash p \vee(q \wedge r)$

Truth tables

p	q	r
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

P		(r)
0	0	0	0	0
0	0	0	0	1
0	0	I	0	0
0	1	I	1	।
I	1	0	0	1
1	1	1	0	0
,	,	1	1	1
	2			

p	q	r
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	I
1	1	0
1	I	1

(p)	v	q)		r
0	0	0	0	0
0	0	0	0	1
0	I	1	0	0
0	I	1	1	1
1	1	0	0	0
1	1	0	1	1
-	1	1	0	0
1	I	1	1	1
	1		2	

$p \vee(q \wedge r) \nRightarrow(p \vee q) \wedge r$

1948 (Shamon)

1948 (Shamnon)

1948 (Shannon)

1948 (Shannon)

1948 (Shannon)

1948 (Shannon)

P_{1}	P_{2}	\ldots	P_{n}	f
0	0	\ldots	0	I
0	0	\ldots	I	I
\ldots	\ldots	\ldots	0	0
\ldots	\ldots	\ldots	\ldots	\ldots
I	I	\ldots	0	0
I	I	\ldots	I	I

P_{1}	P_{2}	\ldots	P_{n}	f
0	0	\ldots	0	I
0	0	\ldots	I	I
\ldots	\ldots	\ldots	0	0
\ldots	\ldots	\ldots	\ldots	\ldots
I	I	\ldots	0	0
I	I	\ldots	I	I

$$
\begin{gathered}
\phi_{f}=\left(\neg p_{I} \wedge \ldots \wedge \neg p_{n}\right) \vee \\
\left(\neg p_{I} \wedge \ldots \wedge p_{n}\right) \vee \\
\ldots . . \vee \\
\left(p_{I} \wedge \ldots \wedge p_{n}\right)
\end{gathered}
$$

$$
\begin{array}{ccc}
(-x) x=0 & x 0=0 & x I=x \\
(-x)+x=I & x+0=x & x+I=I
\end{array}
$$

$$
\begin{array}{cc}
x x=x & x y=y x \\
x+x=x & x+y=y+x \\
\text { Idempotence } & \text { Commutativity } \\
x(y z)=(x y) z & x(x+y)=x \\
x+(y+z)=(x+y)+z & x+(x y)=x \\
\text { Associativity } & \text { Absorption }
\end{array}
$$

Double negation

$$
\begin{gathered}
-(x y)=(-x)+(-y) \\
-(x+y)=(-x)(-y) \\
\text { De Morgan }
\end{gathered}
$$

$$
x(y+z)=(x y)+(x z)
$$

$$
x+(y z)=(x+y)(x+z)
$$

Distribution

$$
\begin{array}{ccc}
(\text { not } x) \text { and } x=\text { false } & x \text { and false }=\text { false } & x \text { and true }=x \\
(\text { not } x) \text { or } x=\text { true } & x \text { or false }=x & x \text { or true }=\text { true }
\end{array}
$$

$$
\begin{array}{cr}
x \text { and } x=x & x \text { and } y=y \text { and } x \\
x \text { or } x=x & x \text { or } y=y \text { or } x
\end{array}
$$

$$
\begin{array}{rlrl}
x \text { and }(y \text { and } z) & =(x \text { and } y) \text { and } z & x \text { and }(x \text { or } y)=x \\
x \text { or }(y \text { or } z) & =(x \text { or } y) \text { or } z & x \text { or }(x \text { and } y)=x
\end{array}
$$

not $(x$ and $y)=(\operatorname{not} x)$ or $(\operatorname{not} y)$
not $(x$ or $y)=($ not $x)$ and (not $y)$
x and $(y$ or $z)=(x$ and $y)$ or $(x$ and $z)$ x or $(y$ and $z)=(x$ or $y)$ and $(x$ or $z)$
$(\neg \phi) \wedge \phi=$ false
$\phi \wedge$ false $=$ false
$\phi \wedge$ true $=\phi$
$(\neg \phi) \vee \phi=$ true
$\phi \vee$ false $=\phi$
$\phi \vee$ true $=$ true

| George |
| :--- | :--- |
| Boole |

$$
\begin{array}{ll}
\phi \wedge \phi=\phi & \phi \wedge \psi=\psi \wedge \phi \\
\phi \vee \phi=\phi & \phi \vee \psi=\psi \vee \phi
\end{array}
$$

$$
\begin{array}{ll}
\phi \wedge(\psi \wedge \chi)=(\phi \wedge \psi) \wedge \chi & \phi \wedge(\phi \vee \psi)=\phi \\
\phi \vee(\psi \vee \chi)=(\phi \vee \psi) \vee \chi & \phi \vee(\phi \wedge \psi)=\phi
\end{array}
$$

$$
\begin{aligned}
& \neg(\phi \wedge \psi)=(\neg \phi) \vee(\neg \psi) \\
& \neg(\phi \vee \psi)=(\neg \phi) \wedge(\neg \psi)
\end{aligned}
$$

$$
\begin{aligned}
& \phi \wedge(\psi \vee \chi)=(\phi \wedge \psi) \vee(\phi \wedge \chi) \\
& \phi \vee(\psi \wedge \chi)=(\phi \vee \psi) \wedge(\phi \vee \chi)
\end{aligned}
$$

$$
\begin{aligned}
& (\neg \phi) \wedge \phi=\perp \\
& (\neg \phi) \vee \phi=\top
\end{aligned}
$$

$\phi \wedge \perp=\perp$
$\phi \wedge \top=\phi$
$\phi \vee \perp=\phi$
$\phi \vee \mathrm{T}=\mathrm{T}$

$$
\begin{array}{ll}
\phi \wedge \phi=\phi & \phi \wedge \psi=\psi \wedge \phi \\
\phi \vee \phi=\phi & \phi \vee \psi=\psi \vee \phi
\end{array}
$$

$$
\begin{array}{ll}
\phi \wedge(\psi \wedge \chi)=(\phi \wedge \psi) \wedge \chi & \phi \wedge(\phi \vee \psi)=\phi \\
\phi \vee(\psi \vee \chi)=(\phi \vee \psi) \vee \chi & \phi \vee(\phi \wedge \psi)=\phi
\end{array}
$$

$$
\begin{aligned}
& \neg(\phi \wedge \psi)=(\neg \phi) \vee(\neg \psi) \\
& \neg(\phi \vee \psi)=(\neg \phi) \wedge(\neg \psi)
\end{aligned}
$$

$$
\begin{aligned}
& \phi \wedge(\psi \vee \chi)=(\phi \wedge \psi) \vee(\phi \wedge \chi) \\
& \phi \vee(\psi \wedge \chi)=(\phi \vee \psi) \wedge(\phi \vee \chi)
\end{aligned}
$$

$\phi \wedge \psi \vDash \phi$

$\phi \wedge \psi \models \phi$

$(\phi \wedge \psi) \wedge \phi=\phi \wedge \psi$

$\phi \wedge \psi \vDash \phi$

$$
\begin{gathered}
(\phi \wedge \psi) \wedge \phi= \\
(\psi \wedge \phi) \wedge \phi= \\
\psi \wedge(\phi \wedge \phi)= \\
\psi \wedge \phi= \\
\phi \wedge \psi
\end{gathered}
$$

$(\phi \wedge \psi) \wedge \phi=\phi \wedge \psi$

$\phi \wedge \psi \vDash \phi$

$$
\begin{gathered}
(\phi \wedge \psi) \wedge \phi= \\
(\psi \wedge \phi) \wedge \phi= \\
\psi \wedge(\phi \wedge \phi)= \\
\psi \wedge \phi= \\
\phi \wedge \psi
\end{gathered}
$$

$(\phi \wedge \psi) \wedge \phi=\phi \wedge \psi$
I. $\phi \rightarrow(\psi \rightarrow \phi)$
2. $(\phi \rightarrow(\psi \rightarrow \chi)) \rightarrow((\phi \rightarrow \psi) \rightarrow(\phi \rightarrow \chi))$ 3. $(\neg \phi \rightarrow \neg \psi) \rightarrow(\psi \rightarrow \phi)$
I., 2. and 3. are theorems (for every ϕ, ψ and $\chi)$

Every instance of a theorem is a theorem.

If ϕ and $\phi \rightarrow \psi$ are theorems then so is ψ (modus ponens).

Jan Łukasiewicz

Part III chapter 9

Natural Deduction, Proofs and Arguments

Gerhard Gentzen

Gerhard Gentzen

Gerhard Gentzen

Gerhard Gentzen

Gerhard Gentzen

Gerhard Gentzen
\rightarrow Intro \rightarrow Elim \perp Elim

Gerhard Gentzen
\rightarrow Intro \rightarrow Elim \perp Elim

Part III chapter 8

Tableaux, Testing Validity

Evert Beth

$?$
 $p \wedge(q \vee r) \models(p \wedge q) \vee r$

$p \wedge(q \vee r) \cdot(p \wedge q) \vee r$

$p \wedge(q \vee r) j(p \wedge q) \vee r$ $\mathbf{p}, \mathbf{q} \vee \mathbf{r} \cdot(\mathbf{p} \wedge q) \vee \mathbf{r}$

$\mathrm{p} \wedge(\mathrm{q} \vee \mathrm{r})$; $(\mathrm{p} \wedge q) \vee r$ $\underset{p, q \vee r}{ } \cdot \underset{p}{p} \wedge \mathbf{q}, \mathbf{r}$

$$
\begin{aligned}
& p \wedge(q \vee r) \text { (} p \wedge q) \vee r
\end{aligned}
$$

$$
\begin{aligned}
& p, q \vee r \quad \mathbf{p , r} \quad \mathrm{p}, \mathrm{q} \vee \mathrm{r} \cdot \mathbf{q}, r
\end{aligned}
$$

$\neg q, p \rightarrow q \vDash \neg p$

$\neg \mathrm{p}, \mathrm{p} \rightarrow \mathrm{q} \not \equiv \neg \mathrm{q}$

$$
\neg \mathrm{p}, \mathrm{p} \rightarrow \mathrm{q} \not \vDash \neg \mathrm{q}
$$

Both branches are open. They represent the same counter example, i.e., the valuation V with $V(q)=I$ and $V(p)=0$.

$$
\phi_{I}, \ldots, \phi_{n} \models \psi
$$

if \& only if

$$
\phi_{I}, \ldots, \phi_{\text {几 }} \circ \psi
$$

can be rewritten as a closing tableau (no counter-examples)

This property holds for propositional logic, and also for predicate logic.

$$
\phi_{I}, \ldots, \phi_{n} \not \equiv \psi
$$

if \& only if

$$
\phi_{I}, \ldots, \phi_{n} \circ \psi
$$

can be rewritten as a tableau with an open branch (repr. a counter-example)

This property holds for propositional logic, but not for predicate logic.

Logic in Action

Johan van Benthem, fan van Eijck and Fan Faspars

23rd ESSLLI, Ljubljana, Aug I5 20 II

No - is \boldsymbol{F}

No is ∞ 伍伍 \bigcirc^{\bigcirc}

No 伍 \boldsymbol{F}

No is ∞ 伍伍

— \bigcirc^{\bigcirc}

Aristotelian diagram (sem)

Aristotelian diagram (sem)

All politicians are rich No student is rich

No student is politician

All politicians are rich No student is politician

No student is rich

Aristotle

All politicians are rich No student is rich

No student is politician

All politicians are rich No student is politician

No student is rich

All politicians are rich No student is rich

No student is politician

All politicians are rich No student is politician

No student is rich

All politicians are rich No student is rich

No student is politician

All politicians are rich
No student is politician
No student is rich

All politicians are rich No student is rich

No student is politician

All politicians are rich No student is politician

No student is rich

All politicians are rich No student is rich

No student is politician

All politicians are rich
No student is politician
No student is rich

All politicians are rich
No student is rich

No student is politician

All politicians are rich
No student is politician
No student is rich

All politicians are rich No student is rich

No student is politician

All politicians are rich
No student is politician
No student is rich

All politicians are rich No student is rich

No student is politician

All politicians are rich
No student is politician
No student is rich

All politicians are rich
Some students are politician
Some students are rich

All politicians are rich Some students are rich

Some students are politician

All politicians are rich
Some students are politician
Some students are rich

All politicians are rich Some students are rich

Some students are politician

All politicians are rich
Some students are politician
Some students are rich

All politicians are rich Some students are rich

Some students are politician

All politicians are rich
Some students are politician
Some students are rich

All politicians are rich Some students are rich

Some students are politician

All politicians are rich
Some students are politician
Some students are rich

All politicians are rich Some students are rich

Some students are politician

All politicians are rich
Some students are politician
Some students are rich

All politicians are rich Some students are rich

Some students are politician

All politicians are rich
Some students are politician
Some students are rich

All politicians are rich Some students are rich

Some students are politician

$?$

All politicians are rich Some students are rich

Some students are politician

All politicians are rich Some students are rich

Some students are politician

All politicians are rich Some students are rich

Some students are politician

All politicians are rich Some students are rich

Some students are politician

All politicians are rich Some students are rich

Some students are politician

$$
\phi_{I}, \ldots, \phi_{n} \models \psi
$$

if \& only if

$$
\phi_{I}, \ldots, \phi_{n} \circ \psi
$$

can be rewritten as a closing tableau (no counter-examples)

This property holds for propositional logic, and also for predicate logic.

$$
\phi_{I}, \ldots, \phi_{n} \not \equiv \psi
$$

if \& only if

$$
\phi_{I}, \ldots, \phi_{n} \circ \psi
$$

can be rewritten as a tableau with an open branch (repr. a counter-example)

This property holds for propositional logic, but not for predicate logic.

$$
\begin{gathered}
x^{2}=x+I \\
\Leftrightarrow \\
x^{2}-(x+I)=0
\end{gathered}
$$

A syllog. inference is valid if \& only if its anti-logism not sattisfiable.

Cbristine Ladd

A syllog. inference is valid if \& only if its anti-logism not sattisfiable.

Cbristine Ladd

All politicians are rich No student is rich

No student is politician

$$
\begin{gathered}
\text { is valid } \\
\text { if and only if }
\end{gathered}
$$

All politicians are rich
No student is rich
Some student is politician
is not satisfiable

Sattisfiability tests for sets of Aristotelean forms

$$
=
$$

Set up diagram/table of all combinations ... update with all the universal information (All, No = remove objects) ... then check whether you still can add objects to support all the existential forms (Some, Not-all).
... symbolic version can be done in propositional logic with low complexity.

Language of predicate logic

- Predicates P,Q,R,A,B,...
- Names (constants) a,b,c,...
- Variables x,y,z,....

Lexicon

-Connectives $\neg, \wedge, \vee, \rightarrow, \leftrightarrow, \perp$

- Quantifiers \forall, \exists

Logical symbols

- Equality =

Basic (atomic) formulas

Mj
Vm
Hjm
Gjxm

Basic (atomic) formulas

Predicate term। ... term n

For now, term is either constant or variable

Basic (atomic) formulas ($\mathrm{n}=\mathrm{I}$)

Predicate term।

Predicate stands for a property
(unary or monadic predicate)

Basic (atomic) formulas
 $$
(n=2)
$$

Predicate termı term 2

Predicate stands for a relation
(binary predicate)

Basic (atomic) formulas ($\mathrm{n}=3$)

Predicate term। term ${ }_{2}$ term 3

Ternary predicate

Basic (atomic) formulas

Predicate term। ... term n

n-ary Predicate

Basic (atomic) formulas ($\mathrm{n}=0$)

Predicate

0 -ary Predicate $=$ propositional variable as in propositional logic

Basic (atomic) formulas

John is a man
Mary is a woman
John loves Mary
Gjxm
John gives 'something unknown' (x) to Mary

Basic (atomic) formulas

Mj
Wm
Ljm
Gjxm

I is odd

2 is even
I is smaller than 2
There is 'something unknown' (x) between I and 2

Connectives

- $\mathrm{Mj} \wedge \mathrm{Wm}$
$\bullet \mathrm{Mj} \rightarrow \neg \mathrm{Mm}$
$\bullet(M j \wedge W m) \rightarrow L j m$
- $\mathrm{Hmj} \rightarrow(\mathrm{Mj} \vee \mathrm{Lj})$
$\bullet(L m j \wedge \neg \mathrm{Lj}) \rightarrow \mathrm{Mj}$

Don't!

BFx

$S_{j} \wedge \mathbf{p f}$
x is a blue (B) bike (F) John (j) and Peter (p) are students of philosophy (f)

Write ...

$B x \wedge F x$

Sjf \wedge Spf

x is a blue (B) bike (F) John (j) and Peter (P) are students of philosophy (f)

Don't

$\mathbf{S j} \wedge \mathbf{p f} \vee \mathbf{w}$

John and Peter are students of philosophy or mathematics

$$
(S j \wedge p f) \vee(S j \wedge p m) ?(S j f \vee m) \wedge(S p f \vee m)
$$

Write ...

$(\mathbf{S j f} \wedge \mathbf{S p f}) \vee(\mathbf{S j w} \wedge \mathbf{S p w})$
 Or

$(\mathbf{S j f} \vee \mathbf{S j w}) \wedge(\mathbf{S p f} \vee \mathbf{S p w})$

Quantifiers

- $\exists x$ Mx
- $\exists y$ ᄀLyy
- $\forall x$ ($M x \leftrightarrow \neg V x$)
- $\forall x \exists y \mathrm{Hxy}$
$\bullet \forall x(H x x \rightarrow \exists y \neg H y x)$

Quantifiers

$\bullet \forall \mathbf{x} \exists \mathbf{y}$ Hxy ~"everything R-s something".
$\bullet \exists \mathbf{y} \forall \mathbf{x} \mathbf{H x y} \sim$ "there’s something R-ed by everything".
$\bullet \forall \mathbf{x} \exists \mathbf{y} \mathbf{H y x} \sim$ "everything is R-ed by something".
$\bullet \exists \mathbf{y} \forall \mathbf{x}$ Hyx \sim "there's something which \mathbf{R}-s everything".

$\bullet \forall x \exists y$ Rxy	Everybody loves somebody
$\bullet \forall x \exists y$ Ryx	Everybody is loved by somebody
$\bullet \exists y \forall x$ Rxy	There is at least one person who is loved by everybody
$\bullet \exists y \forall x$ Ryx	There is at least one person who loves everybody

$\bullet \forall x \exists y$ Rxy
$\bullet \forall x \exists y$ Ryx
$\bullet \exists y \forall x R x y$
$\bullet \exists y \forall x R y x$

$\bullet \forall x \exists y$ Rxy
$\bullet \forall x \exists y R y x$
$\bullet \exists y \forall x R x y$
$\bullet \exists y \forall x R y x$

Graphs

$\forall x \exists y R x y$

Graphs

$\forall x \exists y R x y$ $\downarrow_{\exists y \mathrm{R} x y}$

 Rxy

Graphs

$$
\begin{aligned}
& \forall x \exists y R x y \\
& \exists y R x y \\
& \downarrow \\
& R x y
\end{aligned}
$$

Graphs

Graphs

Graphs

Graphs

$\forall x \exists y R y x$

Graphs

$\forall x \exists y R y x$
 \downarrow
 ヨyRyx

 Ryx

Graphs

$\forall x \exists y R y x$
 \downarrow
 ヨyRyx

$x \rightarrow$ left, $y \rightarrow$ left
$x \rightarrow$ left, $y \rightarrow$ right

Graphs

$\forall x \exists y R y x$

$\underset{\text { ヨyRyx }}{\downarrow}$

Graphs

$\forall x \exists y R y x$

Graphs

Graphs

$\exists y \forall x R x y$

Graphs

$\exists y \forall x R x y$

 $\forall x R x y$

 Rxy

Graphs

$$
\begin{gathered}
\exists y \forall x R x y \\
\downarrow \\
\forall x R x y \\
\downarrow \\
R x y
\end{gathered}
$$

Graphs

Graphs

$\exists y \forall x R y x$

Graphs

$\exists y \forall x R y x$
 $\downarrow_{\forall x R y x}^{\downarrow}$

 Ryx

Graphs

$\exists y \forall x R y x$

$\forall x R y x$

"Arist. Tableau" diagram (lang.)

"Arist. Tableau" diagram (1)

Universal
Existential

"Arist. tableau" diagram (2)

Universal
Existential

$\forall x P x \rightarrow \forall x Q x \not \approx \forall x(P x \rightarrow Q x)$

$\forall x P x \rightarrow \forall x$ Qx $\circ \forall x(P x \rightarrow Q x)$

$\forall x \mathrm{Px} \rightarrow \forall \mathrm{Qx} \underset{\sim}{\circ} \forall \mathrm{x}(\mathrm{Px} \rightarrow \mathrm{Qx})$ $\underset{\sim}{\forall}$

$\forall x P x \rightarrow \forall x$ Rx $\quad \forall x(P x \rightarrow Q x)$ $\forall x P x \rightarrow \forall x$ Px! PI \rightarrow QI

$\forall x \mathrm{Px}_{\mathrm{x}} \rightarrow \forall \mathrm{X} \mathrm{Qx} ; \forall \mathrm{x}(\mathrm{Px} \rightarrow \mathrm{Qx})$

$\forall x P x \rightarrow \forall x$ Rx; $\forall x(P x \rightarrow Q x)$
 $$
\forall \mathrm{xPx} \rightarrow \forall \mathrm{Q} \mathrm{Qx} \mathrm{\stackrel{ } \mathrm{\rightharpoonup}{\mid} \mathrm{PI} \rightarrow \mathrm{Q} \mathbf{I},}
$$
 $$
\forall \mathrm{xPx} \rightarrow \forall \mathrm{x} \mathrm{Qx}, \mathrm{PI} \stackrel{\square}{\circ} \mathrm{Q}
$$

$$
\begin{aligned}
& \forall x \mathrm{Px}_{\mathrm{x}} \rightarrow \forall \mathrm{X} \mathrm{Qx} ; \forall \mathrm{x}(\mathrm{Px} \rightarrow \mathrm{Qx}) \\
& \forall x \mathrm{Px} \rightarrow \forall \mathrm{QX} \mathrm{QxI} \rightarrow \mathrm{Q} I \\
& \forall \mathrm{Px} \rightarrow \forall \mathrm{XX}, \mathrm{PI} \stackrel{\rightarrow+}{\rightarrow+} \mathrm{Q} I \\
& P I!\forall x P x, Q \| \\
& \forall x \text { ix, PI! Q I }
\end{aligned}
$$

Open branch. Counter-example with two individuals I and 2 , with I being a P and not a Q, and 2 a non- P.

$\forall x(P x \rightarrow Q x) \vDash \forall x P x \rightarrow \forall x Q x$

$\forall x(P x \rightarrow Q x) \cdot \forall x P x \rightarrow \forall x Q x$

$\forall x(P x \rightarrow Q x) ; \quad \forall x P x \rightarrow \forall x Q x$ $\overrightarrow{+}$

$\forall x(P x \rightarrow Q x) ; \quad \forall x P x \rightarrow \forall x$ Qx $\forall x$ Px! $\forall x$ Qx

$\forall x(P x \rightarrow Q x) ; \quad \forall x P x \rightarrow \forall x$ Px $\forall x$ Px $\forall x$ Rx $\stackrel{+}{\square}$

$\forall x(P x \rightarrow Q x) ; \quad \forall x P x \rightarrow \forall x$ Px

$\forall x(P x \rightarrow Q x) ; \quad \forall x P x \rightarrow \forall x$ Px $\forall x$ Px $\forall x$ Rx

$\forall x(P x \rightarrow Q x) ; \quad \forall x P x \rightarrow \forall x$ Qx

$\forall x(P x \rightarrow Q x) ; \quad \forall x P x \rightarrow \forall x$ Qx

$\forall x(P x \rightarrow Q x) ; \quad \forall x P x \rightarrow \forall x$ Qx

$\forall x(\mathrm{Px} \rightarrow \mathrm{Qx}) \stackrel{\forall x \mathrm{Px} \rightarrow \forall \mathrm{Q}}{\mathrm{Qx}}$

$\forall x(P x \rightarrow Q x) ; \forall x P x \rightarrow \forall x Q x$

$\forall x(P x \rightarrow Q x) ; \forall x P x \rightarrow \forall x Q x$

$\forall x(P x \rightarrow Q x) ; \forall x P x \rightarrow \forall x Q x$

Quantifier rules

Universal
Existential

Problem I

$0 \quad \forall x P x$ 。ヨx Px 0

???

Solution I

0 =
 ■ =

$\forall x$ Px。 $\exists x$ Px

Solution I

- 0 =
 ■ =

$\forall x \mathrm{Px} \underset{\sim}{\square} \mathrm{Px}$

Solution I

- 0 =
 ■ =

$\underset{\sim}{\forall}$

Solution I

[0]
 $\square=\square$

Solution I

밈
 ■ =

Solution I

밈
 ■ =

Solution I

ㅁㅁ
 ■ =

Solution I

0-T
 $\square=\square$

Solution I

$$
\begin{aligned}
& 0=1
\end{aligned}
$$

> In every situation there is always at least one object!

Problem 2

- $\exists x$ (Tx $\rightarrow \forall y T y)$

Problem 2

Problem 2

Problem 2

Problem 2

????? $\exists x(T x \rightarrow \forall y T y)$ is always true (valid)!

Problem 2

has not been applied to all objects (2)!

Solution

\square -

- Add a φ-er / non- φ-er, ánd
- re-activate all universals (all $=\forall$, no $=\exists$)

Solution 2

Rules for quantifiers (fin)

Universal
Existential

$\exists y \forall x R x y 。 \forall x \exists y$ Rxy

ヨy $\forall x$ Rxy ; $\forall x$ ヨy Rxy \square

$\exists y \forall x$ Rxy ; $\forall x$ ヨy Rxy
 (0) $\forall x R x I!\forall x \exists y$ Rxy

$\exists y \forall x R x y$; $\forall x \exists y$ Rxy

$$
\begin{aligned}
& \text { ヨy } \forall x \text { Rxy ; } \forall x \text { ヨy Rxy } \\
& \forall x \text { RxI } \forall x \exists y \text { Rxy } \\
& \forall x R x I \quad \exists y \text { R2y } \\
& \square
\end{aligned}
$$

$\forall x$ ヨy Rxy 。 ヨy $\forall x$ Rxy

$\forall x \exists y$ Rxy ¿ $\exists y \forall x$ Rxy $\stackrel{\rightharpoonup}{\square}$

\section*{$\forall x \exists y$ Rxy ¿ $\exists y \forall x$ Rxy | \square |
| :---: |}

$\forall x \exists y R x y$ ¿ $\exists y \forall x R x y$ ヨy Rly!

$\forall x \exists y R x y$ ¿ $\exists y \forall x R x y$ ヨy RIy i

$\forall x \exists y \mathrm{Rxy}$ ¿ $\exists y \forall x \mathrm{Rxy}$

$\forall x \exists y$ Rxy ¿ $\exists y \forall x$ Rxy

$\forall x \exists y$ Rxy ¿ $\exists y \forall x$ Rxy

2

Extended Rules for existentials

$\forall x \exists y$ Rxy ¿ $\exists y \forall x$ Rxy
 gy RIy!

$\forall x \exists y$ Rxy ; $\exists y \forall x$ Rxy

$\forall x \exists y$ Rxy ; $\exists y \forall x$ Rxy

 RIII $\forall x \exists y R x y, R \| 2$.

$\forall x \exists y$ Rxy ; $\exists y \forall x$ Rxy ヨy RII
 RII $\forall x \neq y$ Rxy, RI2

There is no counter-example with only one object!

RII $\forall x \exists y R x y$ R2I , $\exists y \forall x$ Rxy

Open branch: counter-example $R=\{<1,1\rangle,<2,2>\}$

Open branch: counter-example $R=\{\langle 0,0\rangle,\langle 1|>$,

Open branch: counter-example $R=\{\langle 0,0\rangle,\langle 1|>$,
$\forall x \exists y \operatorname{Ryy}, \forall x \forall y \forall z((R x y \wedge R y z) \rightarrow R x z) \not \vDash \exists x \exists y(R x y \wedge R y x)$
....but there exist only counter-examples with infinitely many objects!

$\forall x \exists y \operatorname{Rxy}, \forall x \forall y \forall z((R x y \wedge R y z) \rightarrow R x z) 。 \exists x \exists y(R x y \wedge R y x)$

$\forall x \exists y \operatorname{Rxy}, \forall x \forall y \forall z((R x y \wedge R y z) \rightarrow R x z) 。 \exists x \exists y(R x y \wedge R y x)$

