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Schedule

• 9:00 – 9:15 – Intro

• 9:15 - 11:00 Distributed Constraint Optimization 

• 11:00 - 11:30 Coffee break

11:30 - 13:00 Tutorial -- Distributed Constraint • 11:30 - 13:00 Tutorial -- Distributed Constraint 
Optimization (continued)

• 13:00 - 14:30 Lunch break

• 14:30 - 16:30 Tutorial -- Market Based Allocation

• 16:30 - 17:00 Coffee break

• 17:00 - 18:30 Tutorial -- Coalition Formation



OPTMAS in different forms…

• AAMAS 08,09, 10, 11

– With Nick Jennings, Alex Rogers, Alessandro 

Farinelli, Gopal Ramchurn, Juan Antonio 

Rodriguez

• JAAMAS Special issue (Vol. 22, No. 3)



Why OPTMAS?

• How do we optimise (for) multi-agent 

coordination?

• Can benchmarks and modelling• Can benchmarks and modelling

techniques be shared across problem 

spaces?

• What are interesting application 

domains for multi-agent coordination 

where optimisation is important?



Outline

• DCOPs for Decentralized Decision Making 

– Pedro Meseguer (DCSP)

– Alessandro Farinelli (Approximate Algorithms)

• Market Based Resource Allocation

– Juan A. Rodriguez-Aguilar  (Introduction to Auctions)

– Jesus Cerquides (Combinatorial Auctions/Supply Chain 

Formation)

• Coalition Formation

– Sarvapali Ramchurn



What you will learn from this tutorial

• MAS representations for optimisation

• Using existing techniques and algorithms and 

developing new onesdeveloping new ones

• Optimisation for a purpose (research is not just 

about theorems)



Distributed Constraint Optimization 

Problem for Decentralized Decision 

Making

Optimization in Multi-Agent Systems

Alessandro Farinelli and Pedro Meseguer



At the end of this talk, you will be able to:

1. Model decision making problems with DCOPs

– Motivations for using DCOP 

– Modeling practical problems using DCOPs

2. Understand main exact techniques for DCOPs2. Understand main exact techniques for DCOPs

– Main ideas, benefits and limitations of each technique

3. Understand approximate techniques for DCOPs

– Motivations for approximate techniques 

– Types of quality guarantees

– Benefits and limitations of main approximate techniques 



Outline

• Introduction

– DCOP for Dec. Decision Making

– how to model problems in the DCOP framework

• Solution Techniques for DCOPs• Solution Techniques for DCOPs

– Exact algorithms (DCSP, DCOP)

• ABT, ADOPT, DPOP

– Approximate Algorithms (without/with quality guarantees)

• DSA, MGM, Max-Sum, k-optimality, bounded max-sum

• Future challenges in DCOPs



Cooperative Decentralized Decision Making

• Decentralised Decision Making

– Agents have to coordinate to perform best actions

• Cooperative settings

– Agents form a team -> best actions for the team– Agents form a team -> best actions for the team

• Why ddm in cooperative settings is important

– Surveillance (target tracking, coverage)

– Robotics (cooperative exploration)

– Scheduling (meeting scheduling)

– Rescue Operation (task assignment)



DCOPs for DDM

Why DCOPs for Coop. DDM ?

• Well defined problem

– Clear formulation that captures most important aspects

– Many solution techniques– Many solution techniques

• Optimal: ABT, ADOPT, DPOP, ...

• Approximate: DSA, MGM, Max-Sum, ...

• Solution techniques can handle large problems

– compared for example to sequential dec. Making (MDP, 

POMDP) 



Modeling Problems as DCOP

• Target Tracking

• Meeting Scheduling



Target Tracking

• Why decentralize

– Robustness to failure and message loss



Target Tracking - DCOP

• Variables -> Cameras

• Domains -> Camera 
actions
– look left, look right

• Constraints

L, R L, R

D

E

T1
T3

• Constraints
– Overlapping cameras

– Related to targets
• Diabolik, Eva

• Maximise sum of 
constraints L, R

D

T2



Meeting Scheduling

Window13:00 – 20:00

Duration 1h

Better after 18:00

• Why decentralize

– Privacy

Window 15:00 – 18:00

Duration 2h

Duration 1h



Meeting Scheduling - DCOP

PL

BC

BL

16:0019:00

[15 – 18][13 – 20]

BSPS

No overlap (Hard)

Equals (Hard)

Preference (Soft)

16:00

19:00

[13 – 20]

[15 – 18]

16:00

[15 – 18]



Benchmarking problems

• Motivations

– Analysis of complexity and optimality is not enough

– Need to empirically evaluate algorithms on the same 

problem

• Graph coloring • Graph coloring 

– Simple to formalise very hard to solve

– Well known parameters that influence complexity

• Number of nodes, number of colors, density (number of 

link/number of nodes)

– Many versions of the problem

• CSP, MaxCSP, COP



Graph Coloring
• Network of nodes

• Nodes can take on various colors

• Adjacent nodes should not have the same color

– If it happens this is a conflict

CSPCSP
Yes No



Graph Coloring - MaxCSP

0 -4

• Optimization Problem

• Natural extension of CSP

• Minimise number of conflicts

-10 -4-1



Weighted Graph Coloring - COP

• Optimization Problem

• Conflicts have a weight

• Maximise the sum of weights of violated constraints

COP
-2 -1

COP
-2 -1

-1

-1

-2

-3

-1

-1

-2

-3

-1

-1

-2

-3



Distributed Constraint Optimization:

Exact Algorithms

Pedro Meseguer

Artificial Intelligence Research Institute, IIIA

Spanish Council for Scientific Research, CSIC



Distributed Constraint Optimization:

Exact Algorithms

• Satisfaction: DisCSP

• ABT (Yokoo et al 98)

• Optimization: DCOP

• ADOPT (Modi et al 05)

• BnB-ADOPT (Yeoh et al 10)

• DPOP (Petcu & Faltings 05)



Distributed Algorithms

• Synchronous: agents take steps following some fixed 

order (or computing steps are done simultaneously, 

following some external clock).

• Asynchronous: agents take steps in arbitrary order, at 

arbitrary relative speeds.

• Partially synchronous: there are some restrictions in 

the relative timing of events



Synchonous vs Asynchronous

• Synchronous:

– A few agents are active, most are waiting

– Active agents take decisions with updated information

– Low degree of concurrency / poor robustness

– Algorithms: direct extensions of centralized ones

• Asynchronous:

– All agents are active simultaneously

– Information is less updated, obsolescence appears

– High degree of concurrency / robust approaches

– Algorithms: new approaches



From CSP to DisCSP

• CSP: (X, D, C)
X = {x1, x2,…, xn} variables

D = {d1, d2,…,dn}             domains (finite)

C = {c1,c2,…,cr }                constraints

c C         var(c)  =  {xi, xj,…, xk}             scope

rel(c)    di x dj  x .. x dk        permitted tuples

• Solution: total assignment satisfying all constraints

• DisCSP: (X, D, C, A, φ)
A = {a1, a2,…, ak}          agents

φ: X -> A                         maps variables to agents

c is known by agents owning 

var(c)



Assumptions

1. Agents communicate by sending messages

2. An agent can send messages to others, iff it knowns 

their identifiers

3. The delay transmitting a message is finite but random3. The delay transmitting a message is finite but random

4. For any pair of agents, messages are delivered in the 

order they were sent

5. Agents know the constraints in which they are involved, 

but not the other constraints

6. Each agent owns a single variable (agents = variables)

7. Constraints are binary (2 variables involved)



Synchronous Backtracking

• Total order of n agents: like a railroad with n stops

• Current partial solution: train with n seats, forth/back

• One place for each agent: when train reaches a stop

- selects a new consistent value for the agent of this 

a1 a2 a3                          a4

n = 4

a a a ca c b a c ba c b a

SOLUTION

- selects a new consistent value for the agent of this 

stop (wrt previous agents), it moves  forward

- otherwise, it moves backwards  

a c



ABT: Asynchonous Backtracking

• The Distributed Constraint Satisfaction

Problem: Formalization and Algorithms

Makoto Yokoo, Ed Durfee, Toru Ishida,

Kazohiro Kuwabara, IEEE Transactions 

Know. & Data Engineering, 1998Know. & Data Engineering, 1998

Makoto Yokoo 

and colleagues

• First complete asynchronous algorithm 

for DisCSP solving

• Influential paper award in AAMAS 2010



ABT: Description

• Asynchronous:

• All agents active, take a value and inform.

• No agent has to wait for other agents

• Total order among agents: to avoid cycles• Total order among agents: to avoid cycles

– i < j < k means that: i more priority than j, 

j more priority than k

• Constraints are directed, following total order

• ABT plays in asyncronous distributed context the 

same role as backtracking in centralized 



ABT: Directed Constraints

• Higher priority agent (j) informs the lower

one (k) of its assignment

• Lower priority agent (k) evaluates 

j

cjk

• Directed: from higher to lower priority agents

• Lower priority agent (k) evaluates 

the constraint with its own assignment

– If permitted, no action

– else it looks for a value consistent with j

• If it exists, k takes that value

• else, the agent view of k is a nogood, backtrack

generates nogoods:  

eliminate values of k

k



ABT: Nogoods

• Nogood: conjunction of (variable, value) pairs of higher 

priority agents, that removes a value of the current one 

• Example:    x ≠ y, dx=dy={a, b}, x higher than y

when [x <- a] arrives to y, this agent generates the nogoodwhen [x <- a] arrives to y, this agent generates the nogood

x=a => y≠a

that removes value a of dy. If x changes value, when [x <-

b] arrives to y, the nogood x=a => y≠a is eliminated, value 

a is again available and a new nogood removing b is 

generated.    



ABT: Nogood Resolution

• When all values of variable y are removed, the conjunction 

of the left-hand sides of its nogoods is also a nogood.

• Resolution: the process of generating the new nogood.• Resolution: the process of generating the new nogood.

• Example: :    x ≠ y, z ≠ y, dx=dy=dz={a, b}, x, z higher than y

x=a => y≠a;                x=a ∧ z=b is a nogood 

z=b => y≠b;                x=a => z≠b (assuming x higher than z)  



How ABT works

• ABT agents: asynchronous action; spontaneous assignment

• Assignment: j takes value a, j informs lower priority agents 

• Backtrack: k has no consistent values with high priority agents, k

resolves nogoods and sends a backtrack message

• New links: j receives a nogood mentioning i, unconnected with j;

j asks i to set up a link

• Stop:  “no solution” detected by an agent, stop

• Solution: when agents are silent for a while (quiescence), 

every constraint is satisfied-> solution; 

detected by specialized algorithms 



ABT: Messages

• Ok?(i->k,a): i informs k that it takes value a j

k

i

• Ngd(k->j,i=a ⇒ j≠b):

all k values are forbidden,

k requests j to backtrack,k requests j to backtrack,

k forgets j value, k takes some value,

j may detect obsolescence

• Addl(j->i): set a link from i to j, to know i value

• Stop: there is no solution 



ABT: Data Structures

• Current context or agent view:

values of higher priority constrained agents

xi xj ...

a b

• Nogood store: 

each removed value has a justifying nogood

higher priority

a b c d

x i
=

 a
∧
 
x j

=
 b

. 
 .

  
 .

   
.

. 
 .

  
 .

   
. 

  .
  
 .

   
.

. 
 .

  
 .

   

each removed value has a justifying nogood

xi = a ∧ xj = b ⇒ xk ≠ c        justification

Stored nogoods must be active:

lhs ⊆ current context

If a nogood becomes no active, it is removed 

(and the value is available again)



ABT: Graph Coloring Example

x1 x2 x33 agents, lex ordered:

2 difference constraints: c13 and c23

Variables x1, x2, x3;      D1 = {b, a}, D2 = {a}, D3 = {a, b}

Agent 1    Agent 2   Agent 3

Each agent checks constraints of incoming links: Agent1
and Agent2  check nothing, Agent3 checks c13 and c23

2 difference constraints: c13 and c23

Constraint graph: x1

x2

x3

≠
≠

Value-sending agents: x1 and x2

Constraint-evaluating agent: x3



ABT: Example

x1 = b

x2 = a

x1

x2

x3

D1 = {b,a}

D2 = {a}

D3 = {a, b}

≠
≠

1
x1

x2

x3

D1 = {b,a}

D2 = {a}

D3 = {a, b}
x1 = b ⇒ x2 ≠ a

≠
≠

2

x1D1 = {b,a} x1 = b
4A link requestx1D1 = {b,a}

3

temporary 

deleted

x1

x2

x3

D1 = {b,a}

D2 = {a}

D3 = {a, b}

x1 = b

≠
≠

D3 = {a, b}

x1

x2

x3

⇒x1 ≠ b

x2 = a

D1 = {b,a}

D2 = {a}≠
≠

5

x1 = a

x1

x2

x3

x1 = aD1 = {b,a}

D2 = {a}

D3 = {a, b}

≠
≠

6

x2 = a

x1

x2

x3

D1 = {b,a}

D2 = {a}

D3 = {a, b}

≠
≠

2 3 …



ABT: Why AddLink?

• Imagine ABT without AddLink message

x

x0D0= {a}

≠x0 = a

D0= {a}

x

x0

≠

D0= {a}

x

x0

≠
⇒ x1 ≠ a

x1 = a

x2 = b

x1

x2

x3

D1 = {a,b}

D2 = {b}

D3 = {a, b}

≠
≠

D1 = {a,b}

D3 = {a, b}

x1

x2

x3

D2 = {b}≠
≠

x1 = a ⇒ x2 ≠ b

x1 = b

D1 = {a,b}

D3 = {a, b}

x1

x2

x3

D2 = {b}≠
≠

• x1 rejects Nogood message as obsolete, x2 keeps on 

sending it -> infinite loop!!

• AddLink avoids it: obsolete info is removed in finite time 



ABT: Correctness / Completeness

• Correctness:

– silent network <=> all constraints are satisfied

• Completeness:• Completeness:

– ABT performs an exhaustive traversal of the search space

– Parts not searched: those eliminated by nogoods

– Nogoods are legal: logical consequences of constraints

– Therefore, either there is no solution => ABT generates the 

empty nogood, or it finds a solution if exists



ABT: Termination

• There is no infinite loop

• Induction in depth of the agent:

– Base case: the top agent x1 receives Nogood messages only, 

with empty left-hand side; either it discard all values, 

generating the empty nogood, or remains in a value; either generating the empty nogood, or remains in a value; either 

case it cannot be in an infinite loop

– Induction case: assume x1 … xk-1 are in stable state, xk is looping

xk receives Nogood messages only containing x1 … xk

either it discards all values, generating a Nogood for x1 … xk-1

(breaking the assumption that x1 … xk-1 are in stable state) 

or it finds a consistent value (breaking the assumption that xk

is in an infinite loop) 



Evaluation Measures

• Synchronous cycles:

• Cycle: Each agent wakes up, reads all incoming messages 
from previous cycle, and sends messages (ready to be read 
in the next cycle)

• Suggested by Yokoo et al, in the original ABT paper

• Non-concurrent constraint checks:• Non-concurrent constraint checks:

• Each agent keeps a counter of constraint checks

• The counter is included in the messages sent by the agent

• If an agent receives a message with a counter higher than its 
own counter, it copies the message counter

• At the end, the highest counter is #NCCC 

• Suggested by Meisels et al, in 2002 (following logical clocks) 



From DisCSPs to DCOPs

• DisCSP: (X, D, C, A, φ):

C are boolean functions ci :∏j ∈var(ci)
dj -> {true, false}

• DCOP: (X, D, C, A, φ):

C are cost functions    c :∏ ∈ d -> NC are cost functions    ci :∏j ∈var(ci)
dj -> N

overall cost(t) = ∑i ci (t )

• Solution: total assignment with acceptable cost

• Optimal solution: total assignment with minimum cost

arg min ∑ij cij (t)           (binary cost functions) 



Synchronous BnB
like a railroad with n stops

like a train that goes forth / back 

When the train reaches a stop:

• select a new value

• if LB < UB, move forward

total order of agents: a1, a2, ..., an; 

CPS: current partial solution; 

one place for 

each agent,

plus LB, UB

a c b

LB 0LB 4 UB ∞

a1 a2 a3                                a4

n = 4

• otherwise, select another value

• if no more values, move backward

LB 0 UB ∞

a

LB 0 UB ∞

a

LB 0 UB ∞

a b

LB 0LB ∞ UB ∞

a c

LB 0LB 2 UB ∞

a c

LB 0LB 2 UB ∞

a c b

LB 0LB 4 UB ∞

a c b a

LB 0LB 5 UB 6

. . .



Inneficient Asynchronous DCOP

• DCOP:  sequence of DisCSP, with decreasing thresholds

DisCSP cost = k,   DisCSP cost = k-1,   DisCSP cost = k-2, ...

• ABT asynchronously solves each instance, until finding 
the  first unsolvable instance. the  first unsolvable instance. 

• Synchrony on solving sequence instances

cost k instance is solved before cost k-1 instance

• Very inefficient



ADOPT: Asynchronous 

Distributed Optimization

• ADOPT: asynchronous distributed 

constraint optimization with 

quality guarantees; P. Jay Mody, 

W. M. Shen, M. Tambe, M. Yokoo

Pragnesh Jay Modi

and colleagues

W. M. Shen, M. Tambe, M. Yokoo

Artificial Intelligence, 2005

• First asynchonous complete 

algorithm for optimally solving 

DCOP 



ADOPT: DFS tree (pseudotree)

ADOPT assumes that agents are arranged in a DFS tree: 

• constraint graph -> rooted graph (select a node as root)

• some links form a tree / others are backedges

• two constrained nodes must be in the same  
path to the root by tree links (same branch) x1

root
path to the root by tree links (same branch)

Every graph admits a DFS tree: DFS graph traversal 

x1

x2 x3

x4

x1

x2

x3 x4

parent

childpseudoparent

pseudochild



ADOPT Description

• Asynchronous algorithm

• Each time an agent receives a message:

– Processes it (the agent may take a new value)

– Sends VALUE messages to its children and pseudochildren– Sends VALUE messages to its children and pseudochildren

– Sends a COST message to its parent

• Context: set of (variable value) pairs (as ABT agent view)

of ancestor agents (in the same branch) 

• Current context:

– Updated by each VALUE message

– If current context is not compatible with some child context, 

the later is initialized (also the child bounds)



ADOPT Messages
• value (parent -> children U pseudochildren, a):

parent informs descendants that it has taken value a

• cost(child->parent, lower bound, upper bound, context):

child informs parent of the best cost of its assignement; 
attached context to detect obsolescence;

• threshold (parent-> child, t): minimum cost of solution 
in child is at least t

• termination (parent-> children): LB = UB



ADOPT Data Structures

1.Current context (agent view):

values of higher priority constrained agents a

xi ...

2. Bounds: a b c d

3 0 0 0lb(x )

xj2. Bounds:

lower bounds

upper bounds

thresholds

contextes

Stored contextes must be active:

context ⊆ current context

If a context becomes no active, it is removed lb,th<-0, ub<-∞ 

for each 

value, child

3 0 0 0

∞ ∞ ∞ ∞

lb(xk)

ub(xk)

context(xk)

1 0 0 0th(xk)



ADOPT Bounds

xj

a             b                c

OPT(xj,CurCont) = min d∈dj δ(d) + 

Σ xk∈Children OPT(xk,CurCont U (xj,d))

δ(b) = ∑i ∈ current-context cij(a,b)

δ(value)= cost with higher agents

21 3

a             b                c

lb1 ub1 lb2 ub2 lb3 ub3

[lbk, ubk] = cost of lower agents

LB(b)=δ(b)+∑xk∈childrenlb(b,xk)

LB=minb∈djLB(b)

UB(b) = δ(b) + ∑xk∈childrenub(b,xk)

UB = minb∈djUB(b)



ADOPT: Value Assignment

• An ADOPT agent takes the value with minimum LB

• Eager behavior: 

– Agents may constantly change value

– Generates many context changes– Generates many context changes

• Threshold: 

– lower bound of the cost that children have from previous search

– parent distributes threshold among children

– incorrect distribution does not cause problems: the child with 

minor allocation would send a COST to the parent later, and the 

parent will rebalance the threshold distribution   



ADOPT: Properties

• For any xi ,       LB ≤ OPT(xl,CurCont) ≤ UB

• For any xi ,       its threshold reaches UB

• For any xi , its final threshold is equal to OPT(xl,CurCont)
[ADOPT terminates with the optimal solution] 



ADOPT: Example

4 binary identical cost functions

4 Variables (4 agents) x1, x2, x3 x4 with D = {a, b}

Xi Xj

a a 1

a b 2
Constraint graph:

a b 2

b a 2

b b 0

x1

x2

x3 x4



ADOPT: Example

x1=a

x2=a

x =a x =a

x1=b

x2=a

x =a x =a

x1=a

x2=a

x =a x =a

[1,1,x2=a]
[2,2,

x1=x2=a]

[1, ∞,x1=a]delayed

until 4

x3=a x4=a x3=a x4=a

x1=b

x2=b

x3=b x4=a

[0, ∞,x1=b]
[2,2,

x1=b

x2=a]

x1=b

x2=b

x3=b x4=b

[0,0,

x1=b

x2=b]
[0,0,x2=b]

[0,3,x1=b]

x1=b

x2=b

x3=b x4=b

[0,0,x1=b]

x3=a x4=a



BnB-ADOPT

• BnB-ADOPT: an asynchronous 

branch-and-bound DCOP 

algorithm; W. Yeoh, A. Felner, 

S. Koenig, JAIR 2010 

William Yeoh

and colleagues

• ADOPT branch-and-bound version 

• Changes best-first by depth-first 

branch-and-bound strategy 



BnB-ADOPT: Description

• Basically same messages / data structures as ADOPT

• Changes:

– All incoming messages are processed before taking value

– Timestamp for each value – Timestamp for each value 

– The agent context may be updated with VALUE and with COST

– THRESHOLD is included in VALUE (so BnB-ADOPT messages are 

VALUE, COST and TERMINATE)

• Main change: value selection

– Agent changes value when the current value is definitely 

worse than another value (LB(current-value) ≥ UB)

– Thresholds are upper bounds (not lower bound like in ADOPT)



BnB-ADOPT: Messages

• value (parent -> children U pseudochildren, a, t):

parent informs descendants that it has taken value a, 
children threshold is t (pseudochildren threshold is ∞)

• cost(child->parent, lower bound, upper bound, context):

child informs parent of the best cost of its assignement, 
attached context to detect obsolescence

• termination (parent-> children): LB = UB



BnB-ADOPT: Example

x1=a

x2=a

x =a x =a

[1,1,x2=a]

x1=a

x2=a

x =a x =a

[2,2,x1=x2=a]

[1, ∞, x1=a]

x1=a

x2=b

x =a x =a

[4,4,x1=a]

x1=b

x2=b

x3=b x4=b

[0,0,

x1=x2=b]

[0, ∞, x1=b]

x3=a x4=a

x1=b

x2=b

x3=b x4=b

[0,0,x1=b]

x3=a x4=a x3=a x4=a

x1=b

x2=b

x3=b x4=b

[2,2,

x1=a

x2=b]
[0,0,x2=b]



BnB-ADOPT: Performance

• BnB-ADOPT agents change value less frequently -> 

less context changes

• BnB-ADOPT uses less messages / less cycles than BnB-ADOPT uses less messages / less cycles than 

ADOPT

• Best-first strategy does not pay-off in terms of 

messages/cycles



BnB-ADOPT: Redundant Messages

• Many VALUE / COST messages are redundant

• Detection of redundant messages:

[Gutierrez, Meseguer AAAI 2010][Gutierrez, Meseguer AAAI 2010]

– VALUE to be sent: if it is equal to the last VALUE sent, it is 

redundant

– COST to be sent: if it is equal to the last COST sent and there is 

no context change, it is redundant

– For efficiency: take thresholds into account

• Significant decrement in #messages, keeping optimality 



A New Strategy

• So far, algorithms (ABT, ADOPT,…) exchanged 

individual assignments: distributed search

– Small messages, but …

– Exponentially  many

• A different approach, exchanging cost functions: 

distributed inference (dynamic programming)

– A few messages, but …

– Exponentially large



DPOP: 

Dynamic Programming 

Optimization Protocol

Adrian Petcu

and Boi Faltings

• DPOP: A scalable method for

distributed constraint optimization

A. Petcu, B. Faltings; IJCAI 2005 

• In distributed, it plays the same role

as ADC in centralized



DPOP phases/messages

• token passing1. DFS tree 
construction

PHASES MESSAGES

• util (child -> parent, 
constraint table [-child] )

• value (parent -> children, 
pseudochildren,  parent value)

2. Utility phase: from 
leaves to root

3. Value phase: from 
root to leaves



DPOP: DFS tree phase

Distributed DFS graph traversal: token, ID, neighbors(X)

1. X owns the token: adds its own ID and sends it in turn 
to each of its neighbors, which become children. 

2. Y receives the token from X: it marks X as visited. First 
time Y receives the token then parent(Y)=X. Other IDs time Y receives the token then parent(Y)=X. Other IDs 
in token which are also neighbors(Y) are pseudoparent. 
If Y receives token from neighbor W to which it was never 
sent, W is pseudochild.

3. When all neighbors(X) visited, X removes its ID from 
token and sends it to parent(X).

A node is selected as root, which starts. When all neighbors 
of root are visited, the DFS traversal ends.    



DFS phase: Exampleroot

x1

x1

x2 x3

x4
[x1] x1 parent of x2

x1 x4
x2 parent of x3

x2

x3 x4

x1

x2 x3

x4

[x1,x2]

x2 parent of x3

x1 pseudoparent of x3

x1

x2 x3

x4
[x1,x2,x3]

x3 parent of x4

x3 pseudochild of x1



DPOP: Util phase

Agent X:

1. receives from each child Yi a cost function:  C(Yi)

2. combines (adds, joins) all these cost functions with 

the cost functions with parent(X) and the cost functions with parent(X) and 

pseudoparents(X) 

3. projects X out of the resulting cost function, and 

sends it to parent(X)

From the leaves to the root.



DPOP: util phase example

X

X T
a a 1
a b 2
b a 2
b b 0

X Y Z T
a a a a 3
a a a b 4
a a b a 4
a a b b 5
a b a a 4
a b a b 5
a b b a 5
a b b b 6

parent

add Project

X Y Z T
a a a a 3
a a a b 4
a a b a 4
a a b b 5
a b a a 4
a b a b 5
a b b a 5
a b b b 6

cost function 

to parent(X)

X

X Y
a a 1
a b 2
b a 2
b b 0

X Z
a a 1
a b 2
b a 2
b b 0

a b b a 5
a b b b 6
b a a a 6
b a a b 4
b a b a 4
b a b b 2
b b a a 4
b b a b 2
b b b a 2
b b b b 0

children

add Project

out X
a b b a 5
a b b b 6
b a a a 6
b a a b 4
b a b a 4
b a b b 2
b b a a 4
b b a b 2
b b b a 2
b b b b 0

All value combinations 

Costs are the sum of 

applicable costs

Remove X

Remove duplicates

keep the min cost



DPOP: Value phase

1. The root finds the value that minimizes the received 
cost function in the util phase, and informs its 
descendants (children U pseudochildren) 

2. Each agent waits to receive the value of its parent / 
pseudoparentspseudoparents

3. Keeping fixed the value of parent/pseudoparents, 
finds the value that minimizes the received cost 
function in the util phase

4. Informs of this value to its children/pseudochildren

This process starts at the root and ends at the leaves



DTREE

X
X Y
a a 1
a b 2
b a 2
b b 02 0

a b
X

X<-b

For DCOPs without backedges

Optimal solution:

• linear number of messages

• message size: linear

Y

Z W
Y W
a a 1
a b 2
b a 2
b b 0

Y Z
a a 1
a b 2
b a 2
b b 0

1 0
a b
Y

1 0
a b
Y

Y<-b

Z<-b W<-b

• message size: linear



DPOP: Example

XFor any DCOP

Optimal solution:

• linear number

X Y
a a 1
a b 2
b a 2
b b 0

X Z
a a 1
a b 2
b a 2
b b 0

3 0
a b
X

X<-b

X<-b

Y

Z W

1 0
a b
Y

Y<-b

Z<-b W<-b

• linear number

of messages

• message size: 

exponential

Y W
a a 1
a b 2
b a 2
b b 0

Y Z
a a 1
a b 2
b a 2
b b 0

b b 0

1 2
a b
Y

a
2 0b

X



DPOP: Performance

• Synchronous algorithm, linear number of messages

• util messages can be exponentially large: main drawback

• Function filtering can alleviate this problem

• DPOP completeness: direct, from Adaptive Consistency 

results in centralized



Distributed Constraint Optimization:

Approximate Algorithms

Alessandro Farinelli

Computer Science Department

University of Verona, Italy



Approximate Algorithms: outline

• No  guarantees

– DSA-1, MGM-1 (exchange individual assignments)

– Max-Sum (exchange functions)– Max-Sum (exchange functions)

• Off-Line guarantees

– K-optimality and extensions

• On-Line Guarantees

– Bounded max-sum



Why Approximate Algorithms

• Motivations

– Often optimality in practical applications is not achievable

– Fast good enough solutions are all we can have

• Example – Graph coloring• Example – Graph coloring

– Medium size problem (about 20 nodes, three colors per 

node)

– Number of states to visit for optimal solution in the worst 

case  3^20 = 3 billions of states

• Key problem

– Provides guarantees on solution quality



Exemplar Application: Surveillance

• Event Detection
– Vehicles passing on a road

• Energy Constraints
– Sense/Sleep modes

– Recharge when sleeping

• Coordination• Coordination
– Activity can be detected 

by single sensor

– Roads have different 
traffic loads

• Aim
– Focus on road with more 

traffic load

time

duty cycle

Heavy traffic road small road

Good Schedule

Bad Schedule



Surveillance demo

Joint work with: 

A. Rogers, 

N. R. Jennings



Guarantees on solution quality

• Key Concept: bound the optimal solution

– Assume a maximization problem

– optimal solution,       a solution

–

– percentage of optimality 

• [0,1] 

• The higher the better

– approximation ratio 

• >= 1

• The lower the better

– is the bound 



Types of Guarantees

Accuracy

Accuracy: high alpha

Generality: less use of instance 

specific knowledgeBounded Max-Sum

DaCSA

On-Line

Generality

MGM-1, 

DSA-1, 

Max-Sum

K-optimality

T-optimality

Region Opt.

Off-Line

No guarantees



Centralized Local Greedy approaches
• Greedy local search 

– Start from random solution

– Do local changes if global solution improves

– Local: change the value of a subset of variables, usually one

-1-1 -1

-4
-1

-1 -1
-2

-4

0

0 -2
0



Centralized Local Greedy approaches

• Problems

– Local minima

– Standard solutions: RandomWalk, Simulated Annealing 

-1 -1-1 -1

-2

-1 -1

-1 -1 -1 -1 -1 -1



Distributed Local Greedy approaches

• Local knowledge

• Parallel execution:

– A greedy local move might be harmful/useless

– Need coordination

-1-1-1 -1

-4

-1

-4

-1

-1

0 -2 0 -2 0 -2
0 -2



Distributed Stochastic Algorithm
• Greedy local search with activation probability to mitigate issues with parallel executions

• DSA-1: change value of one variable at time

• Initialize agents with a random assignment and communicate values to neighbors

• Each agent:
– Generates a random number and execute only if rnd less than activation probability

– When executing changes value maximizing local gain

– Communicate possible variable change to neighbors



DSA-1: Execution Example

-1

P = 1/4

-1

-1

-1

rnd > ¼ ? rnd > ¼ ? rnd > ¼ ? rnd > ¼ ?

0 -2



DSA-1: discussion

• Extremely “cheap” (computation/communication)

• Good performance in various domains

– e.g. target tracking [Fitzpatrick Meertens 03, Zhang et al. 03], 

– Shows an anytime property (not guaranteed)– Shows an anytime property (not guaranteed)

– Benchmarking technique for coordination 

• Problems

– Activation probablity must be tuned [Zhang et al. 03]

– No general rule, hard to characterise results across domains



Maximum Gain Message (MGM-1)

• Coordinate to decide who is going to move

– Compute and exchange possible gains

– Agent with maximum (positive) gain executes

• Analysis [Maheswaran et al. 04]

– Empirically, similar to DSA– Empirically, similar to DSA

– More communication (but still linear)

– No Threshold to set

– Guaranteed to be monotonic (Anytime behavior)



MGM-1: Example

-1-1

0 -2
-1 -1 0 -2

-1 -1

G = -2

G = 0 G = 2

G = 0



Local greedy approaches

• Exchange local values for variables 

– Similar to search based methods (e.g. ADOPT)

• Consider only local information when maximizing

– Values of neighbors– Values of neighbors

• Anytime behaviors 

• Could result in very bad solutions



GDL based approaches

• Generalized Distributive Law

– Unifying framework for inference 

in Graphical models

– Builds on basic mathematical 

properties of semi-ringsproperties of semi-rings

– Widely used in Info theory, 

Statistical physics, Probabilistic 

models

• Max-sum  

– DCOP settings: maximise social 

welfare



Max-sum

Agents iteratively computes local functions that depend 

only on the variable they control 

X1 X2

Choose arg max

X4 X3 Shared constraint

All incoming messages 

except x2

All incoming messages

Choose arg max



Max-Sum on acyclic graphs

• Max-sum Optimal on acyclic graphs 
– Different branches are independent

– Each agent can build a correct 
estimation of its contribution to the 
global problem (z functions)

• Message equations very similar to 
Util messages in DPOP

X1 X3

X2

Util messages in DPOP
– Sum messages from children and 

shared constraint

– Maximize out  agent variable

– GDL generalizes DPOP [Vinyals et al. 
2010a]

X4



Max-sum Performance

• Good performance on loopy networks [Farinelli et al. 08] 

– When it converges very good results

• Interesting results when only one cycle [Weiss 00]

– We could remove cycle but pay an exponential price (see 
DPOP)



Max-Sum for low power devices

• Low overhead 

– Msgs number/size

• Asynchronous computation

– Agents take decisions whenever new messages arrive

• Robust to message loss



Max-sum on hardware
• Chipcon CC2431

– Low-power devices, 8 KByte RAM

Joint work with: Joint work with: 

L. Teacy, N. J. Grabham, 

P. Padhy, A. Rogers, 

N. R. Jennings



Max-Sum for UAVs

Ack: F. Delle Fave, A. 

Rogers,        N.R. 

JenningsJennings

and  ACFR



Quality guarantees for approx. techniques

• Key area of research

• Address trade-off between guarantees and 

computational effort

• Particularly important for many real world • Particularly important for many real world 

applications

– Critical (e.g. Search and rescue)

– Constrained resource (e.g. Embedded devices)

– Dynamic  settings



Off-Line guarantees

Accuracy

Characterise solution quality without running 

the algorithm

Bounded Max-Sum

DaCSA

On-Line

Generality

MGM-1, 

DSA-1,  

Max-Sum

K-optimality

T-optimality

Region Opt.

Off-Line

No guarantees



K-Optimality framework

• Given a characterization of solution gives bound on solution quality [Pearce and 
Tambe 07]

• Characterization of solution: k-optimal

• K-optimal solution:
– Corresponding value of the objective function can not be improved by changing the 

assignment of k or less variables.



K-Optimal solutions

1 1 1 1

1

1

1

1

2-optimal ? No3-optimal ? Yes

0 0 1 0

2

2

0

2



Bounds for K-Optimality

For any DCOP with non-negative rewards [Pearce and Tambe 07]

Number of agents Maximum arity of constraints

K-optimal solution

Binary Network (m=2):



K-Optimality Discussion

• Need algorithms for computing k-optimal solutions

– DSA-1, MGM-1 k=1; DSA-2, MGM-2 k=2 [Maheswaran et al. 04]

– DALO for generic k (and t-optimality) [Kiekintveld et al. 10] 

• The higher k the more complex the computation 

(exponential)(exponential)

Percentage of Optimal:

• The higher k the better 

• The higher the number of 

agents the worst 



Trade-off between generality and solution 

quality

• K-optimality based on worst case analysis

• assuming more knowledge gives much better bounds 

• Knowledge on structure [Pearce and Tambe 07]



Trade-off between generality and 

solution quality

• Knowledge on reward [Bowring et al. 08]

• Beta: ratio of least minimum reward to the maximum



Off-Line Guarantees: Region Optimality

• k-optimality: use size as a criterion for optimality 
• t-optimality: use distance to a central agent in the constraint 

graph
• Region Optimality: define regions based on general criteria 

(e.g. S-size bounded distance) [Vinyals et al 11]
• Ack: Meritxell Vinyals

3-size regions

x0 x1 x2 x3

x0

x1 x2

x3

x0

x1 x2

x3

x0

x1 x2

x3

x0

x1 x2

x3

1-distance regions

x0 x1 x2 x3

C regions



Size-Bounded Distance

• Region optimality can explore new 
regions: s-size bounded distance  

• One region per agent, largest t-
distance group whose size is less 
than s 

3-size bounded distance

x0

x x

x0

x x
than s 

• S-Size-bounded distance 
– C-DALO extension of DALO for general 

regions

– Can provides better bounds and 
keep under control size and 
number of regions

x1 x2

x3

x0

x1 x2

x3

x1 x2

x3

x0

x1 x2

x3

t=1

t=0 t=1

t=0



Max-Sum and Region Optimality

• Can use region optimality to provide bounds for Max-
sum [Vinyals et al 10b]

• Upon convergence Max-Sum is optimal on SLT regions of 
the graph [Weiss 00]

• Single Loops and Trees (SLT): all groups of agents whose • Single Loops and Trees (SLT): all groups of agents whose 
vertex induced subgraph contains at most one cycle

x1

x0

x2

x3

x0

x1 x2

x3

x0

x1 x2

x3

x0

x1 x2

x3

x0

x1 x2

x3



Bounds for Max-Sum

• Complete: same as 

3-size optimality

• bipartite

• 2D grids



Variable Disjoint Cycles

Very high quality guarantees if smallest cycle is large



On-Line guarantees

Accuracy

Characterise solution quality after/while 

running the algorithm

Bounded Max-Sum

DaCSA

On-Line

Generality

MGM-1, 

DSA-1,  

Max-Sum

K-optimality

T-optimality

Region Opt.

Off-Line

No guarantees



Build Spanning tree

Bounded max-sum

Aim: Remove cycles from constraint graph avoiding 

exponential computation/communication [Rogers et al. 11]

Avoid pseudo trees/junction trees

Run Max-Sum
Compute Bound

X1 X2 X3
Optimal state on tree

X4

0 1 0 0



Computing the weights

• Compute a weight for each edge

– maximum possible impact of the 

constraint on the solution

– Maximum Spanning Tree

– Remove edges and modify 

constraintsconstraints

–

W = sum of weights of removed 

edges



Results (Random Binary Network)

Optimal

Approx.

Lower Bound

Upper Bound

• Bound is significant 

– Approx. ratio is 

typically 1.23 (81 %)

Comparison with k-optimal 

with knowledge on 

reward structure

Much more accurate less 

general 



Discussion

• Discussion with other data-dependent techniques

– BnB-ADOPT [Yeoh et al 09]

• Fix an error bound and execute until the error bound is met

• Worst case computation remains exponential

– ADPOP [Petcu and Faltings 05b]– ADPOP [Petcu and Faltings 05b]

• Can fix message size (and thus computation) or error bound and 

leave the other parameter free

• Divide and coordinate [Vinyals et al 10]

– Divide problems among agents and negotiate agreement 

by exchanging utility

– Provides anytime quality guarantees



Future Challenges for DCOP

• Handle Uncertainty

– E[DPOP] [Leaute et al. 09]

– Distributed Coordination of Exploration and Exploitation 

[Taylor et al. 11]

• Handle Dynamism• Handle Dynamism

– S-DPOP [Petcu and Faltings 05]

– Robustness in DCR [Lass et al. 09]

– Fast-Max-Sum [MacArhur et al. 09]



Challenging domains: Robotics

• Cooperative exploration,                
Surveillance, Patrolling, etc.

• Main Challenges

– Reward is unknown/uncertain– Reward is unknown/uncertain

– Structure of the problem changes over time

– High probability of failures

• Messages, robots, etc.

• Work in this direction 

– [Stranders et al. 09]

– [Taylor et al. 11]



Challenging domains: Energy

• Intelligent Building control,     

power distribution configuration, 

electric vehicle management, etc.

• Main challengesMain challenges

– Large scale, dynamic system

– Decomposing agents’ interactions

– Interaction with end-users

• Work in this direction

– [Kumar et al. 09]

– [Kambooj et al. 11]
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At the end of this block you will be able to

1. Classify auctions along several dimensions.

2. Determine the winner in complex auctions:

– And how complex this can get to be.

3. Apply auctions to solve supply chain formation3. Apply auctions to solve supply chain formation

problems

4. Apply auctions to robustly solve task allocation

problems



Introduction



Historical note

• Auctions used in Babylon as early as 500 B.C.

• 193 A.D. After having killed Emperor Pertinax, 

Prætorian Guard sold the Roman Empire by means of 

an auctionan auction



What is an auction?

An auction is a protocol that allows agents to indicate

their interests in one or more resources and that uses 

these indications of interest to determine both anthese indications of interest to determine both an

allocation of resources and a set of payments by the

agents.

[Shoham & Leyton-Brown 2009]



Where are auctions used nowadays?

• Resource allocation
– Treasury auctions

– Right to drill oil, off-shore oil lease

– Use the EM spectrum

– Private and public goods and services acquisition– Private and public goods and services acquisition

– Internet auctions

• Market-based computing
The use of a market-based method, such as an auction to 
compute the outcome of a distributed problem.

– Air-conditioning control

– Production control

– Robot navigation

– Sensor networks



Why auctions?

• Market-based price setting � For objects of 

unknown value, the value is dynamically assessed 

by the market! 

• Flexible � Any object type

• Dynamic � Interactive• Dynamic � Interactive

• Automated

– use of simple rules reduces complexity of negotiations

– ideal for computer implementation

• Revenue-maximising and efficient allocations are 

achievable



Single good auctions



Multi-unit auctions



Multi-item auctions



Multi-item auctions (II)



Reverse auctions
FRONT SUSPENSION, FRONT WHEEL BEARING ACQUISITION

� Goal: Buy parts to produce a      

front suspension.

� The buyer issues a request for

bids to his providers.

PART 

#

DESCRIPTION

1 FRONT HUB

7 LOWER CONTROL

ARM BUSHINGS

8 STRUT

9 COIL SPRING

14 STABILIZER BAR



Multi-attribute auctions

• They allow negotiation over further attributes 

beyond price (e.g. color, weight, or delivery time).

• For instance:

– Provider John Doe offers to deliver a stainless-steel – Provider John Doe offers to deliver a stainless-steel 

stabilizer bar that weighs 500 g at the cost of 200 EUR by 

July 18th 2011.

• They promise higher market efficiency through a 

more effective information exchange of buyer’s

preferences and supplier’s offerings.



Multidimensional Auctions

131

Multi-Unit, 

Multi-Item



Outline

• Single-item auctions

• Multi-item auctions

• Supply chain formation

• Robust auctions• Robust auctions

• Research opportunities



Outline

• Single-item auctions

• Multi-item auctions

• Supply chain formation

• Robust auctions• Robust auctions

• Research opportunities



Single-unit auction protocols

• English

• Japanese

• Dutch

• Sealed-bid• Sealed-bid

– First-price

– Second-price (Vickrey)



Auction rules

• Bidding rules.

– How offers are made:

• By whom

• When

• What their content can be• What their content can be

• Clearing rules. 

– Who gets which goods (allocation) and what money 

changes hands (payment).

• Information rules. 

– Who knows what about the state of the negotiation and 

when.



Auction rules

• Bidding rules.

– How offers are made:

• By whom

• When

• What their content can be• What their content can be

• Clearing rules. 

– Who gets which goods (allocation) and what money 

changes hands (payment).

• Information rules. 

– Who knows what about the state of the negotiation and 

when.



Winner Determination Problem (WDP)

• Given a set of bids, allocate the good to the bidder

whose bid maximizes the auctioneer’s revenue.

• WDPs for single-unit auctions are easy:

– English: Last bid wins– English: Last bid wins

– Japanese: Last remaining bidder wins

– Dutch: First bid wins

– Sealed-bid: Highest bid wins



Multi-unit auctions

• An auctioneer wants to sell 15 apples maximizing the 

revenue. 

• Sequential auction / Parallel auction

– Bidding extremely difficult– Bidding extremely difficult

– Bidders can end up with less units than needed

• As a whole. 

– There are multi-unit formats of the single-unit protocols:

• English, Japanese, Dutch, Sealed-bid

– Bidders bid on quantity and price



Multi-unit auctions

• An auctioneer wants to sell 15 apples maximizing the 

revenue.

• The auctioneer receives the following offers:

– A: Buy 12 apples for 4€– A: Buy 12 apples for 4€

– B: Buy 2 apples for 2€

– C: Buy 1 apple for 2€

– D: Buy 1 apple for 1€

– E: Buy 4 apples for 10€

• What is the optimal allocation?



Multi-unit auctions

• An auctioneer wants to sell 15 apples maximizing the 

revenue.

• The auctioneer receives the following offers:

– A: Buy 12 apples for 4€– A: Buy 12 apples for 4€

– B: Buy 2 apples for 2€

– C: Buy 1 apple for 2€

– D: Buy 1 apple for 1€

– E: Buy 4 apples for 10€

A

B

C

D

E



Weighted knapsack problem (example)

• A binary variable for each bid:

• Maximize the revenue obtained by filling the 

knapsack

maximize 4 2 2 10x x x x x+ + + +

, , , ,A B C D Ex x x x x

{ }

maximize 4 2 2 10

subject to

     15

, , , ,

1

0,1

2 2 4

A B C D E

A B C D E

A B C D E

x x x x x

x x x x

x x x

x

x x

+ + + +

+ +

∈

+ + ≤

A

B

C

D

E



Multi-unit auctions allow more 

complex bids

• An auctioneer wants to sell 15 apples maximizing the 

revenue. 

• The auctioneer receives the following offers:

– A: Buy either 12 apples for 4€ OR 6 apples for 3€– A: Buy either 12 apples for 4€ OR 6 apples for 3€

– B: Buy 2 apples for 2€

– C: Buy 1 apple for 2€

– D: Buy 1 apple for 1€

– E: Buy either 4 apples for 10€ OR 2 apples for 6€

• What is the optimal allocation?



Bidding languages

• In general, in a multi-unit auction, bidders need to

specify their valuation for every number of units. 

• If we are selling three apples, each bidder should tell 

us something like
4€

us something like

• Imagine we are selling 100 apples…

• Bidding languages allow bidders to convey this

information more compactly

4€

6€

7€

{ },: 1,i nv
+… → �



Bidding language examples

• Send a single value c 

– Additive valuation: 

– Single item valuation:

( )iv n n c= ⋅

=

• Sending two values c,B:

– Fixed budget valuation:  

0 0
( )i

if n
v n

c otherwise

=
= 


( ) min( , )iv n c n B= ⋅



Weighted knapsack problem

• Binary variable        indicates that bidder i is allocated k units

• Each bidder has sent a valuation function such that

is the amount bidder i will pay if allocated k units

,k i
x

( )iv k
iv

( )maximize
N m

k xv ⋅∑∑

{ }

,

1 1

,

1 1

,

1

,

( )

,1

0,1 ,1 , ,

maximize

subject to

1

1

k i

i k

N m

k i

i

i

k

m

k i

k

k i

k x

k x

i i N

x k k m i N

v

i

m

x

= =

= =

=

⋅

⋅ ≤
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Outline

• Single-item auctions

• Multi-item auctions

• Supply chain formation

• Robust auctions• Robust auctions

• Research opportunities



Combinatorial auctions

• In multi-unit auctions goods are interchangeable.

• In combinatorial auctions different goods are traded

simultaneously.

• It is important when bidders’ valuations depend• It is important when bidders’ valuations depend

strongly on which set of goods they receive.

• Examples:

– Energy auctions

– Corporate procurement auctions

– Auctions for paths in a network (i.e. comm. connections)



Combinatorial Auctions

A

B

BIDDER1

400€

10€

C
BIDDER2

BIDDER3

400€

450€

100€

WINNER DETERMINATION 

PROBLEM:

400+100 > 450

OPTIMAL ALLOCATION: 

Bidders 1 and 2 win



Valuation functions

• A set of bidders

• A set of goods

• For each bidder we have a valuation funtion

{ }, ,1N n= …

{ }, ,1G m= …

,i N∈

: ( )iv G → �P

iv

• Interesting when bidders have nonadditive valuation

functions:

– Substitutability

– Complementarity

• Sequential / Parallel auctions: The exposure problem.

: ( )iv G → �P



CA in Transportation [Sheffi 2004] 

Given three cities

• Traffic Lanes (1,2,3,4)

• Similar Frequency & Distance
1

2
3

4

SEV

• Potential Operators (A;B)

Which operator gets which lanes?

1

MAD BCN



CA in Transportation

• Single round, sealed-bids.

• Information Exchange:
� Auctioneer gives aggregated volume estimate

� Operators submit lane offers

1

2
3

4

MAD

SEV

BCN

� Operators submit lane offers

• Assignment Mechanism:
� Lane-by-lane analysis

� Highest bid wins Operator

Lane A B

BCN-MAD 500 450

MAD-SEV 600 700

SEV-BCN 400 500

BCN-SEV 600 500



CA in Transportation

• Single round, sealed-bids.

• Information Exchange:
� Auctioneer gives aggregated volume estimate

� Operators submit lane offers

1

2
3

4

MAD

SEV

BCN

� Operators submit lane offers

• Assignment Mechanism:
� Lane-by-lane analysis

� Highest bid wins Operator

Lane A B

BCN-MAD 500 450

MAD-SEV 600 700

SEV-BCN 400 500

BCN-SEV 600 500

Income:     2300 



Transportation. Combinatorial bidding

Operator A’s Bids Operator B´s Bids

1

2
3

4

MAD

SEV

BCN

Lanes #1 #2 #3 #4 #5 #6 #1 #2 #3 #4 #5 #6

BCN-MAD 1 1 1 1

MAD-SEV 1 1 1 1

SEV-BCN 1 1 1 1 1 1

BCN-SEV 1 1 1 1

Bid 500 600 400 600 1.600 1.100 450 700 500 500 1.750 1.100

Which operator gets which lanes?



Transportation. Combinatorial bidding

Operator A’s Bids Operator B´s Bids

1

2
3

4

MAD

SEV

BCN

Lanes #1 #2 #3 #4 #5 #6 #1 #2 #3 #4 #5 #6

BCN-MAD 1 1 1 1

MAD-SEV 1 1 1 1

SEV-BCN 1 1 1 1 1 1

BCN-SEV 1 1 1 1

Bid 500 600 400 600 1.600 1.100 450 700 500 500 1.750 1.100

Income:     2350 



Valuation functions

• A set of bidders

• A set of goods

• For each bidder we have a valuation funtion

{ }, ,1N n= …

{ }, ,1G m= …

,i N∈

: ( )iv G → �P

iv

• Note that the size of              is

: ( )iv G → �P

( )GP 2m



Winner determination problem

{ }

,
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,

maximize

subject to 1
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Bidding languages

• We want to:

– Communicate less information.

– Have fewer decision variables when solving.

• A bidding language allows for a more efficient way of 
communicating a value function.communicating a value function.

• Atomic bids: “I will buy A,B, and C for 10€”

• OR language: Each bidder sends a set of atomic bids. 
The auctioneer can accept as many as he wants.

• XOR language: Each bidder sends a set of atomic
bids. The auctioneer can only accept a single bid
from each bidder.



OR language Winner Determination

Problem

• A set of atomic bids

• A set of goods

maximize
n

xp∑

{ }1 1 ,, , ,
n n

B G Gp p…=

{ }, ,1G m= …

{ }

1

 s. t. 

maximize

subject to 1

0,1

i

i

i

i

i

i

Gj

i

x

j G

x i

p

B

x

=

∈

≤ ∀ ∈

∈ ∀ ∈

∑

∑



CATS – Testing WDP algorithms

[Leyton-Brown 2006]

• Generator of CA instances to test CA algorithms.

• Distributions of instances from realistic domains: 

– Paths in space (e.g. truck routes)

– Proximity in space (e.g. adjacent pieces of real state)– Proximity in space (e.g. adjacent pieces of real state)

– Arbitrary relationships (e.g. Pollution rights auction)

– Temporal matching (e.g. airport take-off & landing rights)

– Temportal scheduling (e.g. Job-shop scheduling)

• …as well as a collection of artificial distributions used

in the literature.

Available @ http://www.cs.ubc.ca/~kevinlb/CATS/



Task allocation

• Consider a scenario where agents want to allocate 

video editing tasks to task performers 

Bret

Murray

Rendering task

SallyRendering task

Jemaine

Centre



Task allocation

• Agents send to the centre:

– Asks: How much to pay to have the task performed

– Offers: How much to get paid to perform the task

Bret

Murray
Sally

Jemaine

Centre

Task 1

Task 2
Task 1

Task 2ASKS OFFERS



Task allocation

• The centre allocates the tasks and pays the agents

Task 2

Bret

Sally

Centre

Task 1
Murray

Jemaine



Combinatorial exchanges

• In markets with many buyers and many sellers, 

exchanges are a natural choice for a market

mechanism.

• In a combinatorial exchange, the trades can involveIn a combinatorial exchange, the trades can involve

multiple buyers and multiple sellers each. 

• Participants in a combinatorial exchange are allowed

to both buy and sell (bundles of) items, or just buy or

just sell.

• Single-unit exchanges, multi-unit exchanges are 

particular cases of combinatorial exchanges.



Task allocation 

Combinatorial exchange
• Agents send to the centre combinatorial asks and

combinatorial offers on bundles of tasks.

Bret

Murray
Sally

Jemaine

Centre

Task 1

Task 2
Task 1

Task 2ASKS OFFERSTask 3 Task 3



Task allocation 

Combinatorial exchange
• Agents send to the centre combinatorial asks and

combinatorial offers on bundles of tasks.

Bret

Murray
Sally

Jemaine

Centre

Task 1

Task 2
Task 1

Task 2ASKS OFFERSTask 3 Task 3



Combinatorial exchanges

• A set of bidders

• A set of items

• For each bidder              a bid in this setting is

{ }, ,1N n= …

{ }, ,1G m= …

,i N∈

( )1,..., ,m
B q q p=

 Bi

• is the asked/offered number of units of item k and

• is the price

• means buying;                     means selling

• means offering; means asking

( )1,..., ,i

m

i i iB q q p=

q
k

i

pi

q
k

i > 0 q
k

i < 0

pi > 0 pi < 0



Winner determination problem

n

∑

To label the bids as winning or losing so as to maximize

surplus under the constraint that demand does not

exceed supply:

  

maximize p
i
x

i

i=1

n

∑

subject to q
i

j
x

i

i=1

n

∑ ≤ 0 ∀j ∈G

x
i
∈ 0,1{ } ∀i ∈N



Outline

• Single-item auctions

• Multi-item auctions

• Supply chain formation

• Robust auctions• Robust auctions

• Research opportunities



Purchasing process

Analysis of 

requirements

Buyer

Definition of 

bidding rules 

Supplier

Analysis of RFQ 

RFQ

bidding rules 

and request

Analysis of RFQ 

Ellaboration and 

submission of 

bids

Bid Evaluation

Winner

determination
Negotiation

Contracting



Reverse auctions for industrial 

procurement
• The first reverse auction took place in the 

1990s, when the Internet was introduced 
as an auction tool.

• The buyer advertises a need for an item 
or service. 

• Sellers then place bids for the amount • Sellers then place bids for the amount 
they expect to be paid in order to 
perform such a service or provide such an 
item. 

• Generally, the seller who places the 
lowest bid will win the job or sell the 
item.

• As of 2007 more than 50% of the large
companies were using reverse auctions
for their purchases with 176M$ mean 
expenditure.



Reverse auctions for industrial 

procurement [Bichler et al. 2006]

• RFQs range from ten to 90,000 goods with an

average of 250 goods:

– Reverse combinatorial auctions are the right tool

• Auction design objectives:• Auction design objectives:

– Cost minimization

– Supplier perceived fairness

• Auction protocol:

– Public procurement: First-price sealed bid

– Private procurement: Multiple round



Supply chain formation

• A supply chain is a set of organizations directly linked 

by the flow of products, services, finances, and 

information from a source to a customer.



Production process example

SALE FORECAST
200 APPLE PIES



Purchasing (Buy)



Make-or-Buy



Make-or-Buy



Make-or-Buy-or-Collaborate



Make-or-Buy-or-Collaborate



Combinatorial auctions for supply chain

formation [Walsh et al., 2000]

• Provided that:

– The graph is acyclic.

– Each transformation produces only one unit of a single 

output good

• The optimal allocation for a supply chain formation• The optimal allocation for a supply chain formation

problem can be obtained by means of a 

combinatorial auction.



Combinatorial auctions for supply chain

formation [Walsh et al., 2000]

• Each agent i participating in the supply chain sends a 

bid of the form:

1

1, , , , ,n

n

i i ig q g qp    …   

– I charge you € (to give you/ if you give me)       units of

and (to give you/ if you give me)       units of

and …

ip
1

i
q

1g
2

iq 2g

I charge you 14 € to give you 1 unit of apple pie

if you give me 1 unit of dough and 

1 unit of filling.



Combinatorial auctions for supply chain

formation [Walsh et al., 2000]

• The WDP defines a variable     for each bid

• Then it solves the following integer program:

1

1, , , , ,
n

n

i i i
g q g qp    …   

i
x

• Then it solves the following integer program:

1

1

maximize

subject to 10

B

i

B
j

i

i

i i

i

p

q x

x

j G

=

=

∀= ≤ ≤

∑

∑



Mixed Multi Unit Combinatorial Auction

(MMUCA)

• Sometimes reasonable business collaborations can 

only be represented by means of loops and need

more than one output

Dough

Filling

Oven

Baking Pie



MMUCA

• An extension of Combinatorial Auctions that 

provides:

– A bidding language to express preferences over operations  

across the supply chain

– An optimisation problem that selects:– An optimisation problem that selects:

• The best business partners

• A feasible sequence of operations

Automatically selects the best
Make-or-Buy-or-Collaborate decisions



MMUCA Bidding language

• A bidder can express preferences over bundles of 
transformations (Atomic Bid)

• A bidder can submit combinations of Atomic Bids 
(e.g. XOR, OR)

• Theorem [Cerquides et al. 2007]: XOR is expressive • Theorem [Cerquides et al. 2007]: XOR is expressive 
enough to represent any valuation

• MMUCA generalizes:

– reverse auctions

– direct auctions

– exchanges

– CAs for SCF



MMUCA Solvers [Giovannucci 2008] 

SOLVER TOPOLOGY
#Decision
Variables

Petri-Nets Based 

Integer Program
ACYCLIC O(N)

Integer Program
ACYCLIC O(N)

Direct Integer 

Program
ANY O(N2)

Connected 

Components IP
ANY

O(N) ≤ ??<< 

O(N2)

N: overall number of transformations bid



MMUCA generator [Vinyals et al. 2008]

Available @t  http://zeus.maia.ub.es/~cerquide/mmucaGenerator 

http://www.iiia.csic.es/~rosell/MMUCAP/



MMUCA resolution time



Analysing MMUCA hardness: Empirical
findings [Almajano et. al, 2010]

� We generated problems with different characteristics

� Used machine learning to predict MMUCA solving time

� Anlyzed the relevance of each feature in this model.

� The larger a feature’s cost, the higher its importance.



Analysing MMUCA hardness: Theoretical
results [Fionda & Greco, 2009]

• Determining FEASIBILITY is NPC for most classes

• If the auction has limited intricacy and can be 
represented as a hypergraph with bounded
hypertree width then the WDP is in P.



Sequential MMUCA [Mikhaylov 2011]



Decentralized SCF [Winsper & Chli, 2010]

• Map Walsh & Wellman Supply Chain Formation

problem to a DCOP

• Solve distributedly using Loopy Belief Propagation

(Max-Sum)(Max-Sum)

• Finally post-process the solution to turn the result

into a feasible supply chain.



Outline

• Single-item auctions

• Multi-item auctions

• Supply chain formation

• Robust auctions• Robust auctions

• Research opportunities



Robust auctions

• Common assumption: agents always successfully

complete their allocated tasks.

• Unrealistic because agents can and often do fail.

• Agents have subjective perceptions about an agent’s• Agents have subjective perceptions about an agent’s

probability of succeeding at a given task (trust).

• Challenge: How to asess allocations that prevent

failures exploiting trust information

– Trust-based mechanisms (Ramchurn et al., JAIR 2009)



Task Allocation with 

Execution Uncertainty
• Consider a scenario where agents want to allocate a 

video editing task and the task performers may fail at 

this task

Bret

Murray

Rendering task

SallyRendering task

Jemaine

Centre



Trust-based task allocation

• In combinatorial exchanges, task requesters are 

indifferent to task performers.

• Now task requesters do care about task performers: 

valuations need to take into account the trust of thevaluations need to take into account the trust of the

task requester in the task performer.

• The goal is to design a mechanism (allocation rule + 

payment function) that:

– Has agents truthfully report on their expected QoS

– Finds the task allocation that maximises the expected

utility of the agents within the system (efficient allocation) 

instead of the revenue-maximising allocation.



Efficiency vs Revenue-maximisation

• Revenue-maximimising is a common goal in auctions.

• Efficiency (value-maximising allocations) is an
alternative in resource allocation problems.  

arg max    v (a)∑       

• Efficiency aims at allocating resources to those who
value them most.

• From the perspective of a seller, a revenue-
maximising allocation is a natural goal.

• From the perspective of the society as a whole, 
efficiency may be more important.

a∈Allocations

arg max    vi (a)
i∈I

∑       



Efficiency vs Revenue-maximisation

• To make efficient choices agents must truthfully

report their valuations.

• To provide incentives to report truthfully, it may be 

necessary to tax or subsidise various individuals.necessary to tax or subsidise various individuals.

• A transfer (payment) function sets utility adjustments

so that individuals are taxed or subsidised depending

on their reported valuations.

• Transfer functions are based on computing the

marginal contribution of each agent to the

mechanism (what if agent i wasn’t there?).



Trust-based task allocation

– Each ask: How much to pay to have some tasks performed

plus how reliable the agent believes other agents are

– Each offer: How much to get paid to perform some tasks

Bret

Murray
Sally

Jemaine

Centre

Task 1

Task 2

Task 1 Task 2

Task 1



Trust-based task allocation

– Each ask: How much to pay to have some tasks performed

plus how reliable the agent believes other agents are

– Each offer: How much to get paid to perform some tasks

Bret

Murray
Sally

Jemaine

Centre

Task 1

Task 2

Task 1 Task 2

Task 1

+

Expected QoS

Jemaine/Task1  0.2

Sally/Task1        0.9

Jemaine/Task2  0.5

Sally/Task2         0.1



Trust-based task allocation

• The Centre allocates the tasks and pays the agents 

depending on how they succeed at it.

Task 2

Bret

Sally

Centre

Task 1
Murray

Jemaine



Trust-based task allocation

Formal Model

• Tasks that can be requested or performed 

• Each agent          has:

– A cost function           for the cost of performing tasks

– A valuation function            over the tasks

ci (T ) T ⊆ ϒ

vi (T ) T ⊆ ϒ

ϒ

i ∈I

– A valuation function            over the tasks

– A partial view about the probability of success of agent j

when performing task             , noted as 

• An agent type is 

• Trust of an agent i on another agent j as the 

aggregate expectation combining:

– Previous personal interactions between i and j

– Reputation in the society of j

vi (T ) T ⊆ ϒ

τ ∈ϒ ηi

j (τ )



Representing the space of allocations

Single

offer

Jemaine

Sally



Representing the space of allocations

Combinatorial

offer

Jemaine

Sally



Representing the space of allocations



Representing the space of allocations

Single task

per agent



Representing the space of allocations

COST (offer price)

Jemaine

Sally



Representing the space of allocations

Bret

Murray



Representing the space of allocations

Expected

valuation



Representing the space of allocations

• Expected valuation (example): The expected

valuation associated to agent allocating task 1 to

agent 4 and task 2 to agent 2 depends on the

probability of success (POS) of agents 4 and 2 when

performing task 1  and task 2  respectively. performing task 1  and task 2  respectively. 



Representing the space of allocations

• Expected valuation (example): The expected

valuation associated to agent allocating task 1 to

agent 4 and task 2 to agent 2 depends on the POS of

agents 4 and 2 when performing task 1 (           ) ) and

task 2 (                ) respectively. task 2 (                ) respectively. 



Representing the space of allocations

• Expected valuation (example): The expected

valuation associated to agent allocating task 1 to

agent 4 and task 2 to agent 2 depends on the POS of

agents 4 and 2 when performing task 1 (           ) ) and

task 2 (                ) respectively. task 2 (                ) respectively. 

Both agents succed



Representing the space of allocations

• Expected valuation (example): The expected

valuation associated to agent allocating task 1 to

agent 4 and task 2 to agent 2 depends on the POS of

agents 4 and 2 when performing task 1 (           ) ) and

task 2 (                ) respectively. task 2 (                ) respectively. 

Agent 4 succeeds

Agent 2 fails



Representing the space of allocations

• Expected valuation (example): The expected

valuation associated to agent allocating task 1 to

agent 4 and task 2 to agent 2 depends on the POS of

agents 4 and 2 when performing task 1 (           ) ) and

task 2 (                ) respectively. task 2 (                ) respectively. 

Agent 2 succeeds

Agent 4 fails



Representing the space of allocations

Bret

Murray

Jemaine

Sally



Trust-based task allocation

• Trust-based task allocation problem: assessing the

task allocation that maximises the expected utility of

all agents within the system amounts to solving:

argmax    EU(a)

• where stands for all feasible allocations and EU(a) 

stands for the expected utility of allocation .

• It can be solved as an integer program with

decision variables, where is the number of

expected valuations.  

a∈A

argmax    EU(a)

A

Ο(n)

n

a



Integer Programming formulation

• Maximise

– where are decision variables for valuations and costs

• subject to

xe, ye '

• subject to

– Bids and valuations comply with the XOR bidding language

– Valuation on a task performed by a bidder is linked to the

bidder performing the task (but demand dos not exceed

supply)



Worst-case empirical analysis

• All task performers bid over all tasks and all

requesters submit a single valuation over all tasks.

• Small, medium-size scenarios (< 2x105 variables) 

solvable in reasonable time (< 40 seconds).solvable in reasonable time (< 40 seconds).

• Time grows exponentially with the number of tasks.

• Conclusion: Approximate algorithms required, but… 

withouth losing much efficiency!



Payment (utility transfer) function

• Payments are conditional on completion of tasks

allocated.

• It is possible to define a payment function such that

the resulting mechanism is:the resulting mechanism is:

– Incentive compatible (agents truthfully report valuations, 

costs, expected QoS)

– Efficient

– Individually rational (agents prefer to participate in the

mechanism)

• …but the computation of payments is costly! It

requires to solve several optimisation problems.



Mending auctions [Muñoz 2011]

• Once an auction is cleared, there is a period of time where changes 
may occur

• Solving again the auction is not a good option 

– the bidders were informed about the winning allocation and a 
new auction could lead to a completely different allocation 

• The intention is to minimize changes from the initial solution while 
losing as least revenue as possible



Robustness for CA

• Definition of Robust Auction:

– (a,b,β)-super solution

– An (a,b,β)-super solution of an auction is a maximal revenue solution for – An (a,b,β)-super solution of an auction is a maximal revenue solution for 
the auction such that, if at most a goods become unavailable, then it can 
be repaired by changing at most b bids in the solution and, moreover, the 
revenue of the solution and all possible repaired solutions is at 
least β.



• Schematic View

super solution of Aauction A

Weighted MAX-SAT

Robustness for CA

RA Problem P robust allocation of P

supermodel of FA

model of FASMFSM

F

Weighted MAX-SMT solver

Weighted MAX-SMT
encoding

Weighted MAX-SAT
encoding

SMT = SAT Modulo Theories



Boolean satisfiability

• SAT
– Determine if a Boolean formula is satisfiable

• MAX-SAT
– The maximum number of clauses that can be satisfied by some assignment

• Weighted MAX-SAT
– The maximum weight which can be satisfied by any assignment– The maximum weight which can be satisfied by any assignment

• Partial Weighted MAX-SAT
– Idem, with some non-weighted clauses

F = (p v q) ^ (¬p v q) ^ (p v ¬q) ^ (¬p v ¬q, 10)
Result: 0  (p=true, q=true)



SAT Modulo theories

• SMT
– Inclusion of arithmetic operations

– F = (p v q) ^ (q v (y = 2)) ^ (p v (x = 2)) ^ (x + y < 4)
• MAX-SMT
• Weighted MAX-SMT
• Partial Weighted MAX-SMT• Partial Weighted MAX-SMT



• Schematic View

super solution of Aauction A

Weighted MAX-SAT

Robustness for CA

RA Problem P robust allocation of P

supermodel of FA

model of FASMFSM

F

Weighted MAX-SMT solver

Weighted MAX-SMT
encoding

Weighted MAX-SAT
encoding

SMT = SAT Modulo Theories



Encoding

• Partial weighted MAX-SAT encodes CA WDP

– F = M ^W
– Mandatory clauses (M)

• Incompatibilities between bids for bids offering same goods (e.g. 
(¬B v ¬B ) if B offers (g g ) and B offers (g ,g )(¬B2 v ¬B4) if B2 offers (g3,g5) and B4 offers (g1,g3)

• Resource requirements (e.g B2� g3 ^ g5)

– Weighted clauses (W)

• Bids’ prices (e.g. (B2, 100))

• Partial weighted MAX-SMT encodes robust WDP

– FSM = F (CA WDP clauses) ^ 

clause constraining solution value(              ) ^

repairing clauses (a,b)

Bi

i=1

r

∑ ≥ β



Research opportunities



Research opportunities

• Coping with time

– Scheduling tasks in a supply chain [Collins  2008]

– Time-aware bidding language &WDP for mixed auctions

[Witzel 2010] 

• Coping with uncertainty• Coping with uncertainty

– Preventing failures

– Mending failed (task) allocations

• Coping with distribution

– Scalable, distributed supply chain formation
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Linear programs

• A linear program is defined by:

– A set of real-valued variables;

– A linear objective function; and 

– A set of linear constraints.

• Let the set of variables be { }, ,x x…• Let the set of variables be

• When there is no objective function it reduces to a 
constraint satisfaction or feasibility problem

{ }1, , nx x…
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Solving linear programs

• Linear programs can be solved in polynomial time  

through interior point methods

• The simplex algorithm

– requires an exponential number of steps in the worst– requires an exponential number of steps in the worst

case…

– …but is usually much more efficient that interior point

methods in practice



Integer programs

• Integer programs are linear programs in which the
variables are required to take integral (rather than
real) values.

• In 0-1 integer programs each variable is constrained
to take either the value 0 or the value 1.to take either the value 0 or the value 1.

• Mixed integer programs involve a combination of 
integer and real-valued variables. 
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Solving integer programs

• Integer programs are undecidable in the worst case and 
NP-hard provided that the domains are finite.

• The most commonly used technique is branch and bound
search.

– At each search node the linear program relaxation of the integer– At each search node the linear program relaxation of the integer
program is solved

• Other techniques are branch-and-price or branch-and-
cut. 

• Provided that

– A is totally unimodular (every square submatrix has determinant
0, 1 or -1); and 

– b is integral

integer programs can be solved in polynomial time. 
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At the end of this talk, you will be able to:

1. Define what is coalition formation

– Differences  from and links to teamwork, decentralised

coordination and supply-chain formation.

2. List the key steps of abstract coalition formation

– Cooperative and Competitive settings

– Computational challenges

– Lack of realism

3. Define complex coalition formation applications

– Dynamic CF: Scheduling and Routing

– Uncertainty and Dynamism



Contents

• Part 1: An Overview of Coalition Formation

– Differences and Similarities with other coordination 
technologies

– Competitive and Cooperative settings

• Part 1: Abstract Coalition Formation• Part 1: Abstract Coalition Formation

– Steps of the CF process

– Computational challenges

– Overlapping Coalitions

• Part 2: Complex Coalition Formation

– A scenario

– Solutions

– Other examples



Part 1

An overview of coalition formation



A definition of coalition formation

The coming together of a set of, possibly 

self-interested, agents that cooperate to 

perform joint actions as part of a group perform joint actions as part of a group 

where the reward form performing such 

actions is attributed to the group. 



A definition of coalition formation

The coming together of a set of, possibly 

self-interested, agents that cooperate to 

perform joint actions as part of a group perform joint actions as part of a group 

where the reward from performing such 

actions is attributed to the group. 



Coalition Formation and other 

coordination paradigms

• Are Teams and Coalitions the same?

– Coalition members may only care about 

their own profit.

– Coalition Formation research focuses on 

who to group for best synergies and how who to group for best synergies and how 

to share rewards/resources

– Teamwork: focus is on roles/team 

operation



Coalition Formation and other 

coordination paradigms

• Finding the best coalition = running 

a combinatorial auction?

– Combinations of goods/services = 

combinations of agents?

– CAs = set packing problem (find the 

sets of goods that minimise cost)

– CF = can be a set partitioning problem 

(allocate ALL agents to a set)
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There are diverse cooperative and 

competitive scenarios

• Cooperative

– Team formation

– Resource Allocation

– Task Allocation

– Dynamic Coalition Formation

• Competitive (i.e. selfish agents)

– Cooperatives

– Consortium

– Buyers and Sellers



In cooperative settings we focus on 

optimisation

• Optimise the performance of a coalition

– Resources or Tasks

– Intra Group Synergies

• Find the best set of coalitions to form

– Group Externalities 

– Coalition Values



In competitive settings we focus on 

stability

• Maintaining the grand coalition

– Assume it’s the best coalition to form (super-additivity)

– Game theory

• Avoiding coalitions from disbanding through 

payments

– Payments within the coalition

– Payments between coalitions

• BUT: do such payments exist? -> worst optimisation

problem (GT typically ignores it…).



Part 2

Abstract Coalition Formation



Coalition Formation

Agents Tasks

(Universal studios)

(University of Southampton)

(Forest Fire)



Coalition Formation

(Universal studios)

(University of Southampton)

(Forest Fire)

v(Coalition 1) = 10

v(Coalition 2) = 14

v(Coalition 3) = 1v(Coalition 3) = 5

v(Coalition 4) = 14



Coalition Structure

V(CS) = 10 + 14 + 1 = 25

(Universal studios)

(University of Southampton)

(Forest Fire)

Coalition 1

Coalition 2

Coalition 3



Coalition Structure
V(CS) = 10 + 14 + 5 = 26

(Universal studios)

(University of Southampton)

(Forest Fire)

Coalition 1

Coalition 2

Coalition 3



Coalition Formation Stages

• Coalition Value Calculation and Optimisation

– Intra-coalition task/resource allocation

– Evaluating a coalition’s effectiveness

– In Competitive settings?

• Payoff Calculation• Payoff Calculation

– Stability of the coalition

– Network games

• Coalition Structure Generation

– The set of sets of agents i.e., the partition of the set of agents

– Constraints

– Winner Determination problem

– Dynamic? (wait for PART II)
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Coalition Value Calculation

• Computational Cost: 2n where 

n = no. of agents.

• Standard Enumeration 

techniques:

1. Build a forest1. Build a forest

2. Share coalition values 

computed (I’ll compute the 

ones I can form and you do the 

same and we’ll share) – i.e., 

Shehory et al.

Problems: redundancy – compute 

coalitions twice, communication 

cost if to be distributed.



Coalition Value Calculation

• Wilf and Nijenhuis, 1989, DCVC (Rahwan&Jennings, 

2008)

– The last coalition in the list is: {1, . . . , s} (s = size of the coalition) 

e.g. last coalition of size 4 out of 6 agents  is, 1,2,3,4.

– Given any coalition Ci , the agent can calculate Ci−1 by checking – Given any coalition Ci , the agent can calculate Ci−1 by checking 

the values ci,s, ci,s−1, ci,s−2, . . . until it finds a value ci,x such that

• ci,x < c1,x , then:

– ci−1,k = ci,                              k: 1 k <x

– ci−1,k = ci,                         k +1: k = x

– ci−1,k = ci−1,                 k−1 +1: x <k <s

• Key point is: Generate the next coalition from the 

previous one with minimal changes.

• Distributed indices  = distributed computation.



Coalition Formation Stages

• Coalition Value Calculation and Optimisation

– Intra-coalition task/resource allocation
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Fairness and Coalitional Stability

• Let’s play a game

– Each participant gets X in coalition Y

– Participants have to choose which coalitions to join

– How do we find the coalition we want to be in.

• Shapley Value

– Fairness – agents obtain the reward they deserve

– NP-complete

• Core 

– Stability – agents obtain the reward which avoids the 

coalition breaking up

– NP-complete



Algorithms

• Conitzer 2004

– Core and Shapley value using decomposable characteristic 
functions

• Castro et al. 2008

– Using sampling process on the ordering of agents’ inserted – Using sampling process on the ordering of agents’ inserted 
into coalitions

• Dreschel and Kimms, 2010 

– Core computation using mathematical programming (150 
agents).

• Issues: How are coalition values obtained? 
Manipulation issues? Who does the computation? 
Rationality assumptions? Approximate solutions?



Coalition Formation Stages
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Coalition Structure Generation

• The grand coalition may not always 
be best

– The characteristic function v(C) i.e., 
coalitions’ values are independent of 
which other coalitions are formed.

• The set partitioning problem• The set partitioning problem

– Divide a set of agents into subsets to 
maximise the sum of the values of the 
subsets chosen

– Crew Scheduling

– Special case of the Winner 
Determination problem for 
combinatorial auctions (all items have 
to be allocated)



The Set Partitioning Problem
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Coalition Structure
V(CS) = 10 + 14 + 5 = 26

(Universal studios)

(University of Southampton)

(Forest Fire)

Coalition 1

Coalition 2

Coalition 3



Coalition Structure Generation

• The Representation:

– Rothkopf/Yun Yeh – Dynamic Programming

– Sandholm et al.

– Rahwan et al. (IP/IDP-IP etc…)



Coalition Structure Generation

• IP algorithm

– Using Integer partitions of the 
number of agents

– Create a set of subspaces for which 
we can compute upper and lower 
boundsbounds

– Apply BnB over these spaces

– Apply BnB within these spaces

• CF with constraints

– Restrict sizes

– Restrict number of coalitions 
according to number of tasks

– ….



Part 3

Complex Coalition Formation Applications



Advanced Coalition Formation

• Task/Resource allocation

– to coalitions

– to agents within coalitions

– To be shared by coalitions

• Scheduling• Scheduling

– Dynamic

– Temporal constraints

• Routing

– Spatial constraints

– Dynamism

• Distributed



Task Allocation via Coalition Formation

• Shehory & Kraus, 1995

– Agents communicate to decide which coalitions to form to 

perform tasks

– Tasks with precedence order

– Overlapping coalitions (agents can be in two coalitions)– Overlapping coalitions (agents can be in two coalitions)

• Sandholm and Lesser

– Distributed Vehicle Routing context

– Boundedly rational agents



ROBOCUP RESCUE SIMULATION

Example application

http://sourceforge.net/projects/roborescue/



Video



Spatial and Temporal Constraints

• The RoboCupRescue Grand Challenge

Design algorithms to allocate teams of ambulances and fire 

brigades in a disaster space in order to save civilians and 

extinguish fires.extinguish fires.

Ambulances located in different parts of the city have to 

work together to dig out victims

Fire brigades located in different parts of the city have to 

work together to extinguish rapidly evolving fires – otherwise 

the city burns down



The example of the Ambulance Allocation 

problem – Spatial and Temporal issues

• Each victim has a:

– Deadline

– Workload (time to dig a victim out)

• Adding more ambulances linearly 

increases the speed at which the increases the speed at which the 

workload can be reduced

• Objective: Allocate coalitions of 

ambulances to maximise the number 

of victims saved, where each 

ambulance/victim is located at 

different points in the space.



Optimal Algorithm for Ambulance 

Allocation 

Limited to 8 agents and 20 tasks

but will take hours to complete using 

CPLEX



CFST

• Admissible Heuristics

– Maximise the number of tasks completed

– Maximise working time of the agents

– Minimise time to complete maximum number of tasks

• Iterative approach

– Space is limited to only N tasks and, in the worst case 2m

coalitions (but this is unlikely due to spatial distribution!)

• DCOP version

– Fast-Max-Sum (discussed earlier this morning)



VIRTUAL POWER PLANTS IN THE 

SMART GRID

Example application 2



Uncertainty and Dynamism

• Key computational issues

– How to find the best agents to team up 

with?

– How to share the benefits if the agents 

are not reliable in their prediction of are not reliable in their prediction of 

output?

– How to change coalitions over time?



Initial Solutions

• Chalkiadakis et al., AAMAS 2010

– Cooperative game theoretic issues.

• Vasirani et al., ATES 2011

– Use a bidding process to allocate vehicles to the virtual – Use a bidding process to allocate vehicles to the virtual 

power plant

• Possible PhD topic: Algorithms yet for creating virtual 

power plants on the fly given changing weather 

conditions/demand/etc…



Now, you should be able to:

1. Define what is coalition formation

– Differences  from and links to teamwork, 
decentralised coordination and supply-chain 
formation.

2. List the key steps of abstract coalition 
formationformation

– Cooperative and Competitive settings

– Computational challenges

– Lack of realism

3. Identify complex coalition formation 
applications

– Dynamic CF: Scheduling and Routing

– Uncertainty and Dynamism
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