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Graph Clustering

• Is the process of finding “communities” of similar vertices in a
graph.

• Manually evaluating the quality of a given clustering is
essential, but is hard, expensive and boring. Especially fo
larger graphs.

• Quality metrics try to represent the most important cluster
characteristics and can be used to evaluate its the fitness.
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The Problem

• Most papers just assume that a given chosen quality metric is
good enough and run with it.

• There is no consensus on what is the best quality metric for
graph clusters. Or even if it is possible to have a single best
one.

• The lack of graphs (especially large ones) with known
expected clusterings make it harder to evaluate the validity of
clustering quality metrics in more complex/interesting cases.
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Our Contribution

• We wanted to verify if there in one quality metric that’s
markedly better than the others. If not, why?.

• We’ve chosen 5 popular structural quality metrics.

• Studied their structural characteristics. (Do they really
represent good clusters?)

• Observed how they behave when applied to graphs with
different sizes and origins. (Do they always behave as we
expect?).

• Compared those metrics. (Do they agree on what is a good
cluster? Is there a better clustering quality metric?)
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Quality Metrics Overview

• Clustering quality metrics aim to score a cluster (or whole
clusterings) in terms of chosen characteristics that are
believed to indicate well-formed clusters.

• Structurally speaking, a good cluster should have its vertices
connected densely among themselves and sparsely with the
rest of the graph.

• In this work, we’ve chosen 5 popular topological quality
metrics:

• Modularity.

• Silhouette

• Conductance

• Coverage

• Performance
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Modularity

• Measures the internal density and external sparsity of a given
clustering.

• Q is the fraction of all edges that lie within communities
minus the expected value of the same quantity in a similarly
built, albeit random, graph.

Q = Tr(e)− ||e2||
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Modularity

e =

C1 C2 C3
C1 0.5 0.08 0
C2 0.08 0 0.08
C3 0 0.08 0.33

Q = 0.2999

• Singleton cluster (2): Is it
that bad?
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Modularity

e =

C1 C2
C1 0.5 0.08
C2 0.08 0.4166

Q = 0.3337

• Is the new cluster 2 better
than the old cluster 3?

• Is this clustering really
better the the previous
one? It only has less
inter-cluster edges.
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Silhouette Index

• Uses vertex distances to measure cohesion and separation of
clusters.

• A good cluster should have small average distance between its
elements and greater average distance between them and
other clusters.
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Silhouette Index

Sv =
bv − av

max(av , bv )

• av : average distance between vertex v and all other vertices in
its own cluster.

• bv : average distance between vertex v and all vertices in the
nearest cluster.

• Expensive (needs all-pairs shortest path calculation).

• Singleton clusters erroneously have high silhouette scores
because av = 0.
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Conductance

• The conductance of a graph cut measures its cost.

• If a clustering has low conductance value, it means that the
clusters it defines are well separated. This concept is also
called intercluster (external) conductance.

• If the graph induced by a cluster has high conductance, then
it is too cohesive to be easily cut. This concept is also called
intracluster (internal) conductance.

• Even though using both conductances would give better
results, most authors ignore internal density because of its
higher cost.
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Conductance

• External conductance is given by:

φ(Ci ) =

∑
u∈Ci

∑
v 6∈Ci

w({u, v})
min(a(Ci ), a(C̄i ))
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Coverage

• It’s the fraction of intracluster edges existent in the graph.

• High values of coverage mean that there are more edges inside
the clusters than linking them, which is considered as a good
clustering
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Coverage

coverage(C ) =
w(C )

w(G )
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Coverage

coverage(C ) =
w(C)

w(G )

• Mainly uses inter-cluster sparsity to measure quality.

• Will be biased towards lower numbers of clusters.
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Performance

• Performance counts the number of edges linking vertices of a
cluster among themselves, together with the number of edges
that do not exist between them and the rest of the graph.

• High values mean that the cluster is both internally dense and
externally sparse.

perf (C ) =
f (C ) + g(C )

1
2n(n − 1)
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Performance

• Complex networks (especially social ones) tend to be sparse.

• In sparse graphs, the ratio of “nonexistent” edges will be way
higher than the number of edges in the graph.

• Because of this, performance may lose its discerning power
when applied to complex networks.
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Experiments Overview

• We wanted to compare the results of those quality metrics for
different clusterings of real world graphs.

• To obtain different clusterings, we used 4 different clustering
algorithms.

• We calculated the topological quality metrics discussed for
each of those obtained clusterings.
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Clustering Algorithms Used

• Markovian (MCL)

• Bisecting K-means (CLUTO)

• Spectral (SCPS)

• Normalized Cut (GRACLUS)
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Datasets Used

Network # Vertices # Edges
Karate Club 34 78

College Footbal 115 616

Astrophysics Collab. 18772 396160

H. E. Physics Collab. 12008 237010

H. E. Physics Citation 34546 421578

Gnutella Snap. (08/04/02) 10876 39994

Gnutella Snap. (08/30/02) 36682 88328
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Discussion

• For the smaller graphs, communities found were very similar
to the real ones.

• Metric values obtained are fairly good.

• Since it’s a very small and popular dataset, this result is more
than expected
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Astrophysics Collaboration Results

Algorithm # Clusters SI Mod. Cover. Perf. Cond.

MCL
1036 -0.22 0.35 0.42 0.99 0.55
2231 -0.23 0.28 0.31 0.99 0.70
4093 0.06 0.19 0.27 0.99 0.82

B. k-means
1037 -0.73 0.25 0.28 0.99 0.70
2232 -0.48 0.21 0.24 0.99 0.70
4094 -0.21 0.17 0.19 0.99 0.76

Spectral
1034 -0.15 0.34 0.38 0.99 0.53
2131 -0.26 0.25 0.28 0.99 0.66
3335 0.04 0.19 0.21 0.99 0.78

Norm. Cut
1037 -0.69 0.23 0.25 0.99 0.66
2232 -0.51 0.17 0.19 0.99 0.73
4094 -0.31 0.13 0.15 0.99 0.81
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Gnutella Snapshot (08/04/02) Results

Algorithm # Clusters SI Mod. Cover. Perf. Cond.

MCL
2189 -0.81 0.0004 0.001 0.99 0.99
4724 -0.037 0.0003 0.0007 0.99 0.99
6089 0.1 0.00003 0.0003 0.99 1.00

B. k-means
2189 -0.88 0.0004 0.001 0.99 0.99
4724 -0.52 0.00007 0.0004 0.99 0.99
6089 -0.18 -0.00006 0.0002 0.99 1.00

Spectral
2158 -0.90 0.0004 0.001 0.99 0.99
4079 -0.94 0.0001 0.0005 0.99 0.99
6089 -0.30 -0.00007 0.0002 0.99 1.00

Norm. Cut
2189 -0.90 0.0003 0.001 0.99 0.99
4616 -0.2 0.00025 0.0006 0.99 0.99
5690 0.1 0.0002 0.0005 0.99 0.99
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Example of Gnutella Network Topology
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Discussion

• The network structure has a very low probability of generating
clusters as expected from the quality metrics.

• Probability of 3-clique occurrence is only 0.5%, while it is
31.8% for the Astrophysics collaboration network, for
example.

• Also, by design, Gnutella networks are very sparse.

• Only 6.76% of all possible edges in fact exist in this Gnutella
snapshot (opposed to 32.88% for the H. E. Physics citation
network, for example).
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Conclusions

• The quality metrics studied do not share a common view on
what is a good clustering.

• They present strong biases that do not necessarily indicate
good clusters.

• Graphs of different origins might have different characteristics
and, therefore, have different cluster structure signatures.

• From all that, we concluded that none of those quality metrics
represents the characteristics of a well-formed cluster with a
good degree of precision.
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Future Work

• New, more adequate graph clustering quality metrics are
needed.

• Study large networks to identify how its characteristics
influence cluster structures.

• Also, study how other information dimensions (such as edge
weights and asymmetry or vertex labels) affect cluster
structures.
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The end.

Questions?
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