Outline	Introduction	Quality Metrics	Experiments	Conclusions	Future Work	Questions
	ls Th	ere a Best	Quality N Clusters?	Netric for	Graph	
	Hélio Alr	neida ¹ , Dorgi Moha	val Guedes ammed J. Z	¹ , Wagner N aki ²	Aeira Jr. ¹ ,	
		1 Universida	de Federal de N	/linas Gerais		

²Rensselaer Polytechnic Institute

September 5, 2011

Outline	Introduction	Quality Metrics	Experiments	Conclusions	Future Work	Questions

1 Introduction

- Quality Metrics
- Experiments
- Conclusions
- Future Work

- Is the process of finding "communities" of similar vertices in a graph.
- Manually evaluating the quality of a given clustering is essential, but is hard, expensive and boring. Especially fo larger graphs.
- Quality metrics try to represent the most important cluster characteristics and can be used to evaluate its the fitness.

- Most papers just assume that a given chosen quality metric is good enough and run with it.
- There is no consensus on what is the best quality metric for graph clusters. Or even if it is possible to have a single best one.
- The lack of graphs (especially large ones) with known expected clusterings make it harder to evaluate the validity of clustering quality metrics in more complex/interesting cases.

- - We wanted to verify if there in one quality metric that's markedly better than the others. If not, why?.
 - We've chosen 5 popular structural quality metrics.
 - Studied their structural characteristics. (Do they really represent good clusters?)
 - Observed how they behave when applied to graphs with different sizes and origins. (Do they always behave as we expect?).
 - Compared those metrics. (Do they agree on what is a good cluster? Is there a better clustering quality metric?)

W inweh

Quality Metrics Overview

- Clustering quality metrics aim to score a cluster (or whole clusterings) in terms of chosen characteristics that are believed to indicate well-formed clusters.
- Structurally speaking, a good cluster should have its vertices connected densely among themselves and sparsely with the rest of the graph.

W inweh

- In this work, we've chosen 5 popular topological quality metrics:
 - Modularity.
 - Silhouette
 - Conductance
 - Coverage
 - Performance

- Measures the internal density and external sparsity of a given clustering.
- *Q* is the fraction of all edges that lie within communities minus the expected value of the same quantity in a similarly built, albeit random, graph.

$$Q = Tr(e) - ||e^2||$$

e =

$\underline{\mathbf{Q}} = \mathbf{0.2999}$

• Singleton cluster (2): Is it that bad?

e =

Q = 0.3337

- Is the new cluster 2 better than the old cluster 3?
- Is this clustering really better the the previous one? It only has less inter-cluster edges.

Silhouette Index

- Uses vertex distances to measure cohesion and separation of clusters.
- A good cluster should have small average distance between its elements and greater average distance between them and other clusters.

Silhouette Index

$$S_{v} = \frac{b_{v} - a_{v}}{max(a_{v}, b_{v})}$$

- a_v: average distance between vertex v and all other vertices in its own cluster.
- b_v: average distance between vertex v and all vertices in the nearest cluster.
- Expensive (needs all-pairs shortest path calculation).
- Singleton clusters erroneously have high silhouette scores because a_v = 0.

- The conductance of a graph cut measures its cost.
- If a clustering has low conductance value, it means that the clusters it defines are well separated. This concept is also called intercluster (external) conductance.
- If the graph induced by a cluster has high conductance, then it is too cohesive to be easily cut. This concept is also called intracluster (internal) conductance.
- Even though using both conductances would give better results, most authors ignore internal density because of its higher cost.

- - External conductance is given by:

$$\phi(C_i) = \frac{\sum_{u \in C_i} \sum_{v \notin C_i} w(\{u, v\})}{\min(a(C_i), a(\bar{C}_i))}$$

• External conductance is given by:

$$\phi(C_i) = \frac{\sum_{\mathbf{u}\in C_i} \sum_{\mathbf{v}\notin C_i} \mathbf{w}(\{\mathbf{u},\mathbf{v}\})}{\min(a(C_i), a(\bar{C}_i))}$$

- - External conductance is given by:

$$\phi(C_i) = \frac{\sum_{u \in C_i} \sum_{v \notin C_i} w(\{u, v\})}{\min(\mathbf{a}(\mathbf{C_i}), a(\bar{C}_i))}$$

• External conductance is given by:

$$\phi(C_i) = \frac{\sum_{u \in C_i} \sum_{v \notin C_i} w(\{u, v\})}{\min(a(C_i), \mathbf{a}(\overline{C_i}))}$$

- It's the fraction of intracluster edges existent in the graph.
- High values of coverage mean that there are more edges inside the clusters than linking them, which is considered as a good clustering

Outline	Introduction	Quality Metrics	Experiments	Conclusions	Future Work	Questions
Cover	rage					

$$coverage(C) = \frac{w(C)}{w(G)}$$

$$coverage(C) = \frac{w(C)}{w(G)}$$

- Mainly uses inter-cluster sparsity to measure quality.
- Will be biased towards lower numbers of clusters.

- - Performance counts the number of edges linking vertices of a cluster among themselves, together with the number of edges that do **not** exist between them and the rest of the graph.
 - High values mean that the cluster is both internally dense and externally sparse.

$$perf(C) = \frac{f(C) + g(C)}{\frac{1}{2}n(n-1)}$$

- - Performance counts the number of edges linking vertices of a cluster among themselves, together with the number of edges that do **not** exist between them and the rest of the graph.
 - High values mean that the cluster is both internally dense and externally sparse.

$$perf(C) = \frac{f(C) + g(C)}{\frac{1}{2}n(n-1)}$$

Outline	Introduction	Quality Metrics	Experiments	Conclusions	Future Work	Questions
Perfor	mance					

- Performance counts the number of edges linking vertices of a cluster among themselves, together with the number of edges that do **not** exist between them and the rest of the graph.
- High values mean that the cluster is both internally dense and externally sparse.

$$perf(C) = \frac{f(C) + \mathbf{g}(\mathbf{C})}{\frac{1}{2}n(n-1)}$$

Performance

- Complex networks (especially social ones) tend to be sparse.
- In sparse graphs, the ratio of "nonexistent" edges will be way higher than the number of edges in the graph.
- Because of this, performance may lose its discerning power when applied to complex networks.

Experiments Overview

- We wanted to compare the results of those quality metrics for different clusterings of real world graphs.
- To obtain different clusterings, we used 4 different clustering algorithms.
- We calculated the topological quality metrics discussed for each of those obtained clusterings.

Clustering Algorithms Used

- Markovian (MCL)
- Bisecting K-means (CLUTO)
- Spectral (SCPS)
- Normalized Cut (GRACLUS)

Datasets Used

Network	# Vertices	# Edges
Karate Club	34	78
College Footbal	115	616
Astrophysics Collab.	18772	396160
H. E. Physics Collab.	12008	237010
H. E. Physics Citation	34546	421578
Gnutella Snap. (08/04/02)	10876	39994
Gnutella Snap. (08/30/02)	36682	88328

- For the smaller graphs, communities found were very similar to the real ones.
- Metric values obtained are fairly good.
- Since it's a very small and popular dataset, this result is more than expected

Algorithm	# Clusters	SI	Mod.	Cover.	Perf.	Cond.
	1036	-0.22	0.35	0.42	0.99	0.55
MCL	2231	-0.23	0.28	0.31	0.99	0.70
	4093	0.06	0.19	0.27	0.99	0.82
	1037	-0.73	0.25	0.28	0.99	0.70
B. k-means	2232	-0.48	0.21	0.24	0.99	0.70
	4094	-0.21	0.17	0.19	0.99	0.76
	1034	-0.15	0.34	0.38	0.99	0.53
Spectral	2131	-0.26	0.25	0.28	0.99	0.66
	3335	0.04	0.19	0.21	0.99	0.78
Norm. Cut	1037	-0.69	0.23	0.25	0.99	0.66
	2232	-0.51	0.17	0.19	0.99	0.73
	4094	-0.31	0.13	0.15	0.99	0.81

Algorithm	# Clusters	SI	Mod.	Cover.	Perf.	Cond.
MCL	1036	-0.22	0.35	0.42	0.99	0.55
	2231	-0.23	0.28	0.31	0.99	0.70
	4093	0.06	0.19	0.27	0.99	0.82
	1037	-0.73	0.25	0.28	0.99	0.70
B. k-means	2232	-0.48	0.21	0.24	0.99	0.70
	4094	-0.21	0.17	0.19	0.99	0.76
	1034	-0.15	0.34	0.38	0.99	0.53
Spectral	2131	-0.26	0.25	0.28	0.99	0.66
	3335	0.04	0.19	0.21	0.99	0.78
Norm. Cut	1037	-0.69	0.23	0.25	0.99	0.66
	2232	-0.51	0.17	0.19	0.99	0.73
	4094	-0.31	0.13	0.15	0.99	0.81

Algorithm	# Clusters	SI	Mod.	Cover.	Perf.	Cond.
MCL	1036	-0.22	0.35	0.42	0.99	0.55
	2231	-0.23	0.28	0.31	0.99	0.70
	4093	0.06	0.19	0.27	0.99	0.82
	1037	-0.73	0.25	0.28	0.99	0.70
B. k-means	2232	-0.48	0.21	0.24	0.99	0.70
	4094	-0.21	0.17	0.19	0.99	0.76
	1034	-0.15	0.34	0.38	0.99	0.53
Spectral	2131	-0.26	0.25	0.28	0.99	0.66
	3335	0.04	0.19	0.21	0.99	0.78
	1037	-0.69	0.23	0.25	0.99	0.66
Norm. Cut	2232	-0.51	0.17	0.19	0.99	0.73
	4094	-0.31	0.13	0.15	0.99	0.81

Algorithm	# Clusters	SI	Mod.	Cover.	Perf.	Cond.
MCL	1036	-0.22	0.35	0.42	0.99	0.55
	2231	-0.23	0.28	0.31	0.99	0.70
	4093	0.06	0.19	0.27	0.99	0.82
	1037	-0.73	0.25	0.28	0.99	0.70
B. k-means	2232	-0.48	0.21	0.24	0.99	0.70
	4094	-0.21	0.17	0.19	0.99	0.76
	1034	-0.15	0.34	0.38	0.99	0.53
Spectral	2131	-0.26	0.25	0.28	0.99	0.66
	3335	0.04	0.19	0.21	0.99	0.78
Norm. Cut	1037	-0.69	0.23	0.25	0.99	0.66
	2232	-0.51	0.17	0.19	0.99	0.73
	4094	-0.31	0.13	0.15	0.99	0.81

Gnutella Snapshot (08/04/02) Results

Algorithm	# Clusters	SI	Mod.	Cover.	Perf.	Cond.
	2189	-0.81	0.0004	0.001	0.99	0.99
MCL	4724	-0.037	0.0003	0.0007	0.99	0.99
	6089	0.1	0.00003	0.0003	0.99	1.00
	2189	-0.88	0.0004	0.001	0.99	0.99
B. k-means	4724	-0.52	0.00007	0.0004	0.99	0.99
	6089	-0.18	-0.00006	0.0002	0.99	1.00
	2158	-0.90	0.0004	0.001	0.99	0.99
Spectral	4079	-0.94	0.0001	0.0005	0.99	0.99
	6089	-0.30	-0.00007	0.0002	0.99	1.00
	2189	-0.90	0.0003	0.001	0.99	0.99
Norm. Cut	4616	-0.2	0.00025	0.0006	0.99	0.99
	5690	0.1	0.0002	0.0005	0.99	0.99

Questions

Gnutella Snapshot (08/04/02) Results

Algorithm	# Clusters	SI	Mod.	Cover.	Perf.	Cond.
	2189	-0.81	0.0004	0.001	0.99	0.99
MCL	4724	-0.037	0.0003	0.0007	0.99	0.99
	6089	0.1	0.00003	0.0003	0.99	1.00
	2189	-0.88	0.0004	0.001	0.99	0.99
B. k-means	4724	-0.52	0.00007	0.0004	0.99	0.99
	6089	-0.18	-0.00006	0.0002	0.99	1.00
	2158	-0.90	0.0004	0.001	0.99	0.99
Spectral	4079	-0.94	0.0001	0.0005	0.99	0.99
	6089	-0.30	-0.00007	0.0002	0.99	1.00
	2189	-0.90	0.0003	0.001	0.99	0.99
Norm. Cut	4616	-0.2	0.00025	0.0006	0.99	0.99
	5690	0.1	0.0002	0.0005	0.99	0.99

Gnutella Snapshot (08/04/02) Results

Algorithm	# Clusters	SI	Mod.	Cover.	Perf.	Cond.
MCL	2189	-0.81	0.0004	0.001	0.99	0.99
	4724	-0.037	0.0003	0.0007	0.99	0.99
	6089	0.1	0.00003	0.0003	0.99	1.00
	2189	-0.88	0.0004	0.001	0.99	0.99
B. k-means	4724	-0.52	0.00007	0.0004	0.99	0.99
	6089	-0.18	-0.00006	0.0002	0.99	1.00
	2158	-0.90	0.0004	0.001	0.99	0.99
Spectral	4079	-0.94	0.0001	0.0005	0.99	0.99
	6089	-0.30	-0.00007	0.0002	0.99	1.00
Norm. Cut	2189	-0.90	0.0003	0.001	0.99	0.99
	4616	-0.2	0.00025	0.0006	0.99	0.99
	5690	0.1	0.0002	0.0005	0.99	0.99

Gnutella Snapshot (08/04/02) Results

Algorithm	# Clusters	SI	Mod.	Cover.	Perf.	Cond.
	2189	-0.81	0.0004	0.001	0.99	0.99
MCL	4724	-0.037	0.0003	0.0007	0.99	0.99
	6089	0.1	0.00003	0.0003	0.99	1.00
	2189	-0.88	0.0004	0.001	0.99	0.99
B. k-means	4724	-0.52	0.00007	0.0004	0.99	0.99
	6089	-0.18	-0.00006	0.0002	0.99	1.00
	2158	-0.90	0.0004	0.001	0.99	0.99
Spectral	4079	-0.94	0.0001	0.0005	0.99	0.99
	6089	-0.30	-0.00007	0.0002	0.99	1.00
	2189	-0.90	0.0003	0.001	0.99	0.99
Norm. Cut	4616	-0.2	0.00025	0.0006	0.99	0.99
	5690	0.1	0.0002	0.0005	0.99	0.99

•• Inweb

 Outline
 Introduction
 Quality Metrics
 Experiments
 Conclusions
 Future Work
 Questions

 Discussion

- The network structure has a very low probability of generating clusters as expected from the quality metrics.
- Probability of 3-clique occurrence is only 0.5%, while it is 31.8% for the Astrophysics collaboration network, for example.
- Also, by design, Gnutella networks are *very* sparse.
- Only 6.76% of all possible edges in fact exist in this Gnutella snapshot (opposed to 32.88% for the H. E. Physics citation network, for example).

- The quality metrics studied do not share a common view on what is a good clustering.
- They present strong biases that do not necessarily indicate good clusters.
- Graphs of different origins might have different characteristics and, therefore, have different cluster structure signatures.
- From all that, we concluded that none of those quality metrics represents the characteristics of a well-formed cluster with a good degree of precision.

- New, more adequate graph clustering quality metrics are needed.
- Study large networks to identify how its characteristics influence cluster structures.
- Also, study how other information dimensions (such as edge weights and asymmetry or vertex labels) affect cluster structures.

The end	

Questions?

