
Outline Introduction to learning to rank Our approach Experiments Conclusions and remarks

A Robust Ranking Methodology based on Diverse
Calibration of AdaBoost

Róbert Busa-Fekete1,2 Balázs Kégl1,3

Tamás Éltető3 György Szarvas2,4

1Linear Accelerator Laboratory (LAL), University of Paris-Sud, CNRS

2Research Group on Artificial Intelligence of the Hungarian Academy of Sciences
and University of Szeged (RGAI)

3Computer Science Laboratory (LRI), University of Paris-Sud, CNRS and
INRIA-Saclay

4Ubiquitous Knowledge Processing (UKP) Lab, Computer Science Department
Technische Universität Darmstadt

September 6, 2011

Outline Introduction to learning to rank Our approach Experiments Conclusions and remarks

1 Introduction to learning to rank
Learning-to-rank task description
Evaluation metric
Basic approaches
Bayes optimal permutation

2 Our approach
Training cost-sensitive multi-class AdaBoost.MH
Calibration
Ensemble of ensembles

3 Experiments
Benchmark datasets

4 Conclusions and remarks

Outline Introduction to learning to rank Our approach Experiments Conclusions and remarks

Index

Indexer
(WEB Crawling)

Documents

Top k-retrieval,
e.g. BM25

User query

Ranking
model

Learning
algorithm

Training
dataset

Results
page

Outline Introduction to learning to rank Our approach Experiments Conclusions and remarks

Learning-to-rank

Learning
to

rank

Machine
Learning

Regression

RankingClassification

Supervised

Semi-
supervised

Transfer
learning

Information
Retrieval

Document
retrieval

Outline Introduction to learning to rank Our approach Experiments Conclusions and remarks

Definition of the Learning-To-Rank(LTR) task

D = {D(1), . . . ,D(M)} are the query objects

a query object consists of a set of n(k) pairs:

D(k) =
{(

x
(k)
1 , `

(k)
1

)
, . . .

(
x

(k)

n(k) , `
(k)

n(k)

)}
.

x
(k)
i ∈ RB represents the kth query and the ith document

received as a potential hit for the query

`
(k)
i represents the label index of the query-document pair

x
(k)
i . They are typically integers between 1 and K

They define only partial ordering for a query D(k) (since
typically n(k) > K)

GOAL of the ranker is to output a permutation
j(k) = (j1, . . . , jn(k)) over the integers (1, . . . , n(k)) for each
query object D(k)

Outline Introduction to learning to rank Our approach Experiments Conclusions and remarks

Normalized Discounted Cumulative Gain (NDCG)
Relevance grades expresses the relevance of the ith document
to the kth query on a numerical scale

A popular choice for the numerical relevance grades is
z` = 2`−1 − 1 for all ` = 1, . . . ,K

Discounted Cumulative Gain (DCG) for j(k) and D(k) is

D̂CG
(
j(k),D(k)

)
=

n(k)∑
i=1

ciz
(k)
ji
,

where ci is the discount factor in the form of ci = 1
log(1+i)

Example: D(k) = 3 3 1 1 0 ⇒ j(k) ⇒ 0 , 1 , 3 , 1 , 3 ⇒
D̂CG

(
j(k),D(k)

)
=

0 ∗1.44+ 1 ∗0.91+ 3 ∗0.72+ 1 ∗0.62+ 3 ∗0.55 ≈ 5.37
To normalize DCG between 0 and 1, one can divide it with
the DCG score of the best permutation.
Truncated toplist like ROC10

Averaging over all queries

Outline Introduction to learning to rank Our approach Experiments Conclusions and remarks

Basic approaches

Pointwise: the relevance grades are learned directly using
either a classification or a regression method

Only slightly different from conventional machine learning
methods
McRank (classification based), PRank (regression based)

Pairwise: the pairwise preferences of documents with respect
to a query are learned typically by a classification method

RankBoost, RankSVM

Listwise: the whole partial/total order are learned

Most computationally intensive
For example, optimizing a smooth and differentiable upper
bound of the evaluation measure (such as NCDG) using a
conventional machine learning technique
AdaRank, SVM-MAP

Outline Introduction to learning to rank Our approach Experiments Conclusions and remarks

Bayes optimal permutation

`
(k)
i is considered as a random variable

p∗
(
`|x(k)

i

)
= P

(
`

(k)
i = `|x(k)

i

)
Bayes scoring function

v∗
(
x

(k)
i

)
= E

{
z |x(k)

i

}
=

K∑
`=1

z`p
∗(`|x(k)

i

)
The expected DCG for any permutation j(k) is

DCG
(
j(k),D(k)

)
=

n(k)∑
i=1

ciE
{
z |x(k)

ji

}
=

n(k)∑
i=1

civ
∗(x(k)

ji

)
.

Bayes optimal permutation

j(k)∗ = argmax
j(k)

DCG
(
j(k),D(k)

)
.

Outline Introduction to learning to rank Our approach Experiments Conclusions and remarks

A good property of Bayes optimal permutation

Cossock&Zhang (2008) showed1 that a Bayes optimal
permutation j(k)∗ has the property that if ci > ci ′ , then for
the Bayes-scoring function we have v∗

(
x
j
(k)
i

∗
)
> v∗

(
x
j
(k)

i′
∗
)

Consequences:
1 j(k)∗ can be easily obtained from the Bayes scoring function

⇒ v
(
x

(k)

j
(k)
1

∗

)
≥ . . . ≥ v

(
x

(k)
j∗
n(k)

)
.

2 This result justifies those pointwise approaches where either v∗

is estimated in a regression setup or p∗
(
`|x(k)

j

)
≈ p

(
`|x(k)

j

)
in a

discrete density estimation setup

1Cossock, D., Zhang, T.: Statistical analysis of Bayes optimal subset
ranking. IEEE Transactions on Information Theory 54(11), 5140-5154 (2008)

Outline Introduction to learning to rank Our approach Experiments Conclusions and remarks

Upper bound for the excess of DCG

Assume that there is given p∗(`|xi) ≈ p(`|xi).

This estimate generates a permutation over D
1 scoring function: v(xi) =

∑K
`=1 z`p

(
`|xi
)

2 permutation: v
(
xjv1
)
≥ . . . ≥ v

(
xjvn
)

Let p, q ∈ [1,∞] and 1/p + 1/q = 1. Then

DCG(j∗,D)−DCG(jv ,D) ≤

max
j,j′

(
n∑

i=1

K∑
`=1

∣∣∣(cji − cj ′i)z`

∣∣∣p)
1
p

︸ ︷︷ ︸
constant

(
n∑

i=1

K∑
`=1

∣∣p(`|xi)− p∗(`|xi)
∣∣q) 1

q

︸ ︷︷ ︸
quality of approximation

Outline Introduction to learning to rank Our approach Experiments Conclusions and remarks

Our approach

GOAL: p∗
(
`|x(k)

j

)
≈ p

(
`|x(k)

j

)
REAL GOAL: We will estimate p∗

(
`|x(k)

i

)
in many ways –

hoping that we can obtain many diverse estimation – and we
will mix them using a proper weighting scheme!

Outline Introduction to learning to rank Our approach Experiments Conclusions and remarks

Our approach

Outline Introduction to learning to rank Our approach Experiments Conclusions and remarks

1. Training cost-sensitive
multi-class AdaBoost.MH

Outline Introduction to learning to rank Our approach Experiments Conclusions and remarks

Training AdaBoost.MH

Feature vectors: X =
(
x1

1, . . . , x
1
n(1) , . . . , x

M
1 , . . . , x

M
n(M)

)
Labels: Y =

(
y1

1, . . . , y
1
n(1) , . . . , y

M
1 , . . . , y

M
n(M)

)
y

(k)
i ,` =

{
+1 if `

(k)
i = `,

−1 otherwise.

The training instances were upweighted exponentially
proportionally to their relevance

Base learners: decision trees and decision products2

Hyperparameters of base learners were not validated

All models were used in an “ensemble of ensembles” scheme

Only the number of iterations were validated

Open source C++ package: http://www.multiboost.org

2Kégl and Busa-Fekete: Boosting products of base classifiers, ICML’09

Outline Introduction to learning to rank Our approach Experiments Conclusions and remarks

2. Calibration

Outline Introduction to learning to rank Our approach Experiments Conclusions and remarks

Class-probability-based calibration (CPC)

The output of AdaBoost.MH is

f
(
x

(k)
i

)
=
(
f1
(
x

(k)
i

)
, . . . , fK

(
x

(k)
i

))
.

The class probability can be calibrated using sigmoidal
function

sθ(f) = sa,b(f) =
1

1 + exp
(
− a(f − b)

)
to obtain

psθ
(
`|x(k)

i

)
=

sθ

(
f`
(
x

(k)
i

))
∑K

`′=1 sθ

(
f`′
(
x

(k)
i

)) .
scoring function: v(x

(k)
i) =

∑K
`=1 z`p

sθ
(
`|x(k)

i

)
expected rel.

grade

permutation: v
(
x

(k)
jv1

)
≥ . . . ≥ v

(
x

(k)
jv
n(k)

)

Outline Introduction to learning to rank Our approach Experiments Conclusions and remarks

Class-probability-based calibration: obtaining Θ

Θ can be tuned by minimizing a so-called target calibration
function (TCF) LA(θ, f)⇒ θA,f = argminθ L

A(θ, f)
1 Log-sigmoid TCF

Lls(θ) =
M∑
k=1

n(k)∑
i=1

− log psθ
(
`

(k)
i |x

(k)
i

)
2 Entropy weighted log-sigmoid TCF
3 Expected loss TCF

LEL(θ) =
M∑
k=1

n(k)∑
i=1

K∑
`=1

L
(
`, `

(k)
i

)
psθ
(
`|x(k)

i

)
4 Expected label loss TCF, similar to the Expected loss TCF, but

the loss are calculated for expected label

`
(k)

i =
∑K
`=1 `p

sθ
(
`|x(k)

i

)
5 The surrogate function of SmoothGrad can be also used3

3Chapelle&Wu: Gradient descent optimization of smoothed information
retrieval metrics. Inform. Retr. 13(3), 216235 (2010)

Outline Introduction to learning to rank Our approach Experiments Conclusions and remarks

Regression-based Calibration (RBC)

Let us recall that the output of AdaBoost.MH is

f
(
x

(k)
i

)
=
(
f1
(
x

(k)
i

)
, . . . , fK

(
x

(k)
i

))
.

We need a scalar scoring function:

v̂
(
x

(k)
i

)
= g

(
f(x

(k)
i)
)

Standard multi-class solution:

g(f) = argmax
k

fk

We regress the relevance grades z
(k)
i vs. f(x

(k)
i)

g = argmin
g ′∈G

∑
k,i

(
g ′
(
f(x

(k)
i)
)
− z

(k)
i

)2

G: linear, Gaussian process, neural network, polynomial

Outline Introduction to learning to rank Our approach Experiments Conclusions and remarks

3. Ensemble of ensembles:
putting the calibrated models into a

huge ensemble classifier

Outline Introduction to learning to rank Our approach Experiments Conclusions and remarks

Ensemble of ensembles: choosing π(A, f)

1 π(A, f) = exp(cωA,f), where ωA,f is the NDCG10 score of
the ranking obtained by using vA,f(x)

2 c is hyperparameter

3 Ultimate scoring function:

vensemble(x) =
∑
A,f

exp
(
cωA,f

)
vA,f(x).

4 This gives a slight listwise touch to our approach
5 Advantages:

computationally efficient
theoretically well-founded: Exponentially Weighted Average
Forecaster4

4Cesa-Bianchi, N., Lugosi, G.: Prediction, Learning, and Games. Cambridge
University Press, New York, NY, USA (2006)

Outline Introduction to learning to rank Our approach Experiments Conclusions and remarks

LETOR datasets

Most widely used datasets
LETOR 3.0 consists of 7 datasets
Only OHSUMED has three relevance grades
LETOR 4.0 consists of 2 datasets (MQ2007 and MQ2008)
46 features in both datasets, but webpages and query terms
are also available
Baseline performances are provided using 5-fold cross
validation

Number of
docs

Number of
queries

Docs. per
query

LETOR 3.0
Ohsumed

16140 106 ≈ 152

LETOR 4.0
MQ2007

69623 1692 ≈ 41

LETOR 4.0
MQ2008

15211 784 ≈ 19

Outline Introduction to learning to rank Our approach Experiments Conclusions and remarks

Experiments

1 AdaRank-MAP,AdaRank-NDCG, ListNet,
RankBoost, RankSVM

2 In our setup we validated the number of iterations of
AdaBoost.MH based on the NCDG10 performance of the
ultimate scoring function vensemble(x)

3 The calibration was carried out on validation set.

4 We used the official evaluation tools

Outline Introduction to learning to rank Our approach Experiments Conclusions and remarks

Results

1 2 3 4 5 6 7 8 9 10 11
0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

 0.414

 0.4302

 0.441

 0.4429

 0.4496

 0.4621

Position

N
C

D
G

k

AdaRank−MAP
AdaRank−NCDG
ListNet
RankBoost
RankSVM
Exp. weighted ensemble

(a) LETOR 3.0/Ohsumed

Outline Introduction to learning to rank Our approach Experiments Conclusions and remarks

NDCG values for various ranking algorithms.

Method Letor 3.0 Letor 4.0 Letor 4.0
Ohsumed MQ2007 MQ2008

Eval. metric NDCG10 Avg. NDCG Avg. NDCG

AdaRank-MAP 0.4429 0.4891 0.4915
AdaRank-NDCG 0.4496 0.4914 0.4950
ListNet 0.4410 0.4988 0.4914
RankBoost 0.4302 0.5003 0.4850
RankSVM 0.4140 0.4966 0.4832
Exp. w. ensemble 0.4561 0.4974 0.5006

Exp. w. ensemble(CPC) 0.4621 0.4975 0.4998
Exp. w. ensemble(RBC) 0.4493 0.4976 0.5004
AdaBoost+D. Tree 0.4164 0.4868 0.4843
AdaBoost+D. Product 0.4162 0.4785 0.4768

Outline Introduction to learning to rank Our approach Experiments Conclusions and remarks

Conclusions and further work

1 CPC achieved significant improvement only on OHSUMED

2 all relevance levels are well represented in OHSUMED

3 We plan to investigate the robustness of our method to label
noise

4 Accelerate the testing phase by using Markov Decision
Process (on-going work)

Outline Introduction to learning to rank Our approach Experiments Conclusions and remarks

Thanks for Your Attention!

Our boosting package is available at

http://www.multiboost.org/

Hope to see you at our poster!

http://www.multiboost.org/

Outline Introduction to learning to rank Our approach Experiments Conclusions and remarks

Class-probability-based calibration: obtaining Θ

Θ can be tuned by minimizing a so-called target calibration
function (TCP) LA(θ, f)⇒ θA,f = argminθ L

A(θ, f)

1 Lls(θ) =
∑M

k=1

∑n(k)

i=1− log psθ
(
`

(k)
i |x

(k)
i

)
2 Lewls

C (θ) =
∑M

k=1

∑n(k)

i=1− log psθ
(
`

(k)
i |x

(k)
i

)
×

HM

(
psθ
(
`1|x(k)

i

)
, . . . , psθ

(
`K |x(k)

i

))C
,

where HM (p1, . . . , pK) = −
∑K
`=1 p` log p`

3 LEL(θ) =
∑M

k=1

∑n(k)

i=1

∑K
`=1 L

(
`, `

(k)
i

)
psθ
(
`|x(k)

i

)
4 Lell(θ) =

∑M
k=1

∑n(k)

i=1 L
(
`

(k)

i , `
(k)
i

)
, where the expected label

is defined as `
(k)

i =
∑K
`=1 `p

sθ
(
`|x(k)

i

)
5 Lsndcgσ (θ) = −

∑M
k=1

∑n(k)

i=1

∑n(k)

i ′=1 z
(k)
i ci ′hθ,σ(x

(k)
i , x

(k)
ji′

), where5

hθ,σ
(
x

(k)
i , x

(k)
i ′

)
=

exp

(
− 1

σ

(
v sθ

(
x

(k)
i

)
−v sθ

(
x

(k)

i′

))2
)

∑n(k)

i′′=1
exp

(
− 1

σ

(
v sθ

(
x

(k)
i

)
−v sθ

(
x

(k)

i′′

))2
)

5Chapelle&Wu: Gradient descent optimization of smoothed information
retrieval metrics. Inform. Retr. 13(3), 216235 (2010)

Outline Introduction to learning to rank Our approach Experiments Conclusions and remarks

Results

2 4 6 8 10
0.38

0.39

0.4

0.41

0.42

0.43

0.44

0.45

0.46
N

D
C

G
k

Position

 0.4335

 0.4369

 0.4403

 0.4439

 0.444

 0.4464

AdaRank−MAP
AdaRank−NCDG
ListNet
RankBoost
RankSVM
Exp. weighted ensemble

(b) LETOR 4.0/MQ2007

Outline Introduction to learning to rank Our approach Experiments Conclusions and remarks

Results

2 4 6 8 10
0.2

0.25

0.3

0.35

0.4

0.45

0.5

N
D

C
G

k

Position

 0.2255

 0.2279

 0.2288

 0.2303

 0.2307

 0.2328

AdaRank−MAP
AdaRank−NCDG
ListNet
RankBoost
RankSVM
Exp. weighted ensemble

(c) LETOR 4.0/MQ2008

Outline Introduction to learning to rank Our approach Experiments Conclusions and remarks

Results

1 2 3 4 5 6 7 8 9 10 11
0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

 0.414

 0.4302

 0.441

 0.4429

 0.4496

 0.4621

Position

N
C

D
G

k

AdaRank−MAP
AdaRank−NCDG
ListNet
RankBoost
RankSVM
Exp. weighted ensemble

(d) LETOR 3.0/Ohsumed

2 4 6 8 10
0.38

0.39

0.4

0.41

0.42

0.43

0.44

0.45

0.46

N
D

C
G

k

Position

 0.4335

 0.4369

 0.4403

 0.4439

 0.444

 0.4464

AdaRank−MAP
AdaRank−NCDG
ListNet
RankBoost
RankSVM
Exp. weighted ensemble

(e) LETOR 4.0/MQ2007

2 4 6 8 10
0.2

0.25

0.3

0.35

0.4

0.45

0.5

N
D

C
G

k

Position

 0.2255

 0.2279

 0.2288

 0.2303

 0.2307

 0.2328

AdaRank−MAP
AdaRank−NCDG
ListNet
RankBoost
RankSVM
Exp. weighted ensemble

(f) LETOR 4.0/MQ2008

	Introduction to learning to rank
	Learning-to-rank task description
	Evaluation metric
	Basic approaches
	Bayes optimal permutation

	Our approach
	Training cost-sensitive multi-class AdaBoost.MH
	Calibration
	Ensemble of ensembles

	Experiments
	Benchmark datasets

	Conclusions and remarks

