Our approach

Experiments 0000

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A Robust Ranking Methodology based on Diverse Calibration of AdaBoost

Róbert Busa-Fekete^{1,2} Balázs Kégl^{1,3} Tamás Éltető³ György Szarvas^{2,4}

¹Linear Accelerator Laboratory (LAL), University of Paris-Sud, CNRS

²Research Group on Artificial Intelligence of the Hungarian Academy of Sciences and University of Szeged (RGAI)

³Computer Science Laboratory (LRI), University of Paris-Sud, CNRS and INRIA-Saclay

⁴Ubiquitous Knowledge Processing (UKP) Lab, Computer Science Department Technische Universität Darmstadt

September 6, 2011

Outline	Introduction to learning to rank	Our approach	Experiments	Conclusions and remarks

1 Introduction to learning to rank

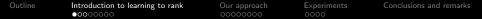
- Learning-to-rank task description
- Evaluation metric
- Basic approaches
- Bayes optimal permutation

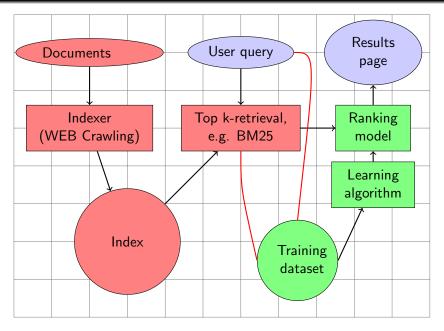
Our approach

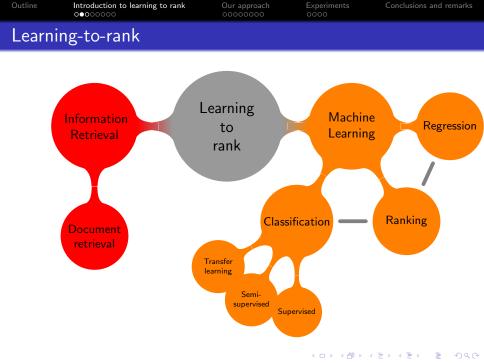
- Training cost-sensitive multi-class AdaBoost.MH
- Calibration
- Ensemble of ensembles

3 Experiments

Benchmark datasets







 Outline
 Introduction to learning to rank
 Our approach
 Experiments
 Conclusions and remarks

 0000000
 0000000
 0000
 0000
 0000
 0000

Definition of the Learning-To-Rank(LTR) task

- $\mathbf{D} = \{\mathcal{D}^{(1)}, \dots, \mathcal{D}^{(M)}\}$ are the query objects
- a query object consists of a set of $n^{(k)}$ pairs:

$$\mathcal{D}^{(k)} = \left\{ \left(\mathbf{x}_{1}^{(k)}, \ell_{1}^{(k)} \right), \dots \left(\mathbf{x}_{n^{(k)}}^{(k)}, \ell_{n^{(k)}}^{(k)} \right) \right\}.$$

- $\mathbf{x}_i^{(k)} \in \mathbb{R}^B$ represents the *k*th query and the *i*th document received as a potential hit for the query
- \$\ell_i^{(k)}\$ represents the label index of the query-document pair \$\mathbf{x}_i^{(k)}\$. They are typically integers between 1 and \$K\$
- They define only partial ordering for a query D^(k) (since typically n^(k) > K)
- **GOAL** of the ranker is to output a permutation $\mathbf{j}^{(k)} = (j_1, \dots, j_{n^{(k)}})$ over the integers $(1, \dots, n^{(k)})$ for each query object $\mathcal{D}^{(k)}$

 Outline
 Introduction to learning to rank
 Our approach
 Experiments
 Conclusions and remarks

 00000000
 0000000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000

Normalized Discounted Cumulative Gain (NDCG)

- Relevance grades expresses the relevance of the *i*th document to the *k*th query on a numerical scale
- A popular choice for the numerical relevance grades is $z_\ell = 2^{\ell-1} 1$ for all $\ell = 1, \dots, K$
- Discounted Cumulative Gain (DCG) for $\mathbf{j}^{(k)}$ and $\mathcal{D}^{(k)}$ is

$$\widehat{\mathrm{DCG}}(\mathbf{j}^{(k)}, \mathcal{D}^{(k)}) = \sum_{i=1}^{n^{(k)}} c_i z_{j_i}^{(k)},$$

where c_i is the *discount factor* in the form of $c_i = \frac{1}{\log(1+i)}$

• Example: $\mathcal{D}^{(k)} = 3 \ 3 \ 1 \ 1 \ 0 \Rightarrow \mathbf{j}^{(k)} \Rightarrow 0, 1, 3, 1, 3 \Rightarrow \widehat{\mathrm{DCG}}(\mathbf{j}^{(k)}, \mathcal{D}^{(k)}) =$

0 *1.44+ **1** *0.91+ **3** *0.72+ **1** *0.62+ **3** *0.55 ≈ 5.37

 $\bullet\,$ To normalize ${\rm DCG}$ between 0 and 1, one can divide it with the ${\rm DCG}$ score of the best permutation.

- Truncated toplist like ROC₁₀
- Averaging over all queries

Outline	Introduction to learning to rank ○○○○●○○○	Our approach 00000000	Experiments 0000	Conclusions and remarks
Basic a	approaches			

- **Pointwise:** the relevance grades are learned directly using either a classification or a regression method
 - Only slightly different from conventional machine learning methods
 - McRank (classification based), PRank (regression based)
- **Pairwise:** the pairwise preferences of documents with respect to a query are learned typically by a classification method
 - RankBoost, RankSVM
- Listwise: the whole partial/total order are learned
 - Most computationally intensive
 - For example, optimizing a smooth and differentiable upper bound of the evaluation measure (such as NCDG) using a conventional machine learning technique

AdaRank, SVM-MAP

Outline	Introduction to learning to rank	Our approach 00000000	Experiments 0000	Conclusions and remarks	
Bayes optimal permutation					

• $\ell_i^{(k)}$ is considered as a random variable

$$p^*(\ell|\mathbf{x}_i^{(k)}) = P(\ell_i^{(k)} = \ell|\mathbf{x}_i^{(k)})$$

• Bayes scoring function

$$v^*(\mathbf{x}_i^{(k)}) = \mathbb{E}\left\{z|\mathbf{x}_i^{(k)}\right\} = \sum_{\ell=1}^K z_\ell p^*(\ell|\mathbf{x}_i^{(k)})$$

• The expected DCG for any permutation $\mathbf{j}^{(k)}$ is

$$\mathrm{DCG}(\mathbf{j}^{(k)}, \mathcal{D}^{(k)}) = \sum_{i=1}^{n^{(k)}} c_i \mathbb{E}\left\{z | \mathbf{x}_{j_i}^{(k)}\right\} = \sum_{i=1}^{n^{(k)}} c_i v^*(\mathbf{x}_{j_i}^{(k)}).$$

• Bayes optimal permutation

$$\mathbf{j}^{(k)*} = \operatorname*{arg\,max}_{\mathbf{j}^{(k)}} \mathrm{DCG}(\mathbf{j}^{(k)}, \mathcal{D}^{(k)}).$$

A good property of Bayes optimal permutation

- Cossock&Zhang (2008) showed¹ that a Bayes optimal permutation $\mathbf{j}^{(k)*}$ has the property that if $c_i > c_{i'}$, then for the Bayes-scoring function we have $v^*(\mathbf{x}_{j_i^{(k)*}}) > v^*(\mathbf{x}_{j_{i'}^{(k)*}})$
- Consequences:
 - **3** $\mathbf{j}^{(k)^*}$ can be easily obtained from the Bayes scoring function $\Rightarrow v(\mathbf{x}_{i_i^{(k)^*}}^{(k)}) \ge \ldots \ge v(\mathbf{x}_{j_{a_i^{(k)}}}^{(k)}).$
 - **2** This result justifies those *pointwise* approaches where either v^* is estimated in a *regression* setup or $p^*(\ell | \mathbf{x}_j^{(k)}) \approx p(\ell | \mathbf{x}_j^{(k)})$ in a *discrete density estimation* setup

¹Cossock, D., Zhang, T.: Statistical analysis of Bayes optimal subset ranking. IEEE Transactions on Information Theory 54(11), 5140-5154 (2008) = -9

Upper bound for the excess of DCG

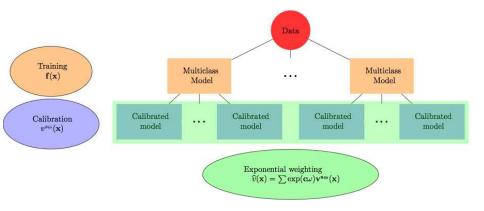
- Assume that there is given $p^*(\ell|\mathbf{x}_i) \approx p(\ell|\mathbf{x}_i)$.
- This estimate generates a permutation over ${\cal D}$
 - Scoring function: $v(\mathbf{x}_i) = \sum_{\ell=1}^{K} z_\ell p(\ell | \mathbf{x}_i)$ permutation: $v(\mathbf{x}_{j_1^v}) \ge \ldots \ge v(\mathbf{x}_{j_n^v})$
- Let $p,q\in [1,\infty]$ and 1/p~+~1/q~=~1. Then

$$\operatorname{DCG}(\mathbf{j}^*, \mathcal{D}) - \operatorname{DCG}(\mathbf{j}^{\vee}, \mathcal{D}) \leq \underbrace{\max_{\mathbf{j}, \mathbf{j}'} \left(\sum_{i=1}^n \sum_{\ell=1}^K \left| (c_{j_i} - c_{j'_i}) z_{\ell} \right|^p \right)^{\frac{1}{p}}}_{\operatorname{constant}} \left(\sum_{i=1}^n \sum_{\ell=1}^K \left| p(\ell | \mathbf{x}_i) - p^*(\ell | \mathbf{x}_i) \right|^q \right)^{\frac{1}{q}}}_{\operatorname{quality of approximation}}$$

Outline	Introduction to learning to rank	Our approach	Experiments 0000	Conclusions and remarks
Our a	nnroach			

• GOAL:
$$p^*(\ell | \mathbf{x}_j^{(k)}) \approx p(\ell | \mathbf{x}_j^{(k)})$$

 REAL GOAL: We will estimate p*(l|x_i^(k)) in many ways – hoping that we can obtain many diverse estimation – and we will mix them using a proper weighting scheme!



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● のへぐ

Outline	Introduction to learning to rank	Our approach	Experiments	Conclusions and remarks
		• 0 000000		

1. Training cost-sensitive multi-class AdaBoost.MH

Outline Introduction to learning to rank

Our approach

Experiments 0000 Conclusions and remarks

Training ADABOOST.MH

• Feature vectors:
$$\mathbf{X} = \left(\mathbf{x}_1^1, \dots, \mathbf{x}_{n^{(1)}}^1, \dots, \mathbf{x}_1^M, \dots, \mathbf{x}_{n^{(M)}}^M\right)$$

• Labels:
$$\mathbf{Y} = \left(\mathbf{y}_1^1, \dots, \mathbf{y}_{n^{(1)}}^1, \dots, \mathbf{y}_1^M, \dots, \mathbf{y}_{n^{(M)}}^M\right)$$

$$y_{i,\ell}^{(k)} = egin{cases} +1 & ext{if } \ell_i^{(k)} = \ell, \ -1 & ext{otherwise.} \end{cases}$$

- The training instances were upweighted exponentially proportionally to their relevance
- Base learners: decision trees and decision products²
- Hyperparameters of base learners were not validated
- All models were used in an "ensemble of ensembles" scheme
- Only the number of iterations were validated
- Open source C++ package: http://www.multiboost.org

²Kégl and Busa-Fekete: Boosting products of base classifiers, ICML'09

Outline	Introduction to learning to rank	Our approach	Experiments	Conclusions and remarks
		0000000		

2. Calibration

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Outline	Introduction to learning to rank	Our approach	E×periments 0000	Conclusions and remarks
Class-p	probability-based c	alibration ((CPC)	

• The output of ADABOOST.MH is

$$\mathbf{f}(\mathbf{x}_i^{(k)}) = \left(f_1(\mathbf{x}_i^{(k)}), \dots, f_K(\mathbf{x}_i^{(k)})\right).$$

• The class probability can be calibrated using sigmoidal function

$$s_{\theta}(f) = s_{a,b}(f) = \frac{1}{1 + \exp\left(-a(f-b)\right)}$$

to obtain

$$p^{s_{\theta}}(\ell|\mathbf{x}_{i}^{(k)}) = \frac{s_{\theta}\left(f_{\ell}(\mathbf{x}_{i}^{(k)})\right)}{\sum_{\ell'=1}^{K} s_{\theta}\left(f_{\ell'}(\mathbf{x}_{i}^{(k)})\right)}.$$

- scoring function: $v(\mathbf{x}_{i}^{(k)}) = \sum_{\ell=1}^{K} z_{\ell} p^{s_{\theta}}(\ell | \mathbf{x}_{i}^{(k)})$ expected rel. grade • permutation: $v(\mathbf{x}_{j_1^v}^{(k)}) \ge \ldots \ge v(\mathbf{x}_{j_{n^{(k)}}^v}^{(k)})$

 Outline
 Introduction to learning to rank
 Our approach
 Experiments
 Conclusions and remarks

 0000000
 0000000
 0000
 0000
 0000
 0000

Class-probability-based calibration: obtaining Θ

- Θ can be tuned by minimizing a so-called *target calibration* function (TCF) $L^{\mathcal{A}}(\theta, \mathbf{f}) \Rightarrow \theta^{\mathcal{A}, \mathbf{f}} = \arg \min_{\theta} L^{\mathcal{A}}(\theta, \mathbf{f})$
 - Log-sigmoid TCF

$$L^{\text{LS}}(\theta) = \sum_{k=1}^{M} \sum_{i=1}^{n^{(k)}} -\log p^{s_{\theta}}\left(\ell_i^{(k)} | \mathbf{x}_i^{(k)}\right)$$

- Entropy weighted log-sigmoid TCF
- Expected loss TCF

$$L^{\mathrm{EL}}(\theta) = \sum_{k=1}^{M} \sum_{i=1}^{n^{(k)}} \sum_{\ell=1}^{K} \mathcal{L}(\ell, \ell_i^{(k)}) p^{s_{\theta}}(\ell | \mathbf{x}_i^{(k)})$$

Expected label loss TCF, similar to the Expected loss TCF, but the loss are calculated for expected label

$$\sum_{i}^{K} \ell p^{s_{\theta}}\left(\ell | \mathbf{x}_{i}^{(k)}\right)$$

The surrogate function of SMOOTHGRAD can be also used³

Outline Introduction to learning to rank Our approach Experiments Conclusions and remarks

Regression-based Calibration (RBC)

 \bullet Let us recall that the output of $\rm AdaBoost.MH$ is

$$\mathbf{f}(\mathbf{x}_i^{(k)}) = \left(f_1(\mathbf{x}_i^{(k)}), \ldots, f_K(\mathbf{x}_i^{(k)})\right).$$

• We need a scalar scoring function:

$$\widehat{\mathbf{v}}(\mathbf{x}_i^{(k)}) = g(\mathbf{f}(\mathbf{x}_i^{(k)}))$$

• Standard multi-class solution:

$$g(\mathbf{f}) = \operatorname*{arg\,max}_k f_k$$

• We regress the relevance grades $z_i^{(k)}$ vs. $f(\mathbf{x}_i^{(k)})$

$$g = \operatorname*{arg\,min}_{g' \in \mathcal{G}} \sum_{k,i} \left(g' \left(\mathbf{f}(\mathbf{x}_i^{(k)}) \right) - z_i^{(k)} \right)^2$$

• G: linear, Gaussian process, neural network, polynomial

Outline	Introduction to learning to rank	Our approach	Experiments	Conclusions and remarks
		00000000		

3. Ensemble of ensembles: putting the calibrated models into a huge ensemble classifier

Ensemble of ensembles: choosing $\pi(\mathcal{A}, \mathbf{f})$

- π(A, f) = exp(cω^{A,f}), where ω^{A,f} is the NDCG₁₀ score of the ranking obtained by using v^{A,f}(x)
- c is hyperparameter
- Oltimate scoring function:

$$v^{\text{ENSEMBLE}}(\mathbf{x}) = \sum_{\mathcal{A}, \mathbf{f}} \exp(c\omega^{\mathcal{A}, \mathbf{f}}) v^{\mathcal{A}, \mathbf{f}}(\mathbf{x}).$$

- This gives a slight listwise touch to our approach
- Advantages:
 - computationally efficient
 - theoretically well-founded: Exponentially Weighted Average Forecaster⁴

Outline	Introduction to learning to rank	Our approach 00000000	Experiments ●000	Conclusions and remarks
LETO	R datasets			

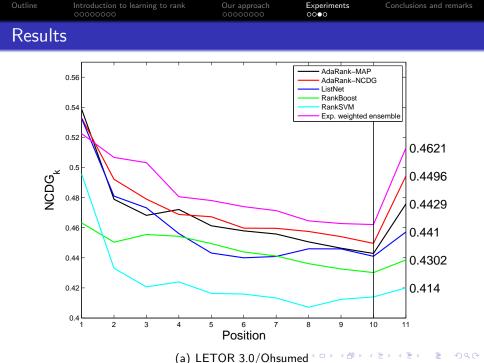
- Most widely used datasets
- LETOR 3.0 consists of 7 datasets
- Only OHSUMED has three relevance grades
- LETOR 4.0 consists of 2 datasets (MQ2007 and MQ2008)
- 46 features in both datasets, but webpages and query terms are also available
- Baseline performances are provided using 5-fold cross
 validation

Vandation	Number of	Number of	Docs. per
	docs	queries	query
LETOR 3.0	16140	106	pprox 152
Ohsumed	10140	100	≈ 152
LETOR 4.0	69623	1692	\approx 41
MQ2007	09023	1092	\sim 41
LETOR 4.0	15211	784	pprox 19
MQ2008	15211	704	~ 15

Outline	Introduction to learning to rank	Our approach	Experiments 0●00	Conclusions and remarks
Experi	iments			

- AdaRank-MAP, AdaRank-NDCG, ListNet, RankBoost, RankSVM
- In our setup we validated the number of iterations of ADABOOST.MH based on the NCDG₁₀ performance of the ultimate scoring function v^{ENSEMBLE}(x)

- The calibration was carried out on validation set.
- We used the official evaluation tools



Outline	Introduction to learning to rank	Our approach 00000000	Experiments 0000	Conclusions and remarks

NDCG values for various ranking algorithms.

Method	Letor 3.0	Letor 4.0	Letor 4.0
	Ohsumed	MQ2007	MQ2008
Eval. metric	NDCG ₁₀	Avg. NDCG	Avg. NDCG
AdaRank-MAP	0.4429	0.4891	0.4915
AdaRank-NDCG	0.4496	0.4914	0.4950
LISTNET	0.4410	0.4988	0.4914
RankBoost	0.4302	0.5003	0.4850
RankSVM	0.4140	0.4966	0.4832
EXP. W. ENSEMBLE	0.4561	0.4974	0.5006
EXP. W. ENSEMBLE (CPC)	0.4621	0.4975	0.4998
EXP. W. ENSEMBLE (RBC)	0.4493	0.4976	0.5004
AdaBoost+D. Tree	0.4164	0.4868	0.4843
AdaBoost+D. Product	0.4162	0.4785	0.4768

Outline	Introduction to learning to rank	Our approach 00000000	Experiments 0000	Conclusions and remarks

Conclusions and further work

- OPC achieved significant improvement only on OHSUMED
- 2 all relevance levels are well represented in OHSUMED
- We plan to investigate the robustness of our method to label noise

 Accelerate the testing phase by using Markov Decision Process (on-going work)

Outline	Introduction to learning to rank	Our approach 00000000	Experiments 0000	Conclusions and remarks
Thanks	s for Your Attention			

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

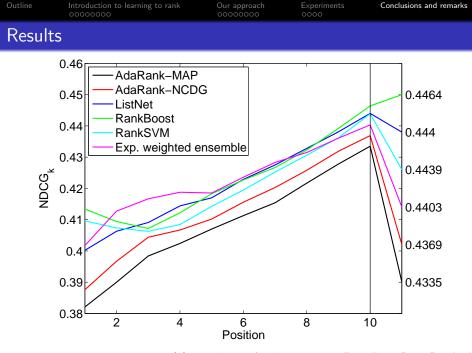
- Our boosting package is available at
- http://www.multiboost.org/
- Hope to see you at our poster!

 Outline
 Introduction to learning to rank
 Our approach
 Experiments
 Conclusions and remarks

 Outline
 Introduction to learning to rank
 Our approach
 Outline
 Conclusions and remarks

Class-probability-based calibration: obtaining Θ

- Θ can be tuned by minimizing a so-called target calibration function (TCP) L^A(θ, f) ⇒ θ^{A,f} = arg min_θ L^A(θ, f)
 - **1** $L^{\text{LS}}(\theta) = \sum_{k=1}^{M} \sum_{i=1}^{n^{(k)}} -\log p^{s_{\theta}}(\ell_i^{(k)}|\mathbf{x}_i^{(k)})$ 2 $L_{C}^{\text{EWLS}}(\theta) = \sum_{k=1}^{M} \sum_{i=1}^{n^{(k)}} -\log p^{s_{\theta}}(\ell_{i}^{(k)}|\mathbf{x}_{i}^{(k)}) \times$ $H_M\left(p^{s_{\theta}}\left(\ell_1|\mathbf{x}_i^{(k)}\right),\ldots,p^{s_{\theta}}\left(\ell_{\kappa}|\mathbf{x}_i^{(k)}\right)\right)^{\mathsf{C}},$ where $H_M(p_1, ..., p_K) = -\sum_{\ell=1}^{K} p_{\ell} \log p_{\ell}$ $L^{\mathrm{EL}}(\theta) = \sum_{k=1}^{M} \sum_{i=1}^{n^{(k)}} \sum_{\ell=1}^{K} \mathcal{L}(\ell, \ell_i^{(k)}) p^{s_{\theta}}(\ell | \mathbf{x}_i^{(k)})$ • $L^{\text{ELL}}(\theta) = \sum_{k=1}^{M} \sum_{i=1}^{n^{(k)}} \mathcal{L}\left(\overline{\ell}_{i}^{(k)}, \ell_{i}^{(k)}\right)$, where the expected label is defined as $\overline{\ell}_i^{(k)} = \sum_{\ell=1}^K \ell p^{s_{\theta}}(\ell | \mathbf{x}_i^{(k)})$ **5** $L_{\sigma}^{\text{SNDCG}}(\theta) = -\sum_{k=1}^{M} \sum_{i=1}^{n^{(k)}} \sum_{i'=1}^{n^{(k)}} z_i^{(k)} c_{i'} h_{\theta,\sigma}(\mathbf{x}_i^{(k)}, \mathbf{x}_{i,i}^{(k)}), \text{ where}^5$ $h_{\theta,\sigma}(\mathbf{x}_{i}^{(k)},\mathbf{x}_{i'}^{(k)}) = \frac{\exp\left(-\frac{1}{\sigma}\left(v^{s_{\theta}}\left(\mathbf{x}_{i}^{(k)}\right) - v^{s_{\theta}}\left(\mathbf{x}_{i'}^{(k)}\right)\right)^{2}\right)}{\sum_{i''=1}^{n(k)}\exp\left(-\frac{1}{\sigma}\left(v^{s_{\theta}}\left(\mathbf{x}_{i}^{(k)}\right) - v^{s_{\theta}}\left(\mathbf{x}_{i''}^{(k)}\right)\right)^{2}\right)}$



Outline	Introduction to learning to rank	Our approach 00000000	Experiments 0000	Conclusions and remarks
Docult				

Results

