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Introduction

- Graph-based clustering approaches are widely employed

- Simple, easily to understand, good results [Shi-Malik1997, Ng et al
2001, Chan et al 1993]

- Graph data are widely available

- Most of previous research focus on static analysis of graph
- Graph partition seeks grouping using static optimization, cut edges
between clusters
- Stochastic modeling maximize the likelihood of a generative model on
the graph.
- Our work present a novel dynamic analysis of graph data

- Inspired by Matthew effect, a general phenomenon in nature and
societies

- Stronger connections become stronger
- Expand and smooth social circles



Motivation

- The relationship among people in a society changes in time
- People are typically involved in many social events

- E.g. meeting new friends, attending conferences like ECML here
- The more we meet with each other in a conference, the more familiar we are

- People will connect with each other using the connection, like meeting
friends’ friends

Several observations

- Two people with many common friends have a lot of chance to know
each other

- Two good friends have good chances to meet in the same social
events, hence they know each more

- Social Diffusion Process
- An analogue of the social relationship evolution



Motivation case study: Facebook
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Soclal Diffusion Process

- Two friends set up a date. They meet.

- Two friends set up a date. One brings along a friend. The
three of them meet.

- Two friends set up a date. Both friends bring along a
friend each. The four of them meet.

There exist more processes. But these are the most fundamental
processes. We consider them only in this work.



Socilal Diffusion Process

- Two friends set up a date. They meet.

- Two friends (A,B) set up a date. One (B) brings along a
friend (C). The three of them meet.

« Ameets C

- Two friends (A,B) set up a date. Both friends bring along a
friend [A brings C. B brings D]. The four of them meet.
- Ameets D
- B meets C;
- Most importantly, C meets D

- Diffusion: two person meet due to their friends’ initiative



Social Diffusion Process

- Two friends set up a date. They meet.

- Two friends (A,B) set up a date. One (B) brings along a friend (C).
The three of them meet.

_______
=~

- A meets C (two person meet due to a common friend) @

- Two friends (A,B) set up a date. Both friends bring along a friend
[ A brings C. B brings D |. The four of them meet.

- Ameets D (two person meet due to a common friend)
- B meets C (two person meet due to a common friend)
- Most importantly, C meets D (two person meet due to a friend’s friend)



Soclal Diffusion Process

- Three social events
- Date(v;, v;) : social players v; and v; initial a dating
- Bring(v;, vy): social play v; bring v, when dating with some other
player v;
- Meet(v;, v;): : social players v; and v; meet in a social event

- Rules

L"(‘;‘;tf”e”ds setup date. They Rule 1:  Date(v;,v;) = Meet(v;,v;)
Date(v;, v;)

Bring(v;, vy)

Date(vz-, ’Uj)

Two friends setup date. Both bring  Ryle 3: Bring(v;, vy) = Meet (vg, v1)
along a friend. They meet. Bring(v;, v;)
79

Rule 2: } = Meet(v;, vy)

Two friends setup date. One
brings along a friend. They meet.



Soclal Diffusion Process

- Assume we want to date with some one on the wedding

of Royal wedding for William and Kate, who are we going
to date?

- We will bring important friends
- Observations
- We will choose different level of friends to attend a different events

- The bring-friend action should have a threshold



Soclal Diffusion Process

- Social Diffusion Process is a process as follows
- (1) Choose a threshold t ~ U(0, u)
- (2) Date(v;, v;) happens if w;; > t
- (3) Forany k, [
- Bring(v;, vx) and Bring(v;, v;) happen with probability

1 .
—— if v € N;
p(zj kat) — { ‘Ni,t| k ot

0 otherwise

1 if v, € ./V;,',t

p(j:lat) — { Ni.el

0 otherwise

Nit=1q: Wig 2 15, Nje ={q: Wiy > 1}
it Meet(vy,vq), Wyq — Wyy + ap



Soclal Diffusion Process

- Social Diffusion Process is a process as follows
- (1) Choose a threshold t ~ U(0, u) < Uniform distribution
- (2) Date(v;, v;) happens if w;; > t
- (3) Forany k, 1
- Bring(v;, vx) and Bring(v;, v;) happen with probability

1 .

—— if v, €N
plik.t) = ¢ Wl F
0 otherwise

. if v, € N
p(j: lat) — [Ne] . 7t Diffusi cant
0 otherwise iffusion constan
Set to 1 in algorithm

zt—{q quzt}N‘J = {q: Wi, >t}

if Meet(v,,vq), Wypq — Wy + apu o= max;; Wi;



Social Diffusion Process Model

Define thresholded graph adjacency matrix as
1 > Proportional constant
(At)zj:{l low _t

Set to 1 in algorithm
0 otherwise

Case (1). Date(v;,v;). In this case the probapility that they meet is

P(Meet(v;,v;)) = 6(A");;.

Case (2). Date(v;, vx) and Bring(vg,v;). By definition [Ny = > A;k =
df., where df, is the degree & in A’. In this case,

A

k

random walk probability : P, _, =

P(Meet(v;.v;))
= Z P(Meet(v;,vj)|Date(v;. v;), Bring(vg, v;))
k

At
=N 5(Ah), 2R — sAtD AL,
dp, J

k



Social Diffusion Process - A
random walk probability : P, _, = d—'
Case(3). Date(vy.v;). Bring(vg.v;). and Bring(v;,v;). Similar with case
(2), we have

t
dk d.!
_ 5(At lAt lAt)z'j-

P(Meet(v;,v;)) Zﬁ (Ab)y

By summing up the three cases, we have

P(Meet(vi,vj))
t t y—1 At ty—1 At —1 At
Diffusion constant — 5A’rij + 5(‘4 DA )?53' + 5(‘4 DA'D A )??j
Set to 1 in algorithm

E(AW;;)
—aud (AL + (A'D7YAY,; + (A'D7PATD L AY),))
p=max;; Wi;  2ausm!



Social Diffusion Process Algorithm

Algorithm 1 W = GraphEvolution(V)

Input: Graph W

Output: Graph W

M= IMaX;y Wij,ﬁ/ =0

fori:=1:7T+« The only model parameter
t=du/T
Calculate M using Eq. (5)
Normalize M* : M;; — M,/ D it M,
W — W + M!

end for

Output: W

j)‘




oclal Diffusion Process: a simple case

(a) Initialization (b) 1st iteration

W +— GraphEvolution(WW



Social Diffusion Process: a simple case
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(c) 3rd iteration (d) 10th iteration




Social Diffusion Process: a simple case
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L
Applications

- Clustering
- Grouping results can be derived when disconnected components
are observed
- Preprocessing for other machine learning tasks
- Our algorithm take a graph as input and a better graph as output
- Can be used as preprocessing
- Clustering, semi-supervised learning etc.



Experimental Results

- Empirically show that our algorithm converges
- Clustering

- Semi-supervised learning

- MicroRNA data analysis



Experimental Results

Convergence analysis

= 1 =
# iteration

R AR R



Experimental Results: Clustering

Accuracy NMI Purity

Km SC Ncut GE Km SC Neut GE Km SC Neut GE

UMI 0.458 0.471 0.498 0.644 0.641 0.646 0.649 0.763 0.494 0.505 0.505 0.667

COI 0.570 0.614 0.792 0.839 0.734 0.750 0.860 0.879 0.623 0.658 0.817 0.840

ION 0.707 0.702 0.684 0.880 0.123 0.193 0.107 0.446 0.707 0.730 0.684 0.880

JAF 0.744 0.799 0.965 0.967 0.809 0.849 0.959 0.962 0.774 0.819 0.965 0.967

MNI 0.687 0.713 0.820 0.833 0.690 0.698 0.748 0.769 0.705 0.733 0.820 0.833

ORL 0.582 0.683 0.756 0.775 0.786 0.834 0.866 0.891 0.624 0.713 0.773 0.802

24 PR1 0.716 0.675 0.562 0.899 0.129 0.176 0.102 0.458 0.726 0.757 0.708 0.899
UCI PR2 0.580 0.566 0.569 0.706 0.019 0.017 0.013 0.136 0.580 0.566 0.569 0.706
SOY 0.908 0.871 1.000 1.000 0.903 0.859 1.000 1.000 0.924 0.893 1.000 1.000

Data SRB 0.480 0.622 0.699 0.639 0.232 0.411 0.454 0.421 0.512 0.645 0.699 0.639
Sets YEA 0.132 0.327 0.302 0.395 0.013 0.129 0.126 0.231 0.328 0.430 0.436 0.540
Z00 0.264 0.674 0.629 0.723 0.116 0.615 0.570 0.751 0.423 0.750 0.737 0.871

AML 0.688 0.678 0.659 0.847 0.100 0.100 0.073 0.394 0.696 0.692 0.666 0.847

CAR 0.623 0.729 0.719 0.799 0.655 0.743 0.738 0.779 0.691 0.789 0.788 0.822

WIN 0.961 0.936 0.978 0.983 0.863 0.845 0.907 0.926 0.961 0.943 0.978 0.983

LEU 0.879 0.840 0.958 0.972 0.559 0.513 0.735 0.806 0.879 0.860 0.958 0.972

LUN 0.663 0.672 0.748 0.704 0.495 0.485 0.547 0.473 0.864 0.860 0.911 0.828

DER 0.766 0.848 0.955 0.964 0.838 0.818 0.905 0.931 0.853 0.876 0.955 0.964

ECO 0.552 0.496 0.505 0.631 0.467 0.458 0.487 0.549 0.739 0.770 0.808 0.851

GLA 0.452 0.446 0.453 0.565 0.320 0.298 0.333 0.399 0.549 0.572 0.652 0.650

GLI 0.585 0.548 0.559 0.700 0.465 0.410 0.398 0.505 0.619 0.569 0.601 0.700

IRI 0.802 0.746 0.843 0.953 0.640 0.514 0.655 0.849 0.815 0.758 0.843 0.953

MAL 0911 0.731 0.902 0.929 0.569 0.299 0.544 0.624 0.911 0.743 0.902 0.929

MLL 0.669 0.637 0.687 0.861 0.435 0.376 0.426 0.681 0.692 0.651 0.687 0.861




Experimental Results: Semi-supervised Learning
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Accuracy

# Labeled # Labeled
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Experimental Results: microRNA function
analysis

The corresponding genes
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Experimental Results: microRNA function

analysis

- Observations
- 6 microRNA groups are identified

- let-7 and mir-200 family a have been reported by other researchers
[Hu 2009, Abbott 2005]



Conclusions

- A novel social diffusion process model is presented
- Dynamic graph evolution
- Analogue of the Mathew effect

- Simple, intuitive, interpretable
- Directly corresponds to graph language

- Extensive experiments on 24 UCI data sets
- Better clustering accuracy

- Better semi-supervised learning performance

- Unsupervised graph-data exploration
- Almost no parameter
- Easy to visualize
- Meaningful results



