Graph Evolution via Social Diffusion Processes

Dijun Luo **Chris Ding** Heng Huang University of Texas at Arlington

Outline

- Introduction
- Motivation
- Social Diffusion Processes
- Applications
- Experimental Results
- Conclusions

Introduction

- Graph-based clustering approaches are widely employed
 - Simple, easily to understand, good results [Shi-Malik1997, Ng et al 2001, Chan et al 1993]
 - Graph data are widely available
- Most of previous research focus on static analysis of graph
 - Graph partition seeks grouping using static optimization, cut edges between clusters
 - Stochastic modeling maximize the likelihood of a generative model on the graph.
- Our work present a novel dynamic analysis of graph data
 - Inspired by Matthew effect, a general phenomenon in nature and societies
 - Stronger connections become stronger
 - Expand and smooth social circles

Motivation

- The relationship among people in a society changes in time
 - People are typically involved in many social events
 - E.g. meeting new friends, attending conferences like ECML here
 - The more we meet with each other in a conference, the more familiar we are
 - People will connect with each other using the connection, like meeting friends' friends
- Several observations
 - Two people with many common friends have a lot of chance to know each other
 - Two good friends have good chances to meet in the same social events, hence they know each more
- Social Diffusion Process
 - An analogue of the social relationship evolution

Motivation case study: Facebook

Motivation case study: Facebook

We will see the events of our friend's friends

Motivation case study: Facebook

- Two friends set up a date. They meet.
- Two friends set up a date. One brings along a friend. The three of them meet.
- Two friends set up a date. Both friends bring along a friend each. The four of them meet.

There exist more processes. But these are the most fundamental processes. We consider them only in this work.

- Two friends set up a date. They meet.
- Two friends (A,B) set up a date. One (B) brings along a friend (C). The three of them meet.
 - A meets C
- Two friends (A,B) set up a date. Both friends bring along a friend [A brings C. B brings D]. The four of them meet.
 - A meets D
 - B meets C;
 - Most importantly, C meets D
- Diffusion: two person meet due to their friends' initiative

- Two friends set up a date. They meet.
- Two friends (A,B) set up a date. One (B) brings along a friend (C).
 The three of them meet.
 - A meets C (two person meet due to a common friend)

- Two friends (A,B) set up a date. Both friends bring along a friend
 [A brings C. B brings D]. The four of them meet.
 - A meets D (two person meet due to a common friend)
 - B meets C (two person meet due to a common friend)
 - Most importantly, C meets D (two person meet due to a friend's friend)

- Three social events
 - Date (v_i, v_j) : social players v_i and v_j initial a dating
 - Bring (v_i, v_k) : social play v_i bring v_k when dating with some other player v_j
 - Meet (v_i, v_j) : : social players v_i and v_j meet in a social event

Rules

```
Two friends setup date. They meet  \text{Rule 1:} \quad \mathbf{Date}(v_i, v_j) \quad \Rightarrow \mathbf{Meet}(v_i, v_j) \\ \text{Two friends setup date. One brings along a friend. They meet.} \\ \text{Two friends setup date. Both bring along a friend. They meet.} \\ \text{Rule 2:} \quad \mathbf{Date}(v_i, v_j) \\ \mathbf{Bring}(v_i, v_k) \\ \mathbf{Bring}(v_i, v_k) \\ \mathbf{Bring}(v_i, v_k) \\ \mathbf{Bring}(v_j, v_l) \\ \end{pmatrix} \Rightarrow \mathbf{Meet}(v_i, v_j) \\ \Rightarrow \mathbf{Mee
```

- Assume we want to date with some one on the wedding of Royal wedding for William and Kate, who are we going to date?
 - We will bring important friends
- Observations
 - We will choose different level of friends to attend a different events
 - The bring-friend action should have a threshold

- Social Diffusion Process is a process as follows
 - (1) Choose a threshold $t \sim U(0, \mu)$
 - (2) Date (v_i, v_j) happens if $w_{ij} > t$
 - (3) For any *k*, *l*
 - Bring (v_i, v_k) and Bring (v_i, v_l) happen with probability

$$p(i, k, t) = \begin{cases} \frac{1}{|\mathcal{N}_{i, t}|} & \text{if } v_k \in \mathcal{N}_{i, t} \\ 0 & \text{otherwise} \end{cases}$$

$$p(j, l, t) = \begin{cases} \frac{1}{|\mathcal{N}_{j,t}|} & \text{if } v_k \in \mathcal{N}_{j,t} \\ 0 & \text{otherwise} \end{cases}$$

$$\mathcal{N}_{i,t} = \{q : W_{iq} \ge t\}, \mathcal{N}_{j,t} = \{q : W_{jq} \ge t\}$$

if
$$\mathbf{Meet}(v_p, v_q), W_{pq} \leftarrow W_{pq} + \alpha \mu$$

- Social Diffusion Process is a process as follows
 - (1) Choose a threshold $t \sim U(0, \mu) \leq$ Uniform distribution
 - (2) Date (v_i, v_i) happens if $w_{ij} > t$
 - (3) For any *k*, *l*
 - Bring (v_i, v_k) and Bring (v_i, v_l) happen with probability

$$p(i, k, t) = \begin{cases} \frac{1}{|\mathcal{N}_{i, t}|} & \text{if } v_k \in \mathcal{N}_{i, t} \\ 0 & \text{otherwise} \end{cases}$$

$$p(j, l, t) = \begin{cases} \frac{1}{|\mathcal{N}_{j,t}|} & \text{if } v_k \in \mathcal{N}_{j,t} \\ 0 & \text{otherwise} \end{cases}$$

$$\mathcal{N}_{i,t} = \{q : W_{iq} \ge t\}, \mathcal{N}_{j,t} = \{q : W_{jq} \ge t\}$$
if $\mathbf{Meet}(v_p, v_q), W_{pq} \leftarrow W_{pq} + \alpha \mu$

Diffusion constant Set to 1 in algorithm

$$\mu = \max_{ij} W_{ij}$$

Social Diffusion Process Model

Define thresholded graph adjacency matrix as

$$(A^t)_{ij} = \begin{cases} 1 & \text{if } W_{ij} \ge t \\ 0 & \text{otherwise} \end{cases}$$
 Proportional constant Set to 1 in algorithm

Case (1). **Date** (v_i, v_j) . In this case the probability that they meet is

$$P(\mathbf{Meet}(v_i, v_j)) = \delta(A^t)_{ij}.$$

Case (2). **Date** (v_i, v_k) and **Bring** (v_k, v_j) . By definition $|\mathcal{N}_{k,t}| = \sum_j A_{jk}^t = d_k^t$, where d_k^t is the degree k in A^t . In this case,

$$P(\mathbf{Meet}(v_i, v_j)) \\ = \sum_k P(\mathbf{Meet}(v_i, v_j) | \mathbf{Date}(v_i, v_k), \mathbf{Bring}(v_k, v_j)) \\ = \sum_k \delta(A^t)_{ik} \frac{A^t_{jk}}{d_k} = \delta(A^t D^{-1} A^t)_{ij},$$

random walk probability: $P_{k \to i} = \frac{A_{ki}^{l}}{d_{k}}$

Case(3). $\mathbf{Date}(v_k, v_l)$, $\mathbf{Bring}(v_k, v_i)$, and $\mathbf{Bring}(v_l, v_j)$. Similar with case (2), we have

$$P(\mathbf{Meet}(v_i, v_j)) = \sum_{kl} \delta(A^t)_{kl} \frac{A_{ik}^t}{d_k} \frac{A_{jl}^t}{d_l}$$
$$= \delta(A^t D^{-1} A^t D^{-1} A^t)_{ij}.$$

By summing up the three cases, we have

$$P(\mathbf{Meet}(v_i,v_j))$$

$$= \delta A_{ij}^t + \delta (A^t D^{-1} A^t)_{ij} + \delta (A^t D^{-1} A^t D^{-1} A^t)_{ij}$$
 Set to 1 in algorithm
$$\mathbb{E}(\Delta W_{ij})$$

$$= \alpha \mu \delta \left(A_{ij}^t + (A^t D^{-1} A^t)_{ij} + (A^t D^{-1} A^t D^{-1} A^t)_{ij}\right)$$

$$\mu = \max_{ij} W_{ij} \qquad \triangleq \alpha \mu \delta M_{ij}^t.$$

Social Diffusion Process Algorithm

```
Algorithm 1 W = GraphEvolution(W)
  Input: Graph W
  Output: Graph \tilde{W}
  \mu = \max_{ij} W_{ij}, \tilde{W} = \mathbf{0}
  for i = 1: T \longleftarrow
                                            The only model parameter
     t = i\mu/T
     Calculate M^t using Eq. (5)
     Normalize M^t: M^t_{ij} \leftarrow M^t_{ij} / \sum_{i'j'} M^t_{i'j'}
     \tilde{W} \leftarrow \tilde{W} + M^t
  end for
  Output: W
```

Social Diffusion Process: a simple case

 $W \leftarrow \mathbf{GraphEvolution}(W)$

Social Diffusion Process: a simple case

Social Diffusion Process: a simple case

Applications

- Clustering
 - Grouping results can be derived when disconnected components are observed
- Preprocessing for other machine learning tasks
 - Our algorithm take a graph as input and a better graph as output
 - Can be used as preprocessing
 - Clustering, semi-supervised learning etc.

Experimental Results

- Empirically show that our algorithm converges
- Clustering
- Semi-supervised learning
- MicroRNA data analysis

Experimental Results

Convergence analysis

Experimental Results: Clustering

		Accuracy				\mathbf{NMI}				Purity			
		Km	SC	Ncut	GE	Km	SC	Ncut	GE	Km	SC	Ncut	GE
Ţ	JMI	0.458	0.471	0.498	0.644	0.641	0.646	0.649	0.763	0.494	0.505	0.505	0.667
(COI	0.570	0.614	0.792	0.839	0.734	0.750	0.860	0.879	0.623	0.658	0.817	0.840
Ι	ON	0.707	0.702	0.684	0.880	0.123	0.193	0.107	0.446	0.707	0.730	0.684	0.880
J	$_{ m JAF}$	0.744	0.799	0.965	0.967	0.809	0.849	0.959	0.962	0.774	0.819	0.965	0.967
1	MNI	0.687	0.713	0.820	0.833	0.690	0.698	0.748	0.769	0.705	0.733	0.820	0.833
(ORL	0.582	0.683	0.756	0.775	0.786	0.834	0.866	0.891	0.624	0.713	0.773	0.802
I	$^{ m PR1}$	0.716	0.675	0.562	0.899	0.129	0.176	0.102	0.458	0.726	0.757	0.708	0.899
I	$^{ m PR2}$	0.580	0.566	0.569	0.706	0.019	0.017	0.013	0.136	0.580	0.566	0.569	0.706
S	SOY	0.908	0.871	1.000	1.000	0.903	0.859	1.000	1.000	0.924	0.893	1.000	1.000
S	$_{ m SRB}$	0.480	0.622	0.699	0.639	0.232	0.411	0.454	0.421	0.512	0.645	0.699	0.639
7	YΕΑ	0.132	0.327	0.302	0.395	0.013	0.129	0.126	0.231	0.328	0.430	0.436	0.540
\mathbf{Z}	COO	0.264	0.674	0.629	0.723	0.116	0.615	0.570	0.751	0.423	0.750	0.737	0.871
A	$^{\mathrm{AML}}$	0.688	0.678	0.659	0.847	0.100	0.100	0.073	0.394	0.696	0.692	0.666	0.847
(CAR	0.623	0.729	0.719	0.799	0.655	0.743	0.738	0.779	0.691	0.789	0.788	0.822
1	WIN	0.961	0.936	0.978	0.983	0.863	0.845	0.907	0.926	0.961	0.943	0.978	0.983
Ι	LEU	0.879	0.840	0.958	0.972	0.559	0.513	0.735	0.806	0.879	0.860	0.958	0.972
Ι	LUN	0.663	0.672	0.748	0.704	0.495	0.485	0.547	0.473	0.864	0.860	0.911	0.828
Ι	DER	0.766	0.848	0.955	0.964	0.838	0.818	0.905	0.931	0.853	0.876	0.955	0.964
I	ECO	0.552	0.496	0.505	0.631	0.467	0.458	0.487	0.549	0.739	0.770	0.808	0.851
(GLA	0.452	0.446	0.453	0.565	0.320	0.298	0.333	0.399	0.549	0.572	0.652	0.650
(GLI	0.585	0.548	0.559	0.700	0.465	0.410	0.398	0.505	0.619	0.569	0.601	0.700
Ι	RI	0.802	0.746	0.843	0.953	0.640	0.514	0.655	0.849	0.815	0.758	0.843	0.953
1	MAL	0.911	0.731	0.902	0.929	0.569	0.299	0.544	0.624	0.911	0.743	0.902	0.929
1	MLL	0.669	0.637	0.687	0.861	0.435	0.376	0.426	0.681	0.692	0.651	0.687	0.861

24 UCI Data Sets

Experimental Results: Semi-supervised Learning

The corresponding genes

- Observations
 - 6 microRNA groups are identified
 - *let-7* and *mir-200* family a have been reported by other researchers [Hu 2009, Abbott 2005]

Conclusions

- A novel social diffusion process model is presented
 - Dynamic graph evolution
 - Analogue of the Mathew effect
- Simple, intuitive, interpretable
 - Directly corresponds to graph language
- Extensive experiments on 24 UCI data sets
 - Better clustering accuracy
 - Better semi-supervised learning performance
- Unsupervised graph-data exploration
 - Almost no parameter
 - Easy to visualize
 - Meaningful results