Building Sparse Support Vector Machines for Multi-Instance Classification

Zhouyu Fu, Guojun Lu, Kai Ming Ting, Dengsheng Zhang

Gippsland School of IT, Monash University

September 8, 2011

Outline

- Multi-Instance Classification
- Sparse Support Vector Machines

2 Sparse Classifier Design for MI Classification

- "Label-Mean" Formulation
- Sparse-MI Algorithm

3 Experimental Results

- Synthetic Data
- Realworld Data

4 Conclusions and Future Work

Problem Definition

Input

A data set of labelled bags $\{(\mathcal{X}_i, y_i) | i = 1, \dots, l\}$ with $\mathcal{X}_i = \{\mathbf{x}_{i,1}, \dots, \mathbf{x}_{i,n_i}\}$ and $y_i \in \{-1, 1\}$ such that $y_i = \max_{p=1}^{n_i} y_{i,p}$

MI Assumption

- A positive bag contains at least a positive instance
- A negative bag contains negative instances only

Output

A classifier $f : 2^{\mathbb{R}^d} \to \mathbb{R}$ for bag-level label prediction that minimizes the bag classification error

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

An Example of MI Classification

47 ▶

Applications of MI Classification

Drug Activity Prediction

Region-based Image Classification

Prediction Function for Kernel SVM

$$f(\mathbf{x}) = \sum_{i=1,\alpha_i \neq 0}^{N} \alpha_i \kappa(\mathbf{x}_i, \mathbf{x}) + b$$

- Proportional to the number of SVs (\mathbf{x}_i 's with $\alpha_i \neq 0$)
- Number of SVs further depends on the training data size and the complexity of decision boundary
- Desirable to have SVM classifiers with a few SVs when prediction speed is a major concern

Why Sparsity is Important for MI Classification?

- Larger number of feature vectors to deal with as compared to standard classification
- Bag-level prediction usually involves going through all instances in the bag and accumulating the results

Challenge

To build a sparse SVM classifier for MI classification comprising fewer SVs without compromising on performance

"Label-Max" and Existing MI Formulations

MI Assumption

$$y_i = \max_p y_{i,p}$$
 $y_i \in \{-1, 1\}, y_{i,p} \in \{-1, 1\}$

This naturally translates to the "Label-Max" constraint in existing MI formulations (MI-SVM, mi-SVM, etc)

$$F(\mathcal{X}_i) = \max_p f(\mathbf{x}_{i,p})$$

- Difficult optimization problem (non-differentiable, non-convex)
- Learning sparse MI classifier further complicates the issue, with additional constraints on f

The "Label-Mean" Surrogate

Target Function

$$\min_{f} \|f\|^2 + C \sum_{i} \ell(F(\mathcal{X}_i), y_i)$$

"Label-Mean" Constraints

$$F(\mathcal{X}_i) = \frac{1}{n_i} \sum_{p} f(\mathbf{x}_{i,p})$$

Pros and Cons

- Simple optimization problem with optimality guarantee
- Violation of MI assumption, wrong model?

The "Label-Mean" Surrogate

Target Function

$$\min_{f} \|f\|^2 + C \sum_{i} \ell(F(\mathcal{X}_i), y_i)$$

"Label-Mean" Constraints

$$F(\mathcal{X}_i) = \frac{1}{n_i} \sum_{p} f(\mathbf{x}_{i,p})$$

Pros and Cons

- Simple optimization problem with optimality guarantee
- Violation of MI assumption, wrong model? Not necessarily the case.

Connections with MI-Kernel

Key results

- Lemma 1: Training MI-SVM with Label-Mean is equivalent to training a standard SVM at bag level with the normalized set kernel.
- Theorem 1: If positive and negative instances are separable with respect to feature map φ in the RKHS induced by kernel κ, then for sufficiently large integer r, positive and negative bags are separable using the Label-Mean prediction function with instance-level kernel κ^r.

Intuitions

- If instances are linearly separable, then bags are separable by a polynomial kernel.
- If instances are separable by a Gaussian kernel, then bags are separable by a Gaussian kernel with larger bandwidth.
- Note instance prediction function f is a kernel classifier (a linear classifier is unlikely to work at bag level)
- We used Gaussian kernel in our work

Prediction with "Label-Mean"

Instance classifier

$$f(\mathbf{x}) = \sum_{i=1}^{N} \sum_{p=1}^{|\mathcal{X}_i|} \alpha_i y_i \kappa(\mathbf{x}_{i,p}, \mathbf{x}) + b$$

Bag classifier

$$F(\mathcal{X}) = \frac{1}{|\mathcal{X}|} \sum_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x})$$

The complexity depends on

- size of testing bag
- nonzero coefficients α_i 's
- size of training bags with nonzero coefficients

Prediction with "Label-Mean"

$$F(\mathcal{X}) = \frac{1}{|\mathcal{X}|} \sum_{q=1}^{|\mathcal{X}|} \sum_{i=1}^{l} \alpha_i y_i \frac{1}{n_i} \sum_{p=1}^{n_i} \kappa(\mathbf{x}_{i,p}, \mathbf{x}_q) + b$$
$$= \frac{1}{|\mathcal{X}|} \sum_{q=1}^{|\mathcal{X}|} \sum_{j=1}^{N} \beta_j \kappa(\mathbf{z}_j, \mathbf{x}_q) + b$$
$$\{\mathbf{z}_1, \dots, \mathbf{z}_{n_1+1}, \dots, \mathbf{z}_N\} \Longleftrightarrow \{\mathbf{x}_{1,1}, \dots, \mathbf{x}_{2,1}, \dots, \mathbf{x}_{l,n_l}\}$$
$$\{\beta_1, \dots, \beta_{n_1+1}, \dots, \beta_N\} \Longleftrightarrow \{\frac{1}{n_1} y_1 \alpha_1, \dots, \frac{1}{n_2} y_2 \alpha_2, \dots, \frac{1}{n_l} y_l \alpha_l\}$$

We want to reduce \mathbf{z} 's in the expansion!

3

イロト イヨト イヨト イヨト

The Sparse-MI Problem

Objective

Learn $f(.) = \sum_{j=1}^{N_{sv}} \beta_j \kappa(\mathbf{z}_j, .)$ with small N_{sv} for MI classification

Alternatives

- **RSVM** select $N_{sv} \mathbf{z}_j$'s randomly from training set
- **RS** approximate a learned classifier \hat{f} by minimizing $\|\hat{f} f\|^2$
- **MILES** enforce sparsity on the coefficients using L1 norm (cannot explicitly specify *N*_{sv})

Proposed Approach

$$\min_{\boldsymbol{\beta},\boldsymbol{b},\mathbf{Z}} Q(\boldsymbol{\beta},\boldsymbol{b},\mathbf{Z}) = \boldsymbol{\beta}^{T} \mathbf{K}_{\mathbf{Z}} \boldsymbol{\beta} + C \sum_{i} \ell(y_{i}, F(\mathcal{X}_{i}))$$
$$F(\mathcal{X}_{i}) = \frac{1}{n_{i}} \sum_{p=1}^{n_{i}} \sum_{j=1}^{N_{sv}} (\beta_{j} \kappa(\mathbf{z}_{j}, \mathbf{x}_{i,p}) + b)$$

- Squared Hinge loss is used $\ell(y, F) = \max(0, 1 yF)^2$
- Joint learning of classifier weights and SVs in a discriminative fashion
- SVs not necessarily overlap with training instances
- Non-convex, but convex and differentiable in β and b given Z

Optimization Scheme

Reformulation of the optimization problem

$$\min_{\mathbf{Z}} g(\mathbf{Z})$$

$$g(\mathbf{Z}) = \min_{\beta, b} Q(\beta, b, \mathbf{Z})$$

- What's special about g(Z) it depends on the solution of another optimization problem
- Isn't it more difficult to optimize $g(\mathbf{Z})$?

Optimization Scheme

Reformulation of the optimization problem

$$\min_{\mathbf{Z}} g(\mathbf{Z})$$

$$g(\mathbf{Z}) = \min_{\beta, b} Q(\beta, b, \mathbf{Z})$$

- What's special about g(Z) it depends on the solution of another optimization problem
- Isn't it more difficult to optimize g(Z)? -Answer: Not necessarily!

The Optimal Value Function

For our problem, $g(\mathbf{Z})$ not only exists but is also differentiable

Conditions for differentiability (Bonnans 1998)

Uniqueness of optimal solution (strict convexity) for β and b given Z
 unique value for g(Z) at each Z

• Continuous differentiablity of function Q over β and b

- avoid drastic change of $g(\mathbf{Z})$ over local neighbourhood, i.e. differentiability

Computation of derivatives

We can compute the derivative of $g(\mathbf{Z})$ for each \mathbf{Z} as if it does not depend on β and b

$$\begin{split} \frac{\partial g}{\partial \mathbf{z}_j} &= \sum_{i=1}^{N} \overline{\beta}_i \overline{\beta}_j \frac{\partial \kappa(\mathbf{z}_i, \mathbf{z}_j)}{\partial \mathbf{z}_j} \\ &+ C \sum_{i=1}^{m} \frac{1}{n_i} \ell'(y_i, f_i) \overline{\beta}_j \sum_{p=1}^{n_i} \frac{\partial \kappa(\mathbf{x}_{i,p}, \mathbf{z}_j)}{\partial \mathbf{z}_j} \end{split}$$

 $\overline{\beta}_j$'s are the optimal values of β_j 's

Algorithm

Algorithm 1 Sparse SVM for MI Classification

Input: data (B_i, y_i) , N_{XV} , λ , s_{\max} and t_{\max} **Output:** classifier weights β , b and XVs Z Set t = 0 and initialize **Z** Solve $\min_{\beta,b} Q(\beta, b, \mathbf{Z}^{(t)})$ and denote the optimizer as $(\beta^{(t)}, b^{(t)})$ and optimal value as $q(\mathbf{Z}^{(t)})$ repeat for s = 1 to s_{max} do Set $\mathbf{Z}' = \mathbf{Z}^{(t)} - \lambda \frac{\partial g(\mathbf{Z})}{\partial \mathbf{Z}}$ Solve $\min_{\beta,b} Q(\beta, b, \mathbf{Z}')$ and denote the optimizer as (β', b') and optimal value as $g(\mathbf{Z}')$ if $q(\mathbf{Z}') < q(\mathbf{Z}^{(t)})$ then Set $(\beta^{(t+1)}, b^{(t+1)}) = (\beta', b'), \mathbf{Z}^{(t+1)} = \mathbf{Z}'$ Set $\lambda = 2\lambda$ if s equals 1 break end if Set $\lambda = \lambda/2$ end for Set t = t + 1until Convergence or $t > t_{\max}$ or $s > s_{\max}$

3

(日) (周) (日) (日)

Remarks

- Same optimization strategy has been adopted in solving other problems (SimpleMKL, SKLA)
- Sparse-MI is most related to SKLA with two main differences
 - SKLA can not be used to handle MI classification problems (need a MI formulation with unique optimal solution)
 - SKLA performs optimization and update of SVs in the dual formulation (optimization in the primal is much more efficient)

Multi-class Sparse MI Classifier

- One-vs-all scheme converts to multiple binary MI classification problems
- z_j's are learned jointly same XVs for different pairs of classifiers

$$\frac{\partial g}{\partial \mathbf{z}_{j}} = \sum_{c=1}^{M} \sum_{i=1}^{N_{sv}} \overline{\beta}_{i}^{c} \overline{\beta}_{j}^{c} \frac{\partial \kappa(\mathbf{z}_{i}, \mathbf{z}_{j})}{\partial \mathbf{z}_{j}} + C \sum_{c=1}^{M} \sum_{i=1}^{m} \frac{1}{n_{i}} \ell'(y_{i}^{c}, f_{i}) \overline{\beta}_{j}^{c} \sum_{p=1}^{n_{i}} \frac{\partial \kappa(\mathbf{x}_{i,p}, \mathbf{z}_{j})}{\partial \mathbf{z}_{j}}$$

Data Set

æ

Iteration 1

• • • • • • • •

Iteration 10

-

• • • • • • • •

Function values over iterations

Fu et al. (Monash)

э. September 8, 2011 27 / 37

3

< □ > < ---->

Data set

Fu et al. (Monash)

September 8, 2011 28 / 37

3

<ロ> (日) (日) (日) (日) (日)

Iteration 1

3

<ロ> (日) (日) (日) (日) (日)

Iteration 10

3

<ロ> (日) (日) (日) (日) (日)

Function values over iterations

3

< □ > < ---->

Data Set Descriptions

- Drug Actitity Classification
 - MUSK1 47 positive and 45 negative, 5.2 instances per bag
 - MUSK2 39 positive and 63 negative, 64.7 instances per bag
- Image Classification
 - COREL10 10 classes, 100 images per class
 - COREL20 20 classes, 100 images per class
 - ▶ 2 − 13 regions per image
- Music Classification
 - ▶ GENRE 10 classes, 100 songs per class, 30 segments per song

Performance Comparison

Data set		MUSK1	MUSK2	COREL10	COREL20	GENRE
mi-SVM		87.30%	80.52%	75.62%	52.15%	80.28%
		400.2	2029.2	1458.2	2783.3	12439
MI-SVM		77.10%	83.20%	74.35%	55.37%	72.48%
		277.1	583.4	977	2300.1	3639.8
MI-Kernel		89.93%	90.26%	84.30%	73.19%	77.05%
		362.4	3501	1692.6	3612.7	13844
MILES		85.73%	87.64%	82.86%	69.16%	69.87%
		40.8	42.5	379.1	868	1127.9
$N_{sv} = 10$	RS	88.68%	86.39%	75.13%	55.20%	54.68%
	RSVM	74.66%	77.70%	69.25%	48.53%	46.01%
	SparseMI	88.44%	88 . 52 %	80 .10%	62 .49%	71 .28%
$N_{sv} = 100$	RS	90.18%	89 .16%	78.81%	65.35%	67.77%
	RSVM	89.02%	88.26%	77.63%	63.82%	67.41%
	SparseMI	90.40%	87.98%	84.31%	72.22%	76 .06%

* ロ > * 個 > * 注 > * 注 >

Convergence Results COREL20

< 一型

Convergence Results

- 一司

Conclusions

- A sparse SVM classifier proposed for MI classification
- Joint optimization of SVs and classifier weights
- Efficient learning in the primal formulation
- With controlled sparsity
- Comparable performance but much more efficient in testing

Future Work

- Sparse MI classification with non i.i.d. instance distributions
- Incorporation with alternative convex MI classifiers
- Constrained SV selection
- Standard sparse SVM learning from the primal formulation