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Problem Definition

Input

A data set of labelled bags {(Xi , yi )|i = 1, . . . , l} with
Xi = {xi ,1, . . . , xi ,ni} and yi ∈ {−1, 1} such that yi = maxnip=1 yi ,p

MI Assumption

A positive bag contains at least a positive instance

A negative bag contains negative instances only

Output

A classifier f : 2R
d → R for bag-level label prediction that minimizes the

bag classification error
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An Example of MI Classification
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Applications of MI Classification
Drug Activity Prediction

Region-based Image Classification
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Prediction Function for Kernel SVM

f (x) =
N∑

i=1,αi 6=0

αiκ(xi , x) + b

Proportional to the number of SVs (xi ’s with αi 6= 0)

Number of SVs further depends on the training data size and the
complexity of decision boundary

Desirable to have SVM classifiers with a few SVs when prediction
speed is a major concern
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Why Sparsity is Important for MI Classification?

Larger number of feature vectors to deal with as compared to
standard classification

Bag-level prediction usually involves going through all instances in the
bag and accumulating the results

Challenge

To build a sparse SVM classifier for MI classification comprising fewer SVs
without compromising on performance
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“Label-Max” and Existing MI Formulations

MI Assumption

yi = max
p

yi ,p yi ∈ {−1, 1}, yi ,p ∈ {−1, 1}

This naturally translates to the “Label-Max” constraint in existing MI
formulations (MI-SVM, mi-SVM, etc)

F (Xi ) = max
p

f (xi ,p)

Difficult optimization problem (non-differentiable, non-convex)

Learning sparse MI classifier further complicates the issue, with
additional constraints on f
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The “Label-Mean” Surrogate

Target Function

min
f
‖f ‖2 + C

∑
i

`(F (Xi ), yi )

“Label-Mean” Constraints

F (Xi ) =
1

ni

∑
p

f (xi ,p)

Pros and Cons

Simple optimization problem with optimality guarantee

Violation of MI assumption, wrong model?

Not necessarily the case.
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Connections with MI-Kernel

Key results

Lemma 1: Training MI-SVM with Label-Mean is equivalent to
training a standard SVM at bag level with the normalized set kernel.

Theorem 1: If positive and negative instances are separable with
respect to feature map φ in the RKHS induced by kernel κ, then for
sufficiently large integer r , positive and negative bags are separable
using the Label-Mean prediction function with instance-level kernel κr .
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Intuitions

If instances are linearly separable, then bags are separable by a
polynomial kernel.

If instances are separable by a Gaussian kernel, then bags are
separable by a Gaussian kernel with larger bandwidth.

Note instance prediction function f is a kernel classifier (a linear
classifier is unlikely to work at bag level)

We used Gaussian kernel in our work
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Prediction with “Label-Mean”

Instance classifier

f (x) =
N∑
i=1

|Xi |∑
p=1

αiyiκ(xi ,p, x) + b

Bag classifier

F (X ) =
1

|X |
∑
x∈X

f (x)

The complexity depends on

size of testing bag

nonzero coefficients αi ’s

size of training bags with nonzero coefficients
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Prediction with “Label-Mean”

F (X ) =
1

|X |

|X |∑
q=1

l∑
i=1

αiyi
1

ni

ni∑
p=1

κ(xi ,p, xq) + b

=
1

|X |

|X |∑
q=1

N∑
j=1

βjκ(zj , xq) + b

{z1, . . . , zn1+1, . . . , zN} ⇐⇒ {x1,1, . . . , x2,1, . . . , xl ,nl}

{β1, . . . , βn1+1, . . . , βN} ⇐⇒ {
1

n1
y1α1, . . . ,

1

n2
y2α2, . . . ,

1

nl
ylαl}

We want to reduce z’s in the expansion!
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The Sparse-MI Problem

Objective

Learn f (.) =
∑Nsv

j=1 βjκ(zj , .) with small Nsv for MI classification

Alternatives

RSVM - select Nsv zj ’s randomly from training set

RS - approximate a learned classifier f̂ by minimizing ‖f̂ − f ‖2

MILES - enforce sparsity on the coefficients using L1 norm (cannot
explicitly specify Nsv )
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Proposed Approach

min
β,b,Z

Q(β, b,Z) =βTKZβ + C
∑
i

`(yi ,F (Xi ))

F (Xi ) =
1

ni

ni∑
p=1

Nsv∑
j=1

(βjκ(zj , xi ,p) + b)

Squared Hinge loss is used `(y ,F ) = max (0, 1− yF )2

Joint learning of classifier weights and SVs in a discriminative fashion

SVs not necessarily overlap with training instances

Non-convex, but convex and differentiable in β and b given Z
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Optimization Scheme

Reformulation of the optimization problem

min
Z

g(Z)

g(Z) = min
β,b

Q(β, b,Z)

What’s special about g(Z) -
it depends on the solution of another optimization problem

Isn’t it more difficult to optimize g(Z)?

-
Answer: Not necessarily!
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The Optimal Value Function

For our problem, g(Z) not only exists but is also differentiable

Conditions for differentiability (Bonnans 1998)

Uniqueness of optimal solution (strict convexity) for β and b given Z
- unique value for g(Z) at each Z

Continuous differentiablity of function Q over β and b
- avoid drastic change of g(Z) over local neighbourhood, i.e.

differentiability
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Computation of derivatives

We can compute the derivative of g(Z) for each Z as if it does not depend
on β and b

∂g

∂zj
=

N∑
i=1

βiβj
∂κ(zi , zj)

∂zj

+ C
m∑
i=1

1

ni
`
′
(yi , fi )βj

ni∑
p=1

∂κ(xi ,p, zj)

∂zj

βj ’s are the optimal values of βj ’s
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Algorithm
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Remarks

Same optimization strategy has been adopted in solving other
problems (SimpleMKL, SKLA)

Sparse-MI is most related to SKLA with two main differences
I SKLA can not be used to handle MI classification problems (need a MI

formulation with unique optimal solution)
I SKLA performs optimization and update of SVs in the dual formulation

(optimization in the primal is much more efficient)
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Multi-class Sparse MI Classifier

One-vs-all scheme - converts to multiple binary MI classification
problems

zj ’s are learned jointly - same XVs for different pairs of classifiers

∂g

∂zj
=

M∑
c=1

Nsv∑
i=1

β
c
i β

c
j

∂κ(zi , zj)

∂zj

+C
M∑
c=1

m∑
i=1

1

ni
`
′
(y ci , fi )β

c
j

ni∑
p=1

∂κ(xi ,p, zj)

∂zj
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Synthetic Data 1

Data Set
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Synthetic Data 1

Iteration 1
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Synthetic Data 1

Iteration 10

Fu et al. (Monash) sparseMI September 8, 2011 26 / 37



Synthetic Data 1

Function values over iterations
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Synthetic Data 2

Data set
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Synthetic Data 2

Iteration 1
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Synthetic Data 2

Iteration 10
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Synthetic Data 2

Function values over iterations
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Data Set Descriptions

Drug Actitity Classification
I MUSK1 - 47 positive and 45 negative, 5.2 instances per bag
I MUSK2 - 39 positive and 63 negative, 64.7 instances per bag

Image Classification
I COREL10 - 10 classes, 100 images per class
I COREL20 - 20 classes, 100 images per class
I 2− 13 regions per image

Music Classification

I GENRE - 10 classes, 100 songs per class, 30 segments per song
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Performance Comparison

Data set MUSK1 MUSK2 COREL10 COREL20 GENRE

mi-SVM
87.30% 80.52% 75.62% 52.15% 80.28%
400.2 2029.2 1458.2 2783.3 12439

MI-SVM
77.10% 83.20% 74.35% 55.37% 72.48%
277.1 583.4 977 2300.1 3639.8

MI-Kernel
89.93% 90.26% 84.30% 73.19% 77.05%
362.4 3501 1692.6 3612.7 13844

MILES
85.73% 87.64% 82.86% 69.16% 69.87%

40.8 42.5 379.1 868 1127.9

Nsv = 10
RS 88.68% 86.39% 75.13% 55.20% 54.68%

RSVM 74.66% 77.70% 69.25% 48.53% 46.01%
SparseMI 88.44% 88.52% 80.10% 62.49% 71.28%

Nsv = 100
RS 90.18% 89.16% 78.81% 65.35% 67.77%

RSVM 89.02% 88.26% 77.63% 63.82% 67.41%
SparseMI 90.40% 87.98% 84.31% 72.22% 76.06%
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Convergence Results
COREL20
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Convergence Results
GENRE
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Conclusions

A sparse SVM classifier proposed for MI classification

Joint optimization of SVs and classifier weights

Efficient learning in the primal formulation

With controlled sparsity

Comparable performance but much more efficient in testing
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Future Work

Sparse MI classification with non i.i.d. instance distributions

Incorporation with alternative convex MI classifiers

Constrained SV selection

Standard sparse SVM learning from the primal formulation
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