Common Substructure Learning of Multiple Graphical Gaussian Models

Satoshi Hara, Takashi Washio

The Institute of Scientific and Industrial Research, Osaka University, Japan

ECML PKDD 2011@Athens, 07/09/2011

Dynamics of Graphical Model

- Evolution of a Data Generating Mechanism
 - e.g., Non-stationarity or Change of Environments
 - The dependency structure may also change.

- Structure changes entirely, or only partially?
 - The change may occur only partially when e.g.
 - System Error : fault in subsystems
 - Short Term Changes : natural assumption

Goal of the Research

Identifying a Common Substructure of Multiple Graphical Models

Common Part

Dynamic Part

Contents

- Introduction and Motivation
- GGM & Common Substructure Learning
- Algorithm
- Simulation
- Application to Anomaly Detection
- Conclusion

Background:

Graphical Gaussian Model (GGM)

- If a random variable $\mathbf{x} = (x_1, x_2, \dots, x_d)^{\top} \in \mathbb{R}^d$ is generated from Gaussian $\mathcal{N}(\boldsymbol{\mu}, \Lambda^{-1})$,
 - Variables x_j and $x_{j'}$ are conditionally independent.

$$\Leftrightarrow \Lambda_{jj'} = 0$$

 Λ : Precision Matrix (Inverse of Covariance Σ)

- Structure Learning of GGM
 - \Leftrightarrow Identification of zero pattern in Λ
 - ullet Ordinary MLE gives only dense estimate of Λ .
 - Use of sparse methods.
 - \bullet ℓ_1 -regularization and its variants

Related Work:

Structure Learning of GGM

 $-\ell_1$ -regularized Maximum Likelihood

(Yuan et al., Biometrika 2007, Banerjee et al. JMLR 2008)

$$\max_{\Lambda} \ell(\Lambda; \hat{\Sigma}) - \rho \|\Lambda\|_1 \quad \text{s.t.} \quad \Lambda \succ 0$$

• $\rho>0$, $\ell(\Lambda;\hat{\Sigma})$ is a log likelihood of Gaussian :

$$\ell(\Lambda; \hat{\Sigma}) = \log \det \Lambda - \operatorname{Tr}\left(\hat{\Sigma}\Lambda\right)$$

- Convex Optimization, GLasso Algorithm
 (Friedman et al., Biostatistics 2008)
- Multi-task Structure Learning (Honorio et al., ICML 2010)
 - Learn GGMs $\Lambda_1, \Lambda_2, \ldots, \Lambda_N$

Regularization on Joint Structure

$$\max_{\{\Lambda_i; \Lambda_i \succ 0\}_{i=1}^N} \sum_{i=1}^N t_i \ell(\Lambda_i; \hat{\Sigma}_i) - \rho \sum_{j \neq j'} \max_{1 \leq i \leq N} |\Lambda_{i,jj'}|$$

Our Proposal:

Common Substructure of GGMs

The common substructure of multiple GGMs (with $\Lambda_1, \Lambda_2, \ldots, \Lambda_N$) is expressed by an adjacency matrix Θ defined by

$$\Theta_{jj'} = \begin{cases} \Lambda_{1,jj'}, & \text{if } \Lambda_{1,jj'} = \Lambda_{2,jj'} = \dots = \Lambda_{N,jj'} \\ 0, & \text{otherwise} \end{cases}$$

- weak stationarity on partial covariance
- (j, j') th element is common.

Maximal variation is zero.

$$\Leftrightarrow \max_{1 \le i, i' \le N} |\Lambda_{i, jj'} - \Lambda_{i', jj'}| = 0$$

Our Proposal:

Problem Formulation

- Use of 2 Regularizations
 - Regularization on Joint Structure (Honorio et al., ICML2010)
 - Regularization on Maximal Variation (Our Proposal)

$$\max_{\{\Lambda_1\}_{i=1}^N} \sum_{i=1}^N t_i \ell(\Lambda_i; \hat{\Sigma}_i) \quad \begin{array}{c} \text{Regularization on} \\ \text{Joint Structure} \end{array} \quad \begin{array}{c} \text{Regularization on} \\ \text{Maximal Variation} \end{array} \\ - \sum_{j \neq j'} \left(\rho \max_{1 \leq i \leq N} |\Lambda_{i,jj'}| + \gamma \max_{1 \leq i,i' \leq N} |\Lambda_{i,jj'} - \Lambda_{i',jj'}| \right) \\ \text{s.t.} \quad \Lambda_1, \Lambda_2, \dots, \Lambda_N \succ 0$$

- $\rho, \gamma > 0$, non-negative weights $\sum_{i=1}^{N} t_i = 1$
- Convex Optimization Problem

Our Proposal:

Relation to The Existing Work

Structural Changes between two datasets

(Zhang et al., UAI 2010)

- Lasso type approach (Meinshausen et al., Ann. Statist. 2006)
 - + Fused Lasso type regularization
- Connection to the current problem

	Proposed	Zhang et al.
Objective Function	Regularized MLE of Gaussians	Fused Lasso Type (Approximation)
# of Datasets N	$N\!\geq\!2$	$N\!=\!2$ only
Algorithm	$N\!\geq\!2$	$N\!=\!2$ only

More General Framework

Contents

- Introduction and Motivation
- GGM & Common Substructure Learning
- Algorithm
- Simulation
- Application to Anomaly Detection
- Conclusion

Block Coordinate Descent

- Iteratively update each elements of matrices.
 - Solve subproblems for each (j,j')th elements of precision matrices $\Lambda_1,\Lambda_2,\ldots,\Lambda_N$.
 - ullet Different sub-problems for diagonal elements ω and non-diagonal elements v .

Convergence to the global optimum is guaranteed. (Tseng, JOTA 2001)

Optimization of Diagonal Entries

Analytic Solution

$$\omega_i = oldsymbol{z}_i^ op Z_i^{-1} oldsymbol{z}_i + q_i^{-1}$$

- 1. Permute row and column of matrices.
- 2. Divide into (j, j) th elements and remainings.

- Positive Definiteness
 - If $Z_i \succ 0$, then $\Lambda_i \succ 0$ always holds.
 - Positive definiteness is preserved at each updating step of the block coordinate descent.

Optimization of Non-diagonal Entries

Dual Problem

$$\min_{oldsymbol{\xi}} rac{1}{2} (oldsymbol{b} - oldsymbol{\xi})^ op \mathrm{diag}(oldsymbol{a})^{-1} (oldsymbol{b} - oldsymbol{\xi})$$
 $oldsymbol{v} = (v_1, v_2, \dots, v_N)^ op$ Dual Variable $oldsymbol{\xi} = oldsymbol{b} - \mathrm{diag}(oldsymbol{a})oldsymbol{v}$

Primal (Non-Diagonals)
$$m{v} = (v_1, v_2, \dots, v_N)^{ op}$$
 Dual Variable $m{\xi} = m{b} - \mathrm{diag}(m{a})m{v}$

- $m{a}, m{b} \in \mathbb{R}^N$: defined from remaining parameters, $\hat{\Sigma}_i$
- 4 Types of Solutions
 - ullet = b ()
 - $\|\xi\|_1 = \rho + 2\gamma$ (—)
 - $|\mathbf{1}_{N}^{\top}\boldsymbol{\xi}| = \rho$ (---)
 - ullet $\|oldsymbol{\xi}\|_1=
 ho+2\gamma$, $|oldsymbol{1}_N^ opoldsymbol{\xi}|=
 ho$ ($oldsymbol{\circ}$)

Solution to Each Case

1)
$$\|\xi\|_1 = \rho + 2\gamma$$
 (—)

 Continuous Quadratic Knapsack Problem

$$\min_{\boldsymbol{y}} \sum_{i=1}^{N} \frac{1}{2a_i} (|b_i| - y_i)^2$$
s.t. $\boldsymbol{y} \ge 0$, $\boldsymbol{1}_N^{\mathsf{T}} \boldsymbol{y} = \rho + 2\gamma$

$$(\xi_i = \operatorname{sgn}(b_i)y_i)$$

3)
$$\begin{cases} \|\boldsymbol{\xi}\|_1 = \rho + 2\gamma & \bullet \\ |\mathbf{1}_N^\top \boldsymbol{\xi}| = \rho \end{cases}$$

 Continuous Quadratic Knapsack Problem

2)
$$|\mathbf{1}_{N}^{\top}\boldsymbol{\xi}| = \rho$$
 (---)

Analytic Solution

$$v_0 = rac{\mathbf{1}_N^ op \mathbf{b} -
ho \operatorname{sgn}(\mathbf{1}_N^ op \mathbf{b})}{\mathbf{1}_N^ op \mathbf{a}}$$
 ($oldsymbol{\xi} = oldsymbol{b} - v_0 oldsymbol{a}$)

$$\boldsymbol{\xi} \in \mathbb{R}^N \quad ||\boldsymbol{\xi}||_1 = \rho + 2\gamma$$

One of these 3 cases or $\xi = b$ is the solution.

Contents

- Introduction and Motivation
- GGM & Common Substructure Learning
- Algorithm
- Simulation
- Application to Anomaly Detection
- Conclusion

Simulation Setup

- GGM with Common Substructure
 - Dim. d=20 , # of Datasets N=5
 - Λ_i : Diagonals= 1, Non-zeros \sim [-0.8, -0.1]• 100 data points from each Gaussian $\mathcal{N}(\mathbf{0}, \Lambda_i^{-1})$

Baseline Methods

- Naïve Way to Learn Common Substructure
 - 1: Estimate $\hat{\Lambda}_1, \hat{\Lambda}_2, \dots, \hat{\Lambda}_N$ with existing methods
 - GLasso (Friedman et al., Biostatistics 2008)
 - Multi-task Structure Learning (Honorio et al., ICML 2010)
 - 2: Find seemingly common parts
- Seemingly Common Substructure

$$\hat{\Theta}_{jj'} = \begin{cases} \hat{\theta}_{jj'}, & \text{if } \max_{i,i'} |\hat{\Lambda}_{i,jj'} - \hat{\Lambda}_{i',jj'}| < \epsilon \\ 0, & \text{otherwise} \end{cases}$$

ullet $\hat{ heta}_{jj'}=0$ if $\hat{\Lambda}_{i,jj'}=0$, $^{orall}i$, $\hat{ heta}_{jj'}=1$ otherwise

Result

- \blacksquare ROC by varying ρ
 - Average of 100 run
 - $\epsilon = 1$
 - ullet γ by a heuristic
- $\epsilon = 1$ is quite optimistic.
 - 62% of true common substructure have a variation more than 1.
 - The proposed method avoids this estimation variance problem.

Proposed method is the best.

GLasso (
$$ho=0.0032$$
)
$$\epsilon=1$$

$$\max_{i,i'}|\Lambda_{i,jj'}-\Lambda_{i',jj'}|^8$$
 10

74% of non-zeros are under the threshold.

Contents

- Introduction and Motivation
- GGM & Common Substructure Learning
- Algorithm
- Simulation
- Application to Anomaly Detection
- Conclusion

Application to Anomaly Detection

- Automobile Sensor Error Data (Ide et al., SDM 2009)
 - 42 sensor values from a real car

One covariance for each dataset

- 79 datasets from normal states and 20 from faulty
- Fault: miswiring of 24th and 25th sensors
- Detection of Correlation Anomaly (Ide et al., SDM 2009)
 - Capture the dependency structure by GGM
 - Anomaly Score: KL-divergence between conditional distributions for each pair of variables

$$\begin{bmatrix} x_1 \\ \vdots \\ x_{42} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_{42} \end{bmatrix}$$

$$a_j = \max(d_j^{12}, d_j^{21})$$

$$d_j^{12} = \int D_{\mathrm{KL}}[p_1(x_j|\boldsymbol{x}_{\setminus j})||p_2(x_j|\boldsymbol{x}_{\setminus j})]p_1(\boldsymbol{x}_{\setminus j})d\boldsymbol{x}_{\setminus j}$$

Simulation Setting

- Use 25 datasets (20 normal, 5 faulty)
- 1. Estimate 25 Precision Matrices
- Individual estimation by GLasso (Friedman et al., 2008)
 Multi-task Structure Learning (Honorio et al., 2010)

 - Common Substructure Learning

Weights are chosen to balance two states.

- 2. Calculate Anomaly Scores
 - Average scores for all 20×5 pairs.
 - Detect anomaly sensors by thresholding.

Result (Detection Performance)

- Randomly pickup 25 datasets for 100 times.
 - Regularization parameter ho is in $0.05 \sim 0.30$.
 - The parameter γ is chosen by a heuristic.

Draw best ROC by changing the threshold.

	Best AUC	ρ
Proposed	0.97	0.05
GLasso	0.96	0.20
MSL	0.97	0.05

Result (Anomaly Score)

Normal-Faulty states (median, 25/75% of 100 run)

- The proposed method captures the dependency among healthy sensors as common and shows lower scores.
- The variation of scores are also low.
 - → More stable than other two

Summary & Conclusion

- Common Substructure Learning
 - Identifying common parts of dynamical dependency structure
 - Optimization by block-coordinate descent
 - Factorization of subproblem to 4 cases
- Numerical Evaluation
 - Validity of the proposed method are observed both on synthetic and real world data.
 - Naïve approaches tend to fail detecting common substructure due to the estimation variance.

Supplemental Materials

Learning GGM (Covariance Selection) ²

- Maximum Likelihood Estimator : $\hat{\Lambda} = \hat{\Sigma}^{-1}$
 - $\hat{\Lambda}$ is usually dense. $(\hat{\Sigma}: \mathsf{MLE} \ \mathsf{of} \ \Sigma)$
 - GGM is a complete graph, and the true dependency structure is masked.
- ℓ_1 -regularized Maximum Likelihood (Yuan et al., Biometrika 2007, Banerjee et al. JMLR 2008)

$$\max_{\Lambda} \ell(\Lambda; \hat{\Sigma}) - \rho \|\Lambda\|_1 \quad \text{s.t.} \quad \Lambda \succ 0$$

- $\rho>0$, $\ell(\Lambda;\hat{\Sigma})$ is a log likelihood of Gaussian : $\ell(\Lambda;\hat{\Sigma})=\log\det\Lambda-\mathrm{Tr}\left(\hat{\Sigma}\Lambda\right)$
- Convex Optimization, GLasso Algorithm

(Friedman et al., Biostatistics 2008)

Joint Estimation of GGMs

- Multi-task Structure Learning (Honorio et al., ICML 2010)
 - ullet Learn GGMs from covariances $\hat{\Sigma}_1,\hat{\Sigma}_2,\ldots,\hat{\Sigma}_N$.
 - Assumption: All GGMs have same edge patterns.

$$\max_{\{\Lambda_i; \Lambda_i \succ 0\}_{i=1}^N} \sum_{i=1}^N t_i \ell(\Lambda_i; \hat{\Sigma}_i) - \rho \sum_{j \neq j'} \max_{1 \leq i \leq N} |\Lambda_{i,jj'}|$$

Joint structure is sparse.

$$\tilde{\Lambda}_{jj'} \equiv \max_{1 \le i \le N} |\Lambda_{i,jj'}| = 0 \iff \Lambda_{i,jj'} = 0, \quad \forall i$$

Share edge pattern information and improve the result.

Algorithm (Block Coordinate Descent)

- Input : Covariance Matrices $\hat{\Sigma}_1, \hat{\Sigma}_2, \dots, \hat{\Sigma}_N$ Regularization Parameters $\rho, \gamma > 0$ Weights $t_1, t_2, \dots, t_N \geq 0, \quad \sum_{i=1}^N t_i = 1$
- Output: Precision Matrices $\Lambda_1, \Lambda_2, \dots, \Lambda_N$
- Initialize $\Lambda_i \leftarrow \hat{\Sigma}_i^{-1} \ (1 \leq i \leq N)$
- Repeat until convergence

For j = 1 to d, j' = 1 to d

Treat remaining elements as constants.

Update (j, j')th elements of $\Lambda_1, \Lambda_2, \dots, \Lambda_N$

End For

Solution to the Dual Problem 1/3

Case1: The solution is on $\|\xi\|_1 = \rho + 2\gamma$.

Continuous Quadratic

Knapsack Problem

Knapsack Problem
$$(\xi_i = \operatorname{sgn}(b_i)y_i)$$

$$\min_{i=1}^{N} \frac{1}{2a_i}(|b_i| - y_i)^2$$
Efficient algorithm

s.t.
$$\boldsymbol{y} \geq 0$$
, $\boldsymbol{1}_{N}^{\top} \boldsymbol{y} = \rho + 2\gamma$

algorithm exists. (Honorio et al., ICML2010)

Optimal

Not Optimal

Solution to the Dual Problem 2/3

Case2: The solution is on $|\mathbf{1}_N^{\mathsf{T}}\boldsymbol{\xi}| = \rho$.

Analytic Solution $(\xi = b - v_0 a)$

$$v_0 = rac{\mathbf{1}_N^{\top} \boldsymbol{b} -
ho \operatorname{sgn}(\mathbf{1}_N^{\top} \boldsymbol{b})}{\mathbf{1}_N^{\top} \boldsymbol{a}}$$

Optimal

Not Optimal

Solution to the Dual Problem 3/3

Case3: The solution is on $\|\boldsymbol{\xi}\|_1 = \rho + 2\gamma_{\boldsymbol{\eta}} |\mathbf{1}_N^{\top} \boldsymbol{\xi}| = \rho_{\boldsymbol{\eta}}$

When both Case 1, 2 are not optimal

Solutions to Case 2, 3 have the same sign.

 ξ : Solution to Case 2

- Problems for each signs, $\frac{\tilde{\xi}_i \geq 0}{\xi_i < 0}$ and $\frac{\tilde{\xi}_i < 0}{\xi_i < 0}$
 - Two <u>Continuous Quadratic Knapsack Problems</u>

Solution to the Dual Problem 3/3 (cont.)

Target Problem

$$\min_{\boldsymbol{\xi}} \ \frac{1}{2} (\boldsymbol{b} - \boldsymbol{\xi})^{\top} \operatorname{diag}(\boldsymbol{a})^{-1} (\boldsymbol{b} - \boldsymbol{\xi}) \text{ s.t. } |\mathbf{1}_{N}^{\top} \boldsymbol{\xi}| = \rho, \ \|\boldsymbol{\xi}\|_{1} = \rho + 2\gamma$$

- Equivalent Two Distinct Problems
 - Continuous Quadratic Knapsack Problems

$$\min_{\mathbf{y}^{+}} \sum_{\tilde{\xi}_{i} \geq 0} \frac{1}{2a_{i}} (y_{i}^{+} - b_{i})^{2} \text{ s.t. } \mathbf{y}^{+} \geq 0, \ \mathbf{1}_{N}^{\top} \mathbf{y}^{+} = \alpha^{+}$$

$$\min_{\mathbf{y}^{-}} \sum_{\tilde{\xi}_{i} < 0} \frac{1}{2a_{i}} (y_{i}^{-} - b_{i})^{2} \text{ s.t. } \mathbf{y}^{-} \geq 0, \ \mathbf{1}_{N}^{\top} \mathbf{y}^{-} = \alpha^{-}$$

- $\xi_i = y_i^+ \ (\tilde{\xi}_i \ge 0)$ and $\xi_i = -y_i^- \ (\tilde{\xi}_i < 0)$
- $(\alpha^+, \alpha^-) = (\rho + \gamma, \gamma)$ or $(\alpha^+, \alpha^-) = (\gamma, \rho + \gamma)$

 $\mathbf{1}_{N}^{\top} \boldsymbol{y}(\nu) = \alpha$

Solution to Continuous Quadratic Knapsack Problem

Continuous Quadratic Knapsack Problem

$$\min_{\boldsymbol{y}} \sum_{i=1}^{N} \frac{1}{2c_i} (y_i - d_i)^2 \text{ s.t. } \boldsymbol{y} \ge 0, \ \boldsymbol{1}_N^{\top} \boldsymbol{y} = \alpha$$

- Solution: $y_i(\nu) = \max(d_i \nu c_i, 0)$
- ν is what satisfies $\mathbf{1}_N^{\top} \boldsymbol{y}(\nu) = \alpha$.
- Search of Optimal ν
 - $\mathbf{1}_{N}^{\top} \boldsymbol{y}(\nu)$ is decreasing and piece-wise linear with breakpoints $\{d_i/c_i\}_{i=1}^{N}$.

$$\nu = \frac{\sum_{d_i - \nu_0 c_i \ge 0} d_i - \alpha}{\sum_{d_i - \nu_0 c_i \ge 0} c_i}$$

Regularization Parameters

- ρ : Regularization of the Joint Structure
- ullet ? : Regularization of the Maximal Variation
- Bivariate Case: $\hat{\Sigma}_i = \left| \begin{array}{cc} a_i & r_i \\ r_i & b_i \end{array} \right|, \; \Lambda_i = \left| \begin{array}{cc} u_i & z_i \\ z_i & v_i \end{array} \right|$

$$|r_i| \le \rho + 2\gamma$$
 and $\left| \sum_{i=1}^N t_i r_i \right| \le \rho \implies z_i = 0$

- \bullet ρ : Threshold to round small covariances
- γ : Difference of characteristic scalings between r_i and $\tilde{r} = \sum_{i=1}^{N} t_i r_i$

Choice of Parameter γ

- Intuition on γ
 - Difference of characteristic scalings between r_i and $\tilde{r} = \sum_{i=1}^{N} t_i r_i$
- Heuristic Choice
 - Approximation: r_i , \widetilde{r} are Gaussian.
 - Adopt $100(1-\alpha)\%$ points as their characteristic scalings

Result (1)

- \blacksquare ROC by varying ρ
 - Average of 100 run
 - $\epsilon = 1$
 - ullet γ by a heuristic

Proposed method is the best.

- $\epsilon = 1$ is quite optimistic.
 - 62% of true common substructure have a variation more than 1

(Estimation Variance)

GLasso ($\rho=0.0032$)

74% of non-zeros are under threshold.

Result (2)

- \blacksquare ROC by varying ρ
 - Average of 100 run
 - $\epsilon = 10$
 - Naïve approaches treat almost all parts as common.

Proposed method is the best.

- Ordinary GGM estimation have high variances.
 - Common substructure is masked and naïve approaches fail.
 - The proposed method could avoid this problem.

Application to Anomaly Detection

- Anomaly Detection Task
 - Identify contributions of each variable to the difference between two datasets.
- Correlation Anomaly (Ide et al., SDM 2009)
 - Use sparse GGM estimation for suppressing pseudo correlation in noisy situations.
- Use of Common Substructure Learning
 - If fault occurs only in some subsystems, other healthy parts will show common dependency.

Dataset Description

- Automobile Sensor Error Data (Ide et al., SDM 2009)
 - 42 sensor values from a real car

One covariance for each dataset

- 79 datasets from normal states and 20 from faulty
- Fault: miswiring of 24th and 25th sensors
- Anomaly Score (Ide et al., SDM 2009)
 - KL-divergence between conditional distributions calculated for each pair of variables

$$\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_{42} \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_{42} \end{bmatrix} a_j = \max(d_j^{12}, d_j^{21})$$

$$\vdots$$

$$d_j^{12} = \int D_{\mathrm{KL}}[p_1(x_j|\boldsymbol{x}_{\backslash j})||p_2(x_j|\boldsymbol{x}_{\backslash j})]p_1(\boldsymbol{x}_{\backslash j})d\boldsymbol{x}_{\backslash j}$$

Dataset 1 Dataset 2

Result (Anomaly Score)

Normal-Faulty states (median, 25/75% of 100 run)

- The proposed method shows lower scores at healthy sensors.
- The variation of scores are also low.
 - → More stable than other two

Result (Anomaly Score 2)

Normal-Normal states (median, 25/75% of 100 run)

- Same tendency as Normal-Fault
 - Lower score, Lower variation
- Ideally, "score=0" for Normal-Normal states
 - Some sensor are quite noisy.
 - Contrasting with Normal-Fault gives additional info.

Result (Anomaly Score)

