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Evolution of a Data Generating Mechanism

 e.g., Non-stationarity or Change of Environments

 The dependency structure may also change.

Structure changes entirely, or only partially?

 The change may occur only partially when e.g.

System Error : fault in subsystems

Short Term Changes : natural assumption
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Dynamics of Graphical Model

…
Time or 

Environment



Identifying a Common Substructure of 
Multiple Graphical Models
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If a random variable                                 is 
generated from Gaussian               , 

 Variables     and     are conditionally independent.

: Precision Matrix (Inverse of Covariance   )

Structure Learning of GGM

Identification of zero pattern in

 Ordinary MLE gives only dense estimate of    .

 Use of sparse methods.

 -regularization and its variants

Background:

Graphical Gaussian Model（GGM）
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 -regularized Maximum Likelihood

 ,             is a log likelihood of Gaussian : 

 Convex Optimization, GLasso Algorithm

Multi-task Structure Learning

 Learn GGMs

5Related Work:

Structure Learning of GGM

(Yuan et al., Biometrika 2007, Banerjee et al. JMLR 2008)

(Friedman et al., Biostatistics 2008)

(Honorio et al., ICML 2010)

Regularization on 
Joint Structure



The common substructure of multiple GGMs       
(with                   ) is expressed by an 
adjacency matrix    defined by 

 weak stationarity on partial covariance

 th element is common.

6Our Proposal:

Common Substructure of GGMs

Maximal variation 
is zero.



Use of 2 Regularizations

 Regularization on Joint Structure (Honorio et al., ICML2010)

 Regularization on Maximal Variation (Our Proposal)

 , non-negative weights

 Convex Optimization Problem

7Our Proposal:

Problem Formulation

Regularization on 
Maximal Variation

Regularization on 
Joint Structure



Structural Changes between two datasets

 Lasso type approach（Meinshausen et al., Ann. Statist. 2006）

+ Fused Lasso type regularization

Connection to the current problem

8Our Proposal:

Relation to The Existing Work

(Zhang et al., UAI 2010)

Proposed Zhang et al.

Objective Function
Regularized MLE of 

Gaussians
Fused Lasso Type 
(Approximation)

# of Datasets only

Algorithm only

More General Framework
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Iteratively update each elements of matrices.

 Solve subproblems for each        th elements   
of precision matrices                       .

 Different sub-problems for diagonal elements 
and non-diagonal elements    .

Convergence to the global optimum is 
guaranteed. (Tseng, JOTA 2001)
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Block Coordinate Descent

vector of             th elements



Analytic Solution

Positive Definiteness

 If            , then            always holds.

 Positive definiteness is preserved at each 
updating step of the block coordinate descent.
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Optimization of Diagonal Entries
1. Permute row and column 

of matrices.
2. Divide into           th

elements and remainings.



Dual Problem

 : defined from remaining parameters, 

4 Types of Solutions

 (      )

 (      )

 (      )

 ,                 (     )
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Optimization of Non-diagonal Entries

Primal (Non-Diagonals)

Dual Variable



1)                    (     )

 Continuous Quadratic 
Knapsack Problem

3)                       (     )

 Continuous Quadratic 
Knapsack Problem
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Solution to Each Case

（ ）

2)                (     )

 Analytic Solution

（ ）

One of these 3 cases or     
is the solution. 
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GGM with Common Substructure

 Dim. , # of Datasets

 ： Diagonals      , Non-zeros

 100 data points from each Gaussian
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Simulation Setup

Common Substructure
（Structure, weights are common.）

Individual Substructure
（Structure, weights changes.）



Naïve Way to Learn Common Substructure

1: Estimate                      with existing methods

 GLasso (Friedman et al., Biostatistics 2008)

 Multi-task Structure Learning (Honorio et al., ICML 2010)

2: Find seemingly common parts

Seemingly Common Substructure

 if                    ,              otherwise
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Baseline Methods



ROC by varying

 Average of 100 run



 by a heuristic

 is quite optimistic.

 62% of true common                            
substructure have a                             
variation more than 1.

 The proposed method                             
avoids this estimation                               
variance problem.
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Result

Proposed

GLasso

MSL

GLasso (                      )

74% of non-zeros are 
under the threshold.

Proposed method 
is the best.



Introduction and Motivation

GGM & Common Substructure Learning

Algorithm

Simulation

Application to Anomaly Detection

Conclusion

18

Contents



Automobile Sensor Error Data

 42 sensor values from a real car

 79 datasets from normal states and 20 from faulty

 Fault : miswiring of 24th and 25th sensors

Detection of Correlation Anomaly (Ide et al., SDM 2009)

 Capture the dependency structure by GGM

 Anomaly Score: KL-divergence between 
conditional distributions for each pair of variables
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Application to Anomaly Detection

One covariance 
for each dataset

(Ide et al., SDM 2009)

Dataset 1 Dataset 2



Use 25 datasets (20 normal, 5 faulty)

1. Estimate 25 Precision Matrices

 Individual estimation by GLasso (Friedman et al., 2008)

 Multi-task Structure Learning (Honorio et al., 2010)

 Common Substructure Learning

2. Calculate Anomaly Scores

 Average scores for all          pairs.

 Detect anomaly sensors by thresholding.
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Simulation Setting

Weights are 
chosen to balance 

two states.

Base
lines



Randomly pickup 25 datasets for 100 times.

 Regularization parameter   is in                  .

 The parameter   is chosen by a heuristic.

Draw best ROC by changing the threshold.
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Result (Detection Performance)

Best AUC

Proposed 0.97 0.05

GLasso 0.96 0.20

MSL 0.97 0.05



Normal-Faulty states (median, 25/75% of 100 run)

The proposed method captures the 
dependency among healthy sensors as 
common and shows lower scores.

The variation of scores are also low.

→ More stable than other two
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Result (Anomaly Score)

Proposed GLasso MSL



Common Substructure Learning

 Identifying common parts of dynamical 
dependency structure

 Optimization by block-coordinate descent

 Factorization of subproblem to 4 cases

Numerical Evaluation

 Validity of the proposed method are observed 
both on synthetic and real world data.

 Naïve approaches tend to fail detecting common 
substructure due to the estimation variance.
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Summary & Conclusion



Supplemental Materials
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Maximum Likelihood Estimator : 

 is usually dense.

 GGM is a complete graph, and the true 
dependency structure is masked.

 -regularized Maximum Likelihood

 ,             is a log likelihood of Gaussian : 

 Convex Optimization, GLasso Algorithm
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Learning GGM（Covariance Selection）

(     : MLE of      )

(Yuan et al., Biometrika 2007, Banerjee et al. JMLR 2008)

(Friedman et al., Biostatistics 2008)



Multi-task Structure Learning

 Learn GGMs from covariances .

 Assumption： All GGMs have same edge patterns.

 Joint structure is sparse.

Share edge pattern information and improve 
the result.
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Joint Estimation of GGMs

(Honorio et al., ICML 2010)



Input : Covariance Matrices                                
Regularization Parameters             
Weights

Output : Precision Matrices

Initialize

Repeat until convergence

For               ,

Update        th elements of 

End For
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Algorithm (Block Coordinate Descent)

Treat remaining 
elements as constants.



Case1: The solution is on                  .

Optimal
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Solution to the Dual Problem 1/3

（ ）

Efficient
algorithm

exists.
(Honorio et al., 

ICML2010)

Continuous Quadratic
Knapsack Problem

Not Optimal

→ Case2



Case2: The solution is on             .

Optimal
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Solution to the Dual Problem 2/3

Analytic Solution （ ）

Not Optimal

→ Case3



Case3: The solution is on                 ,           .

Problems for each signs,          and         

 Two Continuous Quadratic Knapsack Problems

30

Solution to the Dual Problem 3/3

When both Case 1, 2
are not optimal

Solutions to Case 2, 3 have 
the same sign.

: Solution to Case 2



Target Problem

Equivalent Two Distinct Problems

 Continuous Quadratic Knapsack Problems

 and

 or
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Solution to the Dual Problem 3/3 (Cont.)



Continuous Quadratic Knapsack Problem

 Solution:

 is what satisfies                  .

Search of Optimal

 is decreasing and piece-wise linear with 
breakpoints               .

32Solution to Continuous Quadratic 
Knapsack Problem



 ：Regularization of the Joint Structure

 ：Regularization of the Maximal Variation

Bivariate Case：

 ：Threshold to round small covariances

 ：Difference of characteristic scalings
between    and
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Regularization Parameters



Intuition on

 Difference of characteristic scalings
between    and

Heuristic Choice

 Approximation： ， are Gaussian.

 Adopt                   points as their characteristic 
scalings

34

Choice of Parameter



ROC by varying

 Average of 100 run



 by a heuristic

 is quite optimistic.

 62% of true common                            
substructure have a                             
variation more than 1

（Estimation Variance）
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Result (1)

Proposed

GLasso

MSL

GLasso (                      )

74% of non-zeros are under threshold.

Proposed method 
is the best.



ROC by varying

 Average of 100 run



 Naïve approaches                                         
treat almost all parts                                       
as common.

Ordinary GGM estimation have high variances.

 Common substructure is masked and naïve 
approaches fail.

 The proposed method could avoid this problem.
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Result (2)

Proposed

GLasso

MSL

Proposed method 
is the best.



Anomaly Detection Task

 Identify contributions of each variable to the 
difference between two datasets.

Correlation Anomaly (Ide et al., SDM 2009)

 Use sparse GGM estimation for suppressing 
pseudo correlation in noisy situations.

Use of Common Substructure Learning

 If fault occurs only in some subsystems, other 
healthy parts will show common dependency.

37

Application to Anomaly Detection



Automobile Sensor Error Data 

 42 sensor values from a real car

 79 datasets from normal states and 20 from faulty

 Fault : miswiring of 24th and 25th sensors

Anomaly Score (Ide et al., SDM 2009)

 KL-divergence between conditional distributions

calculated for each pair of variables
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Dataset Description

Dataset 1 Dataset 2

One covariance 
for each dataset

(Ide et al., SDM 2009)



Normal-Faulty states (median, 25/75% of 100 run)

The proposed method shows lower scores
at healthy sensors.

The variation of scores are also low.

→ More stable than other two
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Result (Anomaly Score)

Proposed GLasso MSL



Normal-Normal states (median, 25/75% of 100 run)

Same tendency as Normal-Fault

 Lower score, Lower variation

Ideally, “score=0” for Normal-Normal states

 Some sensor are quite noisy.

 Contrasting with Normal-Fault gives additional info.
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Result (Anomaly Score 2)

Proposed GLasso MSL
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Result (Anomaly Score)


