Fourier-Information Duality in the Identity Management Problem

Xiaoye Jiang¹, Jonathan Huang², Leonidas Guibas¹

¹Stanford University, California, USA ²Carnegie Mellon University, Pennsylvania, USA

2011 European Conference on Machine Learning

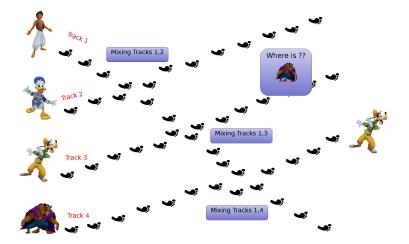
Sep 7, 2011

X. Jiang et al. (ECML PKDD 2011)

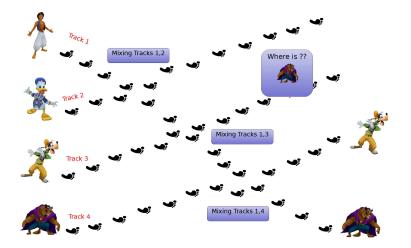
Fourier-Information Duality

Sep 7, 2011 1 / 30

Problem in Identity Management [Shin et. al. 2003]



Problem in Identity Management



▶ ∢ ∃ ▶

Reasoning over Permutation Group

Existing approaches model uncertainty in identity management with distributions over all permutations.

- Permutation Group: All bijective mappings from $\{1, 2, ..., n\}$ to itself.
- There are <u>n</u>! permutations.

<i>n</i> = 5	120
<i>n</i> = 10	3,628,800
<i>n</i> = 20	2.432×10^{18}

• Two dueling representations: Fourier approach and Information approach.

Contributions

- Identity a duality relationship between Fourier approach and Information approach.
- Explore the problem of converting between two representations.
- Propose a hybrid approach.

Fourier Approach

Fourier approach works by collapsing a distribution over permutations to low order marginals [Kondor et. al. 2007, Huang et. al. 2007].

Example

- We can summarize a distribution using a matrix of first order marginals.
- Requires storing only $\mathcal{O}(n^2)$ numbers.

	A	В	С
1	1/4	1/4	1/2
2	1/3	5/12	1/4
3	5/12	1/3	1/4

-

Fourier Approach — High Order Generalizations

- First order marginals can not capture high order dependencies.
- We can summarize a distribution using a matrix of second order marginals.
- Requires storing only $\mathcal{O}(n^4)$ numbers.

Example

[A,B,C,D]	$P(\sigma)$
[1, 2, 3, 4]	.01
[1, 2, 4, 3]	.02
[1, 3, 2, 4]	.01
[1, 3, 4, 2]	.015
[1, 4, 2, 3]	.005
[1, 4, 3, 2]	.005
:	:

	(A,B)	(A,C)	(A,D)	(B,C)	
(1,2)	.03	.025	.01	.03	
(1,3)	.02	.015	.03	.07	
(1,4)	.045	.01	.035	.02	
(2,3)	.015	.03	.02	.04	•••
:	:	:	:	:	•.

Information Approach

- Parametrize a distribution over permutations using an exponential family [Schumitsch et. al. 2005].
- First order information coefficients requires storing $O(n^2)$ numbers.

Example

 $P([A, B, C] \rightarrow [1, 3, 2]) \propto \exp(-.1 + .1 + .5)$

→ Ξ →

Information Approach — High Order Generalizations

- We can parametrize a distribution using a second order information matrix.
- Requires storing only $\mathcal{O}(n^4)$ numbers.

Example

	(A,B)	(A,C)	(A,D)	(B,C)	•••
(1,2)	03	.025	01	.03	
(1,3)	.02	.015	.03	.07	
(1,4)	.045	01	.035	02	
(2,3)	015	03	.02	.04	
	:	:	:	:	•.

 $P([A, B, C, D] \rightarrow [1, 2, 3, 4]) \propto \exp(-.03 + .015 + .035 + .04 + \cdots)$

- 4 🗇 🕨 🔺 🖹 🕨 🤘

Two Forms of Representation

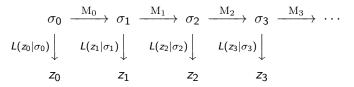
We have two representation forms.

- Fourier: linear parameterization.
- Information: exponential family.

How do the two representation forms fit into the operations required to update the distribution over permutations?

- Accuracy
- Complexity

Markov Model for Identity Management



 σ : true state; z: observations; M: Markov matrix; $L(z|\sigma)$: likelihood function.

- Mixing Model: tracks swapped identities with some probability.
- Observation Model: identity on a particular track is observed.
- Our Problem: Find posterior over associations between identities with tracks conditioned on all past observations.

Mixing Model

• A probability distribution *m* characterizing mixing of tracks induces a Markov process on associations between identities and tracks.

$$h(\sigma) \leftarrow \sum_{\tau} m(\tau) h(\tau^{-1}\sigma)$$

• Suppose *m* is a distribution on permutation group S_n , then the simplest mixing model is

$$m(\tau) = \begin{cases} p & \tau = \mathrm{id} \\ 1 - p & \tau = (i, j) \\ 0 & \mathrm{otherwise} \end{cases}$$

Mixing Model

Example

Suppose A, B, C are located at tracks 1, 2, 3, when a mixing event happen between tracks 1 and 2, then the prior distribution h and mixing distribution m are

$$h(\sigma) = \begin{cases} 1 & \sigma = \mathrm{id} \\ 0 & \mathrm{otherwise} \end{cases} \qquad m(\tau) = \begin{cases} .5 & \tau = \mathrm{id} \\ .5 & \tau = (1,2) \\ 0 & \mathrm{otherwise} \end{cases}$$

then after the mixing, the distribution over permutations becomes

$$h(\sigma) = \begin{cases} .5 & \sigma = \mathrm{id} \\ .5 & \sigma = (1,2) \\ 0 & \mathrm{otherwise} \end{cases}$$

- ∢ ∃ ▶

Mixing Model

Example

Suppose A, B, C are located at tracks 1, 2, 3, when a mixing event happen between tracks 1 and 2, then the first order marginals for h and m are

$$H = \begin{bmatrix} A & B & C \\ 1 & 1 & 0 & 0 \\ 2 & 0 & 1 & 0 \\ 3 & 0 & 0 & 1 \end{bmatrix}, \qquad M = \begin{bmatrix} 1 & 2 & 3 \\ 1 & .5 & .5 & 0 \\ 2 & .5 & .5 & 0 \\ 3 & 0 & 0 & 1 \end{bmatrix}$$

after the mixing, the first order marginal distribution over permutations are the matrix product of M and H.

• However, such a property does NOT hold for the *information form* representation. Generally, updating *information matrices* is NOT nearly as easy.

- 4 同 6 4 日 6 4 日 6

Mixing Model — Fourier and Information Form

Proposition (Convolution theorem)

Let $M^{(t)}$, $H^{(t)}$ be the first order marginal matrices for the mixing distribution $m^{(t)}$ and $h(\sigma^{(t)}|z^{(1)}, \ldots, z^{(t)})$. Then the marginal matrix for $h(\sigma^{(t+1)}|z^{(1)}, \ldots, z^{(t)})$ is:

$$H^{(t+1)} = M^{(t)} \cdot H^{(t)}.$$

Proposition

Let $\Omega^{(t)}$ be the first order information matrix for $h(\sigma^{(t)}|z^{(1)}, \ldots, z^{(t)})$. We need to use a second order information matrix to parameterize $h(\sigma^{(t+1)}|z^{(1)}, \ldots, z^{(t)})$ after a mixing event.

イロト イポト イヨト イヨト 二日

Observation Model

- A typical observation says that "Observing Red on Track 1".
- We look at the color histograms of each identity, suppose identities *A*, *B*, *C* has 70%, 40%, 60% of red color respectively, then

$$L(\sigma) = \begin{cases} .7 & \text{if } \sigma(A) = 1\\ .4 & \text{if } \sigma(B) = 1\\ .6 & \text{if } \sigma(C) = 1 \end{cases}$$

$$h(\sigma) \leftarrow \frac{1}{Z}L(\sigma) \cdot h(\sigma)$$

where the normalizing constant $Z = \sum_{\sigma} L(\sigma)h(\sigma)$.

Observation Model — Fourier and Information Form

Proposition (Kronecker conditioning)

Let $H^{(t+1)}$ be the first order marginal matrix for the distribution $h(\sigma^{(t+1)}|z^{(1)},\ldots,z^{(t)})$, We need to use a second order marginal matrix to parameterize $h(\sigma^{(t+1)}|z^{(1)},\ldots,z^{(t+1)})$ after an observation event.

Proposition (Schumitsch et al.)
If
$$h(\sigma^{(t+1)}|z^{(1)}, ..., z^{(t)}) \propto \exp(Tr(\Omega^T M_{\sigma}))$$
, then we can update
 $\Omega_{jk} \leftarrow \Omega_{jk} + \log \alpha_{jk}$,

for a particular observation on track j.

< 回 > < 三 > < 三 >

Normalization and Maximization

Proposition

Computing the normalization constant of the information form parameterization is #P-complete; while it is a trivial operation in the Fourier domain.

Proposition

Computing the permutation which is assigned the maximum probability under h reduces to the same "maximal matching" problem for both the Fourier and information forms due to the fact that the exponential is a monotonic function.

Comparison of the Two Forms

Inference Operation	Fourier (First Order)		Order) Information Form (First Order)	
	Accuracy	Complexity	Accuracy	Complexity
Prediction/Rollup	Exact	$\mathcal{O}(n)$	Approximate	$\mathcal{O}(n)$
Conditioning	Approximate	$\mathcal{O}(n^3)$	Exact	$\mathcal{O}(n)$
Normalization	Exact	$\mathcal{O}(n^2)$	Approximate	$\mathcal{O}(n^4 \log n)$
Maximization	Exact	$\mathcal{O}(n^3)$	Exact	$\mathcal{O}(n^3)$

Image: A math a math

Both Forms are Low-Dimensional Projections

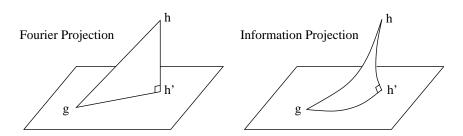
- The Fourier transform is linear and orthogonal. The Fourier approximation is an ℓ_2 projection onto a low-frequency Fourier subspace.
- The information form representation is an information projection onto the same low-frequency Fourier subspace using the KL-divergence metric.

$$\begin{array}{ll} (IP) & \min_{q} & \sum_{\sigma} q(\sigma) \log \frac{q(\sigma)}{h(\sigma)} & (ME) & \min_{q} & \sum_{\sigma} q(\sigma) \log q(\sigma) \\ & \text{s.t.} & \sum_{\sigma}^{\sigma} q(\sigma) M_{\sigma} = Q & & \text{s.t.} & \sum_{\sigma}^{\sigma} q(\sigma) M_{\sigma} = Q \\ & q(\sigma) \ge 0, \forall \sigma & & q(\sigma) \ge 0, \forall \sigma \end{array}$$

Pythagorean Theorem

Proposition

In both the Fourier and information domains, the Pythagorean theorem holds. If g is any function that satisfies the marginal constraints, then D(g||h) = D(g||h') + D(h'||h), where h' is the projection of h in the sense of ℓ_2 or KL-divergence.



Hybrid Approach

- Hybrid approach: switch between two domains.
- Given the information coefficients Ω, we can compute the first order marginals H_{jk}, by conditioning on σ(k) = j, then normalizing.

$$H_{jk} = \sum_{\sigma:\sigma(k)=j} h(\sigma) = \frac{\exp(\Omega_{jk})\operatorname{perm}(\exp(\hat{\Omega}_{jk}))}{\operatorname{perm}(\exp(\Omega))}$$

• Given the first-order marginal probabilities *Q*, we can compute the maximum entropy distribution consistent with the given marginals.

$$\begin{array}{ll} \min_{q} & \sum_{\sigma} q(\sigma) \log q(\sigma) \\ \text{s.t.} & \sum_{\sigma} q(\sigma) M_{\sigma} = Q \\ & q(\sigma) \geq 0 \end{array}$$

Hybrid Approach

• Hybrid approach involve estimation of the matrix permanent.

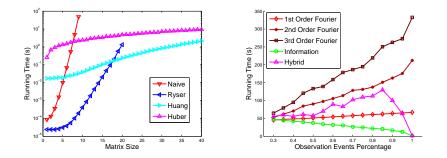
- Naive Algorithm: super-exponential.
- Ryser Algorithm: exponential.
- Huber et. al.: FPRAS.
- ► Huang et. al.: belief propagation algorithm based on graphical models.
- Different rules for switching:
 - Myopic Switching: accuracy takes top priority.
 - Smoothness Based Switching: using Fourier (information) form to represent smooth (peaky) distributions.
 - ► Lagged Block Switching: look ahead k timesteps.
- Adaptively factorize the problem into independent components.

Real Camera Data from Simulation

- Simulated Data.
- Up to 100 moving targets.
- Complex movement patterns.

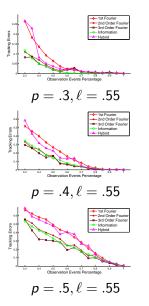
- Mixing event: whenever two persons get close to each other.
- Observation event: whenever a person is separated from all other persons.

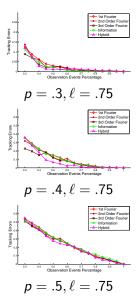
Running Time

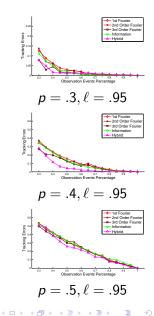


• Running time comparison of different approaches in computing matrix permanent; and the running time comparison of the three approaches.

Accuracy

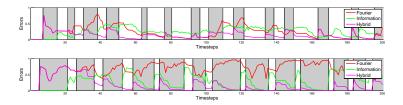






Sep 7, 2011 26 / 30

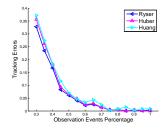
Errors in Distribution

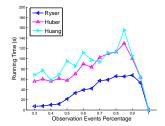


• Compare the errors in distribution of the three approaches. The white intervals denote the rollup steps and the grey intervals denote the conditioning steps.

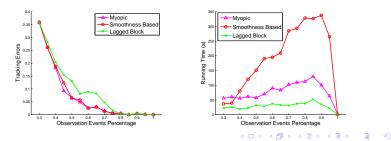
More Experiments

• Different matrix permanent approximation algorithms.



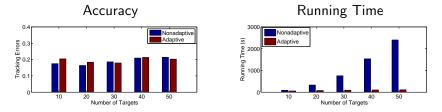


• Different switching rules.



Fourier-Information Duality

Adaptive. vs Nonadaptive



• The tracking accuracy for the adaptive approach is comparable to the nonadaptive approach, while the running time can always be controlled using the adaptive approach.

Conclusions

- Established connections between the Fourier approach and the information approach.
- Proposed a novel hybrid approach.
- Generalized the hybrid approach to high orders.