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Problem in Identity Management [Shin et. al. 2003]
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Reasoning over Permutation Group

Existing approaches model uncertainty in identity management with
distributions over all permutations.

Permutation Group: All bijective mappings from {1, 2, . . . , n} to itself.

There are n! permutations.

n = 5 120

n = 10 3, 628, 800

n = 20 2.432× 1018

Two dueling representations: Fourier approach and Information
approach.
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Contributions

Identity a duality relationship between Fourier approach and
Information approach.

Explore the problem of converting between two representations.

Propose a hybrid approach.

X. Jiang et al. (ECML PKDD 2011) Fourier-Information Duality Sep 7, 2011 5 / 30



Fourier Approach

Fourier approach works by collapsing a distribution over permutations to
low order marginals [Kondor et. al. 2007, Huang et. al. 2007].

Example

We can summarize a distribution using a matrix of first order
marginals.

Requires storing only O(n2) numbers.

[A,B,C] P(σ)

[1, 2, 3] 1/6

[1, 3, 2] 1/12

[2, 1, 3] 1/12

[2, 3, 1] 1/4

[3, 1, 2] 1/6

[3, 2, 1] 1/4

A B C

1 1/4 1/4 1/2

2 1/3 5/12 1/4

3 5/12 1/3 1/4
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Fourier Approach — High Order Generalizations

First order marginals can not capture high order dependencies.

We can summarize a distribution using a matrix of second order
marginals.

Requires storing only O(n4) numbers.

Example

[A,B,C,D] P(σ)

[1, 2, 3, 4] .01

[1, 2, 4, 3] .02

[1, 3, 2, 4] .01

[1, 3, 4, 2] .015

[1, 4, 2, 3] .005

[1, 4, 3, 2] .005
...

...

(A,B) (A,C) (A,D) (B,C) · · ·

(1,2) .03 .025 .01 .03 · · ·

(1,3) .02 .015 .03 .07 · · ·

(1,4) .045 .01 .035 .02 · · ·

(2,3) .015 .03 .02 .04 · · ·
...

...
...

...
...

. . .
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Information Approach

Parametrize a distribution over permutations using an exponential
family [Schumitsch et. al. 2005].

First order information coefficients requires storing O(n2) numbers.

Example

A B C

1 -.1 .3 -.2

2 .3 .2 .5

3 .1 .1 .4

P([A,B ,C ]→ [1, 3, 2]) ∝ exp(-.1 + .1 + .5)
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Information Approach — High Order Generalizations

We can parametrize a distribution using a second order information
matrix.

Requires storing only O(n4) numbers.

Example

(A,B) (A,C) (A,D) (B,C) · · ·

(1,2) -.03 .025 -.01 .03 · · ·

(1,3) .02 .015 .03 .07 · · ·

(1,4) .045 -.01 .035 -.02 · · ·

(2,3) -.015 -.03 .02 .04 · · ·
...

...
...

...
...

. . .

P([A,B ,C ,D]→ [1, 2, 3, 4]) ∝ exp(-.03 + .015 + .035 + .04 + · · · )
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Two Forms of Representation

We have two representation forms.

Fourier: linear parameterization.

Information: exponential family.

How do the two representation forms fit into the operations required to
update the distribution over permutations?

Accuracy

Complexity
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Markov Model for Identity Management

σ0
M0−−−−→ σ1

M1−−−−→ σ2
M2−−−−→ σ3

M3−−−−→ · · ·

L(z0|σ0)





y

L(z1|σ1)





y

L(z2|σ2)





y

L(z3|σ3)





y

z0 z1 z2 z3

σ: true state; z: observations; M: Markov matrix; L(z|σ): likelihood function.

Mixing Model: tracks swapped identities with some probability.

Observation Model: identity on a particular track is observed.

Our Problem: Find posterior over associations between identities with
tracks conditioned on all past observations.
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Mixing Model

A probability distribution m characterizing mixing of tracks induces a
Markov process on associations between identities and tracks.

h(σ)←
∑

τ

m(τ)h(τ−1σ)

Suppose m is a distribution on permutation group Sn, then the
simplest mixing model is

m(τ) =







p τ = id
1− p τ = (i , j)
0 otherwise
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Mixing Model

Example

Suppose A, B , C are located at tracks 1, 2, 3, when a mixing event
happen between tracks 1 and 2, then the prior distribution h and mixing
distribution m are

h(σ) =

{

1 σ = id
0 otherwise

m(τ) =







.5 τ = id

.5 τ = (1, 2)
0 otherwise

then after the mixing, the distribution over permutations becomes

h(σ) =







.5 σ = id

.5 σ = (1, 2)
0 otherwise
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Mixing Model

Example

Suppose A, B , C are located at tracks 1, 2, 3, when a mixing event happen
between tracks 1 and 2, then the first order marginals for h and m are

H =









A B C

1 1 0 0
2 0 1 0
3 0 0 1









, M =









1 2 3

1 .5 .5 0
2 .5 .5 0
3 0 0 1









after the mixing, the first order marginal distribution over permutations are
the matrix product of M and H.

However, such a property does NOT hold for the information form

representation. Generally, updating information matrices is NOT
nearly as easy.
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Mixing Model — Fourier and Information Form

Proposition (Convolution theorem)

Let M(t), H(t) be the first order marginal matrices for the mixing

distribution m(t) and h(σ(t)|z(1), . . . , z(t)). Then the marginal matrix for

h(σ(t+1)|z(1), . . . , z(t)) is:

H(t+1) = M(t) · H(t).

Proposition

Let Ω(t) be the first order information matrix for h(σ(t)|z(1), . . . , z(t)). We

need to use a second order information matrix to parameterize

h(σ(t+1)|z(1), . . . , z(t)) after a mixing event.
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Observation Model

A typical observation says that “Observing Red on Track 1”.

We look at the color histograms of each identity, suppose identities A,
B , C has 70%, 40%, 60% of red color respectively, then

L(σ) =







.7 if σ(A) = 1

.4 if σ(B) = 1

.6 if σ(C ) = 1

h(σ)←
1

Z
L(σ) · h(σ)

where the normalizing constant Z =
∑

σ
L(σ)h(σ).
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Observation Model — Fourier and Information Form

Proposition (Kronecker conditioning)

Let H(t+1) be the first order marginal matrix for the distribution

h(σ(t+1)|z(1), . . . , z(t)), We need to use a second order marginal matrix to

parameterize h(σ(t+1)|z(1), . . . , z(t+1)) after an observation event.

Proposition (Schumitsch et al.)

If h(σ(t+1)|z(1), . . . , z(t)) ∝ exp
(

Tr(ΩTMσ)
)

, then we can update

Ωjk ← Ωjk + logαjk ,

for a particular observation on track j.
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Normalization and Maximization

Proposition

Computing the normalization constant of the information form

parameterization is #P-complete; while it is a trivial operation in the

Fourier domain.

Proposition

Computing the permutation which is assigned the maximum probability

under h reduces to the same “maximal matching” problem for both the

Fourier and information forms due to the fact that the exponential is a

monotonic function.
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Comparison of the Two Forms

Inference Operation Fourier (First Order) Information Form (First Order)
Accuracy Complexity Accuracy Complexity

Prediction/Rollup Exact O(n) Approximate O(n)
Conditioning Approximate O(n3) Exact O(n)
Normalization Exact O(n2) Approximate O(n4 log n)
Maximization Exact O(n3) Exact O(n3)
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Both Forms are Low-Dimensional Projections

The Fourier transform is linear and orthogonal. The Fourier
approximation is an ℓ2 projection onto a low-frequency Fourier
subspace.

The information form representation is an information projection onto
the same low-frequency Fourier subspace using the KL-divergence
metric.

(IP) minq
∑

σ

q(σ) log
q(σ)

h(σ)
(ME) minq

∑

σ

q(σ) log q(σ)

s.t.
∑

σ

q(σ)Mσ = Q s.t.
∑

σ

q(σ)Mσ = Q

q(σ) ≥ 0, ∀σ q(σ) ≥ 0, ∀σ
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Pythagorean Theorem

Proposition

In both the Fourier and information domains, the Pythagorean theorem

holds. If g is any function that satisfies the marginal constraints, then

D(g ||h) = D(g ||h′) + D(h′||h), where h′ is the projection of h in the sense

of ℓ2 or KL-divergence.

Fourier Projection
h

g

h’

Information Projection

g

h’

h
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Hybrid Approach

Hybrid approach: switch between two domains.

Given the information coefficients Ω, we can compute the first order
marginals Hjk , by conditioning on σ(k) = j , then normalizing.

Hjk =
∑

σ:σ(k)=j

h(σ) =
exp(Ωjk)perm(exp(Ω̂jk))

perm(exp(Ω))
.

Given the first-order marginal probabilities Q, we can compute the
maximum entropy distribution consistent with the given marginals.

min
q

∑

σ

q(σ) log q(σ)

s.t.
∑

σ

q(σ)Mσ = Q

q(σ) ≥ 0
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Hybrid Approach

Hybrid approach involve estimation of the matrix permanent.
◮ Naive Algorithm: super-exponential.
◮ Ryser Algorithm: exponential.
◮ Huber et. al.: FPRAS.
◮ Huang et. al.: belief propagation algorithm based on graphical models.

Different rules for switching:
◮ Myopic Switching: accuracy takes top priority.
◮ Smoothness Based Switching: using Fourier (information) form to

represent smooth (peaky) distributions.
◮ Lagged Block Switching: look ahead k timesteps.

Adaptively factorize the problem into independent components.
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Real Camera Data from Simulation

Simulated Data.

Up to 100 moving targets.

Complex movement patterns.

Mixing event: whenever two persons get close to each other.

Observation event: whenever a person is separated from all other
persons.
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Running Time
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Running time comparison of different approaches in computing matrix
permanent; and the running time comparison of the three approaches.
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Accuracy
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p = .3, ℓ = .55 p = .3, ℓ = .75 p = .3, ℓ = .95
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Errors in Distribution
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Compare the errors in distribution of the three approaches. The white
intervals denote the rollup steps and the grey intervals denote the
conditioning steps.
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More Experiments

Different matrix permanent approximation algorithms.
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Different switching rules.
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Adaptive. vs Nonadaptive

Accuracy Running Time
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The tracking accuracy for the adaptive approach is comparable to the
nonadaptive approach, while the running time can always be
controlled using the adaptive approach.
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Conclusions

Established connections between the Fourier approach and the
information approach.

Proposed a novel hybrid approach.

Generalized the hybrid approach to high orders.
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