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Multi view learning for image classification
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Multi view learning for image classification
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Multi view learning : Fusion based methods s
multiview
classification with

cooperation

> EarIy fusion : Sokol Kogo, Cécile
fusion Capponi
view » X = {Xl, ...,X,,} the
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Motivation
Drawbacks of the fusion based methods
» The learnt classifiers do not communicate their failures
to each other

» The views must be independent in order for combined
classifiers to be most accurate

» The fusion based methods are not effective with weak
views

Possible improvement : cooperation among the views

> A classifier learnt on a view gives up on the most
difficult examples and entrusts them to the other views

» This should affect only a limited number of examples

» Each example is processed by the most appropriate
views
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Weak views

Definition(view)
A view is a representation of an example consisting of a set
of features

Definition (weak view)

Let V be a view and oy the lower bound of the error of hx,
then V if called a strong view if oy is near 0 and V is called
a weak view if vy = p — oy is near 0
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Multiclass boosting

Two different approaches :
» divide the multiclass problem in several 1 vs 1 problems

» divide the multiclass problem in several 1 vs all problems
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Multiclass boosting

Two different approaches :
» divide the multiclass problem in several 1 vs 1 problems
» divide the multiclass problem in several 1 vs all problems

» Inconvenient : there is no formal definition of weak
learning condition
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Multiclass boosting

Two different approaches :
» divide the multiclass problem in several 1 vs 1 problems

» divide the multiclass problem in several 1 vs all problems
» Inconvenient : there is no formal definition of weak
learning condition

Multi class boosting (Mukherjee et al [NIPS 2010])

» Replace the weight of an example with the cost of
classification of the example

> Defines the weak learning condition :

c-1,<C-B
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The core of MuMBo

» Several views of different strengths defined on the data

» At each iteration, m + 1 cost matrices are maintained,
one per view and a global one

» Each classifier communicates its failures to the others

» For each view, the cost matrix is updated using the

results of the learnt classifier and the failures of the
others

Dt+1,l

Dt,N
S
h2
/ ¢
D3

hl

t

Dt+1,2

A boosting
approach to
multiview
classification with
cooperation

Sokol Kogo, Cécile
Capponi

Outline

Introduction

Mumbo

Main ideas

Results




Schema of the algorithm arprosch &

multiview
fori=1to T do classification with
Train WL using Ct1,...,Ct.m Skl Koro, Cécie
forj - 1 tom do Capponi
- 146,
Get h; jwith edge d;j on C;j, and a;j = %In 175:; i
end fOI’ Introduction
Update cost matrices (for each view)
C h oose Mumbo
hy = argmax(edge h;j on C; ) The Algorithm
he ;
d; = {edge of h; on C; g}
Compute a; = 1 In }Jrgt
Update C; g, the global cost matrix
end for
Output final hypothesis :
H(x) = argmaxfr(x, /), where fr(i Zl[h = o,

1€1,... .k




Schema of the algorithm : matrix update formula

The matrices are updated using the following formula :

exp(fe (i, 1) — fei(i, yi)) if | £y
C.i(i,1) = k : . .
o — > exp(fe(i,p) — fejliny) i I=yi
p=L;p#yi

For j € {1,...,m}, f;j is defined as follows :
> 1) = 32l (1) = Nl (7) and
z=1

. 1 if h,j(i)=yior e{l,...m}, h, q(i) =yi
> dz,j(l):{ 0 elseJ() y Aq e } a(i) =y

For the global cost matrix (j=G), f; is defined as follows :

t
> ft,G("7 =73 1[hz,m(i) = /]O‘z,m
z=1
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A bound per view

Bounding the empirical error in view m

» Let C; ,, be the cost matrix of the view m and h; , be
the returned classifier for the view m and time t
» Assuming h; n satisfies the edge condition, then
choosing a weight o, > 0 for h: ,, makes the error
€t,m at most a factor
Tem = 1— 3 (exp(ae,m) — exp(—ae,m))de,m
+35 (exp(ae,m) + exp(—at,m) — 2)
of the loss before choosing ot .
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Proof of the bound e
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> Using the edge condition C¢ m - lht,mh < C¢,m - Us, m and the update

) Capponi
formulas, we obtain :
S Lim@ = % ep(Cotimlis hem(a)) = Sem X Leo1,m(i) —
€5y ies“Us_, ics
where, Le,m(i) = 322 exp(fe,m(is 1) — fe,m(i, yi)) Introduction
12y;

» In order to obtain the loss, we compute :
At = (1 —exp(—at,m)) 2 Le—1,m(i)
i€s,

A_ = (exp(ae,m) — 1) 3 exp(Ce—1,mlis he,m(x7))) and A_ =

ieS_ Empirical error bound

> Thedropinloss A=Ay —A_ —A_4 atround tis:

> (%;XPHW) ( S lhoim)— Y en(Cetmlis ht,m(i)))>
€Sy i€S_US_
- (tetmiropann) o) < S Lin@ 4 Y ep(C s ht,mu»))
€S, ies “Us_.
> (exp(ar,m)—;xp(—at,m)) SemS Lo 1m(i) — (exp(az,m)+ex2p(—az,m)—2) SLeymli
I 1
> <exp<at,m>—;xp<—az,m)6 3 exp(at,m)+ex2p(—at,m)—z> St )




Generalization error bound

Generalization error bound for multi-class problems
[Schapire et al ]

Let D be a distribution, S a sample of n examples, d the
VC-dimension of H and é > 0. Then with probability 1 — §, for all
0>0:

P in(f <0 <P in(f < 0]+0 ! dlogz(nk/d) log(1/46 v
Dlmargin(f,x, ) < 0 < Psmargin(f, x,y) < 01+0 | —= o+ =550 + rog(1/9)

To prove that the generalization error of Mumbo decreases with
the number of iterations, it suffices to show that
Ps[margin(f, x,y) < 0] decreases.

Lemma

T —
Ps[margin(f, x,y) < 0] < £55 (H(l +0)% (1 - 5t)¥)
t=1
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A boosting

PrOOf Of the bound approach to
multiview
Let /= argmaxf(x,y’) . The margin of an example is defined  |Eiuiuht
y'#y
. ;ht(x,y)at ;ht(x,l)at Sokol Kogo, Cécile
as . margm(ﬂx,y) = f(X7y) — f(x, /) = ;at — ;at Capponi
Hence, Suidfine

Introduction

> margin(f,x,y) <0< 0> a;— (th(x,y)at — > he(x, /)at> >0
> P[margin(f,xi,y) < 0] :tl & t t Mumbo

— (;atht(x,-,y) — ;atht(x,-, /)) + Ozt;at >0
> Ps[margin(f,x,y) < 0] < ot

li exp(* (Zatht(xi, }/) - Zatht(Xi, /)) ) eXp(@;at) Results
<1 Z > exp(fr(xi,y') — fr(xi, y)) exp(ezat)

=1y’ #y
= Lexp(0) ar)er
t
Using the bound on the empirical error, we obtain :

> Ps[margin(f,x,y)] < ¥ (1‘[( +0) 1 -6) )

t
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oo [GoE] ]
T A A
view3 ‘ - O Mumbo

1S[ =80, nm 05 | 038 ] 025 012 0
Early+SVM 0.390 | 0.410 | 0.437 | 0.396 | 0.389
SVM+Late 0.246 | 0.229 | 0.263 | 0.254 | 0.232
Early+Adaboost | 0.415 | 0.420 | 0.403 | 0.364 | 0.358
Mumbo 0.148 | 0.152 | 0.168 | 0.174 | 0.164
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Conclusion

> \We present a boosting-like algorithm for the multi view setting,
which promotes the collaboration between views
> The views are of different strengths

» The cost update formulas allow the views to focus on examples
that are hard to classify for the others

» The bounds on the generalization error and the empirical error are
proved

> The results on synthetic data confirm the theoretical properties

Perspectives

> Include the performances of the classifiers in the update formulas
> Find tighter bounds for the empirical and the generalization errors

> Test this algorithm on speech recognition data

A boosting
approach to
multiview
classification with
cooperation

Sokol Kogo, Cécile
Capponi

Outline

Introd

Mumbo

Results

Conclusion et
Perspectives




A boosting
approach to
multiview
classification with
cooperation

Sokol Kogo, Cécile
Capponi

Outline

Introduction
Multi earning
osting

Mumbo

Main ideas

T Igorithm
Empirical error bound

Generalization error
ound

Conclusion et
Perspectives

This work is supported by the French agency ANR, Project DECODA, contract no 2009-CORD-005-01,
and the French business clusters Cap Digital and SCS. For more information about the DECODA

project, please visit the project home-page, http://decoda.univ-avignon.fr.



http://decoda.univ-avignon.fr

	Introduction
	Multi view learning
	Boosting

	Mumbo
	Main ideas
	The Algorithm
	Empirical error bound
	Generalization error bound

	Results
	Synthetic data

	Conclusion et Perspectives

