Toward a Fair Review-Management System

Theodoros Lappas & Evimaria Terzi

Item Reviews

- Abundant in Review-hosting sites (E.g. Amazon, Yelp)
- Opinions on items and their attributes
- Valuable source of information
- Great Impact on purchase decisions

Review Management

- Challenges for review hosting sites
 - Quality (structural, informational)
 - Volume & Redundancy
 - Presentation & Ranking
- Handled by the Review Management System

de de de de de

30,879 Reviews						
5 star:		(22,229)				
4 star:		(5,263)				
3 star:		(1,450)				
2 star:		(748)				
<u> 1 star</u> :		(1,189)				

м

E-Commerce & Reviews

- Key players: customers, businesses
- Businesses are satisfied through sales
- Customers are satisfied by
 - quality products
 - □ Well-presented, high-quality information on the products → Reviews!!
- A third player to satisfy: the Reviewers.

м

Keeping Reviewers Motivated

- What can the RMS offer?
- Motivation for reviewers to submit content:
 - Genuine desire to help others
 - Frustration or excitement due to the reviewed item
 - The desire to influence others and gain acknowledgment via positive ratings (e.g. helpfulness votes)
 - The need to express one's self.
- Common factor: Visibility

Current Status

Most Helpful First | Newest First

- Reviews ranked by date
 - No consideration of review quality
 - No Visibility guaranteed
- Reviews ranked by user ratings
 - Favors older reviews, reviews with many ratings
 - No Visibility guaranteed

Our Idea

- Formalize a compact spotlight set of high quality reviews that capture all item attributes.
- Periodically shuffle the reviews in the spotlight set to distribute visibility
- Inclusion in the spotlight set should be proportional to the reviews quality & contribution

Goals of our fair RMS

- > Attribute coverage
- > Review Quality
- > Fair spotlight share

> Compactness

м

Attribute Coverage

- Each review can be represented by the vector of attributes it discusses
 - (screen, battery-life, price)
- Each attribute should be discussed in at least one of the reviews in the spotlight set.
- A generalization could ask for at least k reviews per attribute.
- Alternative formulation: ask for coverage of opinionated attributes.

×

Review Quality

- Various available measures
 - Structural Readability (e.g. Flesch Reading Ease [9])
 - > Helpfulness [14, 20]
 - Spam Analysis [8]
- We use Threshold-based pruning
 - Simple, compatible with any measure or combination of measures

r.

Fair spotlight share

- Let \mathcal{C} be the complete universe of all possible spotlight sets (set covers)
- Some reviews participate in more covers than others
- On a high level: reviews that cover many attributes and reviews that cover rare attributes participate in more covers
- Formalize review contribution based on the number of covers it participates in.

М.

Fair spotlight share

- Let p(r) be the number of covers that a review r participates in.
- If we can sample uniformly from \mathcal{C} , the number of sampled spotlight sets with review \mathbf{r} will eventually converge to $\mathbf{p}(\mathbf{r})$.
- ullet Problem: ${\cal C}$ is not available, includes an exponential number of covers
- lacktriangle Can we still sample from \mathcal{C} ?

M

Importance Sampling

- Input: the collection \mathcal{M} of all *minimal* covers
- Let C_i include all the supersets of a minimal cover M_i
- 3 conditions:
 - \square We can compute $|C_i|$ in polynomial time.
 - Simple: $|\mathcal{C}_i| = 2^{n-|Mi|}$.
 - \square We can sample uniformly at random from \mathcal{C}_i .
 - append to M_i each review in R\M_i with probability 1/2
 - \square Given any subset of reviews $R' \subseteq R$, we can verify in polynomial time if $R' \in C_i$.
 - simply check if R' is a superset of M_i.

The Algorithm

Algorithm 1 The ImportanceSampling algorithm.

Input: Set of minimal covers \mathcal{M} , number of desired samples N.

Output: Spotlight sequence S of length N.

- 0: Define a fixed order for the covers in \mathcal{M} .
- 1: $\mathcal{S} \leftarrow \emptyset$
- 2: while |S| < N do
- 3: pick M_i from \mathcal{M} with probability $\frac{2^{n-|M_i|}}{\sum_{M \in \mathcal{M}} 2^{n-|M|}}$
- 4: Generate a superset $S \in C_i$ of M_i by appending each review $r \in R \setminus M_i$ with probability 1/2.
- 5: Go over the covers in \mathcal{M} in order, let M_{i}^{*} be the first cover that is a subset of S
- 6: if $i^* = i$ then $S = S \cup \{S\}$
- 7: return S

×

Algorithm Discussion

Instead of sampling from the space of all possible review subsets, our algorithm samples from the subspace of subsets that are also solutions (covers).

■ Computing \mathcal{M} can be a non-trivial task. Our experiments show that a subset of is sufficient.

Compactness

- Standard Importance sampling can return covers of arbitrary size.
- The Limited attention span of users motivates compact covers.
- We propose a modified version of the algorithm that allows us to tune the size of the sampled covers.

Evaluation

Datasets

- Four review datasets provided by Lappas and Gunopulos [11].
- GPS and TVS datasets include the complete review corpora from Amazon.com for 20 GPS systems and 20 TV sets, respectively.
- The VEG and SFR datasets include the complete review corpora from Yelp.com for 20 Las Vegas Hotels and 20 San Francisco restaurants, respectively.
- We use the method by Hu and Liu [7] for attribute extraction.
- We do an additional pass to prune out trivial attributes and address synonymy issues (e.g. bathroom=restroom=toilet).

Qualitative evidence - Spotlight Sets

Item 1 (TVS), Attributes: { picture, price, warranty, sound, design, menu}:

- "...Of all the LCD Tvs the *** overall seemed to have a brighter <u>picture</u>, has 120Hz, 2 year warranty, reasonably priced and..."
- "...The *** delivers outstanding picture quality and <u>sound</u>..."
- "...Intuitive <u>menu</u>, easy to plug and play with most any hook up and source... The design of the TV is stunning, beautiful work all around..."

Item 2 (SFR), Attributes: {food, price, staff (service), restrooms (bathrooms) }

- "... The \underline{food} is delicious, \underline{prices} are fair, venue is nice, \underline{staff} is friendly, $\underline{restrooms}$ are $\underline{clean...}$ "
- "...BAD <u>SERVICE</u>, WORSE ATTITUDES, AND EXTREMELY HIGH <u>PRICES</u> ..."
- "...The food was substandard, unfortunately..."
- "...the only drawback were the <u>bathrooms</u>..."

Spotlight Shuffling

3 baselines:

- RandomSampling: pick reviews uniformly at random, until all the attributes are covered.
- <u>GreedySampling:</u> Greedily append the reviews that covers the most attributes until all are covered.
- HelpSampling: append a review with probability of proportional to the number of its helpfulness votes, until all attributes are covered

Experimental Setup

- Focus on the item with the most reviews from each dataset
- Use each approach to sample 1000 spotlight sets for each item.
- Compactness: allow for a maximum of 10 reviews per spotlight set.
 - If an approach reaches the bound without covering all the attributes, the cover is marked as "incomplete".

r

Results

Table 1. Evaluation on the spotlight-set shuffling task

	0	[1-20)	[20-40)	[40-60)	[60-80)	80 ≤	Inc. %	
TVS								
ImportanceSampling	0.0	0.67	0.17	0.06	0.05	0.05	8%	
GreedySampling	0.78	0.14	0.03	0.03	0.0	0.02	0%	
RandomSampling	0.0	0.0	0.32	0.68	0.0	0.0	90%	
HelpSampling	0.41	0.19	0.18	0.09	0.02	0.1	48%	

- Columns 2-6 contain the percentage of reviews that appeared in the respective number of sampled spotlight sets.
- Column 7 contains the percentage of Incomplete covers
- GreedySampling limits visibility to a very small portion of reviews
- RandomSampling fails to produce complete covers
- HelpSampling has a 50% "incomplete" percentage and also fails to distribute visibility
- ImportanceSampling does well on both accounts

Minimal Covers

- ImportanceSampling requires as seed the collection of all minimal covers
- We experiment with using a subset thereof

- Start with full R, randomly remove reviews until reaching a minimal cover
- Show size of Seed Vs.
 AP correlation Coefficient

٠.

Conclusion

- A Fair Review Management System
 - Presents thorough & compact sets of highquality reviews to the customers
 - Keeps reviewers motivated by fairly distributing visibility
- Our framework is flexible and practical for virtually every review-hosting site

Thank You!