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Link Prediction on Networks

A formal ways of representing relations
between entities.

Found in social networks, Collaborative
Filtering, Systems Biology.

A link is a relation between two
entities.

Problem: predicting new links given a
networks.

Information used: nodes’ information
or network structures.
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Assumption of Link Prediction
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Fundamental assumption:
independence and identical
distribution of links.

BUT...

networks have structures
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Network Structures

Networks proved to have structures: scale-free, similarity, bipartite,
clique, motif ...

Similarity networks.
Social networks, metabolic
networks...

Bipartite networks.
Collaborative Filtering,
protein-ligand bindings...

Latent feature model
based networks.

Social networks, PPI, GR
networks...
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Objective

To model network structures with latent features

To derive latent feature models for non-similarity networks.

To approximate the model using kernel frameworks.

To learn the model optimally and efficiently.

and apply to the link prediction problem in biological networks.

(a) Input (b) Learning (c) Output
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Biological Motivation

Protein protein interactions are based on domain domain
interactions.

Protein docking is based on shape complementarity.

These features (domain, shape) determine PPI ability.
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Latent Feature Models of Links

A node in the graph contains some
(latent) features (F ).

Some pairs of features interact (W).

The nodes contain that pairs link to each
other.

A = F ×W × FT
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Inferring the Models

given the adjacency matrix A.

Not globally optimal.

Using Indian Buffet Processes (IBP)

... and Gibbs sampling.

Sampling F from some distribution.

Inferring W and repeat the process again.

Very time consuming.

Scalable to small graphs (< 500 nodes).
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Latent Feature Models in Kernels

Kernels to encode similarity

High similarity on the same
class.

Low similarity otherwise.

),( 21 PP

),( 42 PP

),( 23 PP

),( 53 PP

),( 51 PP

Link Similarity with latent features.

Links are similar if nodes are
similar.

Nodes are similar if they share
many latent features.

Ideal Kernels

for any diagonal, nonnegative
D ∈ Rd×d ,

K ∗(D) = F × D × FT

Any node kernels should be close to Ideal Kernels
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Node Kernels

Idea: nodes with more common latent
features are more similar.

Observation: nodes with more common
latent features have similar connectivity
patterns.

We use connectivity pattern to define node
similarity.

Kn = norm(A2) (diagonally normalized).

In sparse networks, this kernel Kn

approximates ideal kernels.

PPI networks are sparse (> 80% nodes in
yeast, all in fruit-fly are of degree ≤ 10).
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Kernels on Links

Given node similarity are encoded in node kernel Kn.

We use pairwise kernels to encode link similarity.

If corresponding nodes are similar, links are similar.

K ({a, b}, {c , d}) = Kn(a, c) ∗ Kn(b, d) + Kn(a, d) ∗ Kn(b, c)

Feature-wise: if ai , bj are feature of a and b
aibj + ajbi is a feature of {a, b}
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Demonstration
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Properties (Kn similar to ideal kernels)

Positivity: (Kn)ij for a pair of nodes (i , j) is positive if they
share a common feature.
if there is a shared feature according to the generative model,
Kn should recognize it

Monotonicity: the more a pair of nodes share features, the
higher the kernel value is.
Kn respects the monotonicity as an ideal kernels: more
features, higher kernel values
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Properties (Kn similar to ideal kernels) cont.

Recall that Kn = FDFT = F (WEW T )FT , (E = FTF), ideal
kernels K ∗(D̂) = FD̂FT .

Ideal Condition: Kn is an ideal kernel iff WFT has all row
vectors uncorrelated.

On Sparse Networks: If the model is sparse in the sense that

(
∑

i 6=j |WilWjkElk |p)
1
p ≤ δ then Kn is close to an ideal kernels

in the sense that
‖ D − D̂ ‖p≤ δ
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Experiments and Data

Input: adjacency matrix A.

90/10 train/test splits.

Learn SVMs on the
kernels.

Show: running times,
assumption comparison,
prediction AUCs on PPI
networks.

Compare to using nodes’
attributes: sequence
kernels.

PPI networks of yeast and fruit fly:
the largest networks available.

Extracted from DIP databases
(hand-curated, only direct
interactions).

We used only the connected part of
the networks.

We filtered out the nodes with
degrees less than m.

For m = 1, network sizes: 4762
proteins in yeast and 6644 proteins
in fruit fly.
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On the Latent Feature Model Assumpsion

Reasonability of the latent feature assumption as opposed to the
similarity assumption: nearest neighbor classifier.

0.68

0.72

0.76

0.8

0.84

0.88

0 1 2 3 4 5 6 7 8 9 10 11

AUC

Minimum degree of nodes

LK-NN

SimNN

Latent feature assumption is more suitable than than similarity.
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Execution Time of Our Method vs. IBP

Our method scales to this size of data as opposed to explicit
feature generation methods.
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Log−likelihood convergence in time

Our method on all subnetworks IBP on the smallest one.

Our method takes minutes on this sizes of data. IBP only scales to
the smallest ones in many hours.
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Link Prediction Performance on yeast PPI networks

0.83

0.85

0.87

0.89

0.91

0 1 2 3 4 5 6 7 8 9 10 11

AUC

Minimum degree of nodes

Linear

Gaussian

IBP

Our method gives very high performance compared to IBP.

The results are significantly higher than random, meaning that
networks have significant structures.

Using sequence (spectrum kernels) to predict links in these
networks: 0.71± 0.008.

22/24



Background
Latent Feature Models

Link Kernels
Experiments
Conclusion

Latent Feature Assumption
Time Complexity
Link Prediction Results

Link Prediction Performance on fruit fly PPI networks
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Our method gives higher result than IBP.

The networks have significant structures.

Using sequence (spectrum kernels) to predict links in these
networks: 0.65± 0.016.
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Conclusion

We argued to use network structures to predict links.

We proposed a latent feature model to describe the network
structures.

We used kernels to encode the model implicitly and to train it
efficiently and optimally.

Our method scaled to real data of PPI networks, unlike IBP.

Our method gave a high performance of predicting PPI.

Our method is efficient and effective for latent feature models of
networks
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