A Shapley value Approach for Influence Attribution

Panagiotis Papapetrou Aalto University, Finland

<u>Joint work with:</u> Aris Gionis, Yahoo! Research, Spain Heikki Mannila, Aalto University, Finland

Influential individuals

- People always intrigued by characterizing influential ideas, books, scientists, politicians, etc.
- Main question: who or what is influential?
- Examples
 - Who initiates the most influential "tweets"?
 - Who are the most influential scientists?
 - Which actors influence a movie rating the most?

Goal

• We address a novel problem in the context of characterizing who is influential.

• Our setting:

- Individuals accomplish tasks in a collaborative manner.
- **Influence attribution:** each individual is assigned a score based on his/her performance.

Outline

- Problem Formulation
- Proposed Solution
- Experimental Evaluation
- Conclusions

- Individual => author.
- Task => publication.
- Impact score =>
 - CC: Citation count of the publication.
 - PR: PageRank score of the publication.

- Two researchers A and B.
- Question: who is more influential?

One common collaborator: Y.

P: number of papers C: number of citations per paper

• Three additional collaborators for A and B.

• Three additional collaborators for A and B.

Researcher	Papers	Citations	H-index
Α	20	70	4
В	20	70	8

• Three additional collaborators for A and B.

H-Index: a scientist's H-index is h, if h of his/her publications have at least h citations and the rest of his/her publications have at most h citations each.

Researcher	Papers	Citations	H-index
Α	20	70	4
В	20	70	8

• Three additional collaborators for A and B.

Res	earcher	Papers	Citations	H-index
	Α	20	70	4
	В	20	70	8

• Three additional collaborators for A and B.

- But is B indeed that influential?
- Or is B just being favored due to the fame of Y?

• Drop Y out of the picture.

The performance of A remains quite high.The performance of B is weakened a lot.

• Drop Y out of the picture.

Res	earcher	Papers	Citations	H-index
	Α	15	50	4
	В	12	6	1

Background

- Existing measures in bibliometrics can be enriched.
- Social network analysis methods focus on finding important individuals based on in-degree or refinements.
- Information diffusion finds individuals who act as *good* initiators.
- Coalitional games: Shapley value.

Problem Definition

- Given
 - a set of individuals $V = \{V_1, \dots, V_n\},\$
 - a set of tasks $T = \{T_1, ..., T_m\},\$
 - a set of impact scores $I = {I_1, ..., I_m}$.
- Goal:
 - Compute the set of influence scores $\phi = {\phi_1, ..., \phi_n}$.
- Φ_i is the influence score of individual V_i .

Outline

- Problem Formulation
- Proposed Solution
- Experimental Evaluation
- Conclusions

Shapley Value

- Consider an underlying set V.
- Assume for all possible subsets S of V we know v(S).
- v(S) : gain function
 - expresses the gain achieved by the cooperation of the individuals in S.
- Shapley value: the share allocation to individual V_i.

$$\phi_i(v) = \sum_{\mathcal{S} \subseteq \mathcal{V}} \frac{|\mathcal{S}|!(|\mathcal{V}| - |\mathcal{S}| - 1)!}{|\mathcal{V}|!} (v(\mathcal{S} \cup \{V_i\}) - v(\mathcal{S})).$$

Shapley Value

- Can be shown theoretically that the resulting attribution satisfies natural fairness properties [Winter 2002].
- However, a direct application of the Shapley value definition in our setting is not possible:
 - it assumes an averaging over exponentially many sets,
 - it is not possible to probe arbitrary sets S and obtain $v(\mathcal{S})$,
 - we may not have available the impact score of papers for every possible subset of authors!

Our Approach

- We compute the marginal gains by averaging only over **coalitions for which we have available impact scores**.
- In order to average in a marginal contribution we need to have available both values v(S ∪ {V_i}) and v(S).
- In many cases we have available only one of the two.
- How shall we deal with such cases?
 - Ignore them? → very sparse data.

Our Approach

• We choose to take into account all cases for which

Our Approach

• We choose to take into account all cases for which

Shared impact factor

- Let *I_j* be the impact factor of each common task *T_j* between a group of individuals *S*.
- Then the shared impact factor is the *average impact* factor among all their common tasks T_S .

$$v(\mathcal{S}) = \frac{1}{|\mathcal{T}_{\mathcal{S}}|} \sum_{j=1}^{|\mathcal{T}_{\mathcal{S}}|} I_j.$$

Approximated Shared impact factor

• What if for some set S we have no complete information about the coalitions?

Approximated Shared impact factor

- What if for some set S we have no complete information about the coalitions?
- Take only the subsets S_i^C of S for which there is such information:

$$v'(\mathcal{S}) = \frac{1}{|\mathcal{S}^c| + 1} \left(\sum_{i=1}^{|\mathcal{S}^c|} v(\mathcal{S}_i^c) + \bar{v}(\mathcal{S} \setminus \mathcal{S}_i^c) \right)$$

Approximated Gain Function

- What about $\overline{v}(\mathcal{S})$?
- Assuming a monotonic behavior, i.e., teams are at least as good as the best individual in the team, we define:

$$\bar{v}(\mathcal{S}) = \max_{V_i \in \mathcal{S}} \phi_i(v).$$

- Goal: compute the influence score ϕ_i of each individual.
- At each iteration *t* the Shapley value is computed using the original definition:

$$\phi_i(v) = \sum_{\mathcal{S} \subseteq \mathcal{V}} \frac{|\mathcal{S}|!(|\mathcal{V}| - |\mathcal{S}| - 1)!}{|\mathcal{V}|!} (v(\mathcal{S} \cup \{V_i\}) - v(\mathcal{S})).$$

- Goal: compute the influence score ϕ_i of each individual.
- At each iteration *t* the Shapley value is computed using the original definition:
- Whenever we need to probe a coalition for which the impact factor is not available, use the approx. shared impact factor:

$$v'(\mathcal{S}) = \frac{1}{|\mathcal{S}^c| + 1} \left(\sum_{i=1}^{|\mathcal{S}^c|} v(\mathcal{S}_i^c) + \bar{v}(\mathcal{S} \setminus \mathcal{S}_i^c) \right)$$

- Goal: compute the influence score ϕ_i of each individual.
- At each iteration *t* the Shapley value is computed using the original definition:
- Whenever we need to probe a coalition for which the impact factor is not available, use the approx. shared impact factor.
- Influence score is updated:

$$\phi_i^{t+1}(v') = \sum_{\mathcal{V}_{T_j} | V_i \in T_j} \frac{|\mathcal{V}_{T_j}|! (|\mathcal{V}| - |\mathcal{V}_{T_j}| - 1)!}{|\mathcal{V}|!} (v'(\mathcal{V}_{T_j}) - v'(\mathcal{V}_{T_j} \setminus V_i)).$$

Outline

- Problem Formulation
- Proposed Solution
- Experimental Evaluation
- Conclusions

Experimental Setup

- Datasets:
 - ISI Web of Science.
 - Internet Movie Database (IMDB).
- ISI Web of Science:
 - Part of the Thomson Reuters ISI Web of Science data.
 - ISI covers mainly journal publications.
 - We sampled data related to our institutions published within years 2003 and 2009.
 - Our dataset contains information about 1212 authors.

Experimental Setup

- Internet Movie DataBase:
 - We sampled a total of 2 000 male actors.
 - We restricted the movie genre type to comedy or action.
 - For each actor we considered only the movies where his credit position was among the top 3.

Experimental Evaluation

- We used two very common bibliometric indicators as the baseline:
 - H-Index, G-index.
- Impact score for a publication:
 - CC: Citation count of the publication.
 - PR: PageRank score of the publication.

Experimental Evaluation

• Each movie is assigned with an impact score defined as follows:

average rating x number of people

- Performance measure:
 - Rank of an individual: number of individuals who are

at least as influential.

Naïve PR vs. Shapley PR

Naïve PR vs. Shapley PR

Experimental Evaluation

• Top-10 actors given by the Shapley method.

Actor Name	Shaple	y Naïve	Actor Name	Naïve	Shapley
Robert De Niro	1	3	Peter Sellers	1	14
Al Pacino	2	8	Jack Nicholson	2	11
Brad Pitt	3	15	Robert De Niro	3	1
Bruce Willis	4	7	Adam Sandler	4	59
Arnold Schwarzenegger	5	24	Daniel Day-Lewis	5	36
Will Smith	6	13	Chris Farley	6	20
Eddie Murphy	7	10	Bruce Willis	7	4
Robin Williams	8	9	Al Pacino	8	2
Morgan Freeman	9	17	Robin Williams	9	8
Ben Stiller	10	29	Eddie Murphy	10	7

Experimental Evaluation

 Examples of actors with high ranking differences between Shapley and Naïve.

Actor Name	Shapley	# of Movies		
			in IMDB	
Jim Carrey	11	79	34	
Sylvester Stallone	12	41	46	
Daniel Day-Lewis	36	5	27	
Adam Sandler	59	4	39	

Outline

- Problem Formulation
- Proposed Solution
- Experimental Evaluation
- Conclusions

Conclusions

- Addressed the problem of influence attribution
- Proposed a method that employs the game theoretic concept of Shapley value.
- Methodology can be applied to real scenarios:
 - Author-publication data.
 - Movie data.
- Experiments on two domains showed that the rankings produced by the proposed method and the naïve approach of equal division of influence differ highly.

Future Work

- Investigation of other domains such as:
 - user-blogs,
 - social media sites.
- How additional information about the individuals can affect/be taken into account.
- Further evaluate the quality of the obtained rankings by performing user studies.

Appendix

Algorithm 1 The Shapley Algorithm

- Input: a set of individuals V, a set of tasks T, and the corresponding set of impact scores I.
- 2: Output: the influence score ϕ_i of each individual $V_i \in \mathcal{V}$
- 3: // Initialization: $\forall T_i, i = 1, ..., m$ assigned to individual V_i :
- 4: for $j = 1 : |\mathcal{V}|$ do

5:
$$\phi_i^0 = \sum_{i=j}^m I_j$$

- 6: end for
- 7: while convergence do
- 8: Initialize $\phi_i^{t+1}(v') = 0$
- 9: for $T_j \in \mathcal{T}$ do
- 10: for $V_i \in \mathcal{V}_{T_i}$ such that V_i is assigned with task T_j do

11:
$$\phi_i^{t+1}(v') = \phi_i^{t+1}(v') + \frac{|\mathcal{V}_{T_j}|!(|\mathcal{V}| - |\mathcal{V}_{T_j}| - 1)!}{|\mathcal{V}|!} (v'(\mathcal{V}_{T_j}) - v'(\mathcal{V}_{T_j} \setminus V_i))$$

- 12: end for
- 13: end for
- 14: end while

Algorithm 1 The Shapley Algorithm

- Input: a set of individuals V, a set of tasks T, and the corresponding set of impact scores I.
- 2: Output: the influence score ϕ_i of each individual $V_i \in \mathcal{V}$
- 3: // Initialization: $\forall T_i, i = 1, ..., m$ assigned to individual V_i :
- 4: for $j = 1 : |\mathcal{V}|$ do

5:
$$\phi_i^0 = \sum_{i=j}^m I_i$$

- 6: end for
- 7: while convergence do
- 8: Initialize $\phi_i^{t+1}(v') = 0$
- 9: for $T_j \in \mathcal{T}$ do
- 10: for $V_i \in \mathcal{V}_{T_i}$ such that V_i is assigned with task T_j do

11:
$$\phi_i^{t+1}(v') = \phi_i^{t+1}(v') + \frac{|\mathcal{V}_{T_j}|!(|\mathcal{V}| - |\mathcal{V}_{T_j}| - 1)!}{|\mathcal{V}|!} (v'(\mathcal{V}_{T_j}) - v'(\mathcal{V}_{T_j} \setminus V_i))$$

- 12: end for
- 13: end for
- 14: end while

Algorithm 1 The Shapley Algorithm

- Input: a set of individuals V, a set of tasks T, and the corresponding set of impact scores I.
- 2: Output: the influence score ϕ_i of each individual $V_i \in \mathcal{V}$

3: // Initialization: $\forall T_i, i = 1, \ldots, m$ assigned to individual V_i :

4: for
$$j = 1 : |\mathcal{V}|$$
 do

5:
$$\phi_i^0 = \sum_{i=j}^m I_j$$

6: end for

- 7: while convergence do
- 8: Initialize $\phi_i^{t+1}(v') = 0$
- 9: for $T_j \in \mathcal{T}$ do
- 10: for $V_i \in \mathcal{V}_{T_i}$ such that V_i is assigned with task T_j do

11:
$$\phi_i^{t+1}(v') = \phi_i^{t+1}(v') + \frac{|\mathcal{V}_{T_j}|!(|\mathcal{V}| - |\mathcal{V}_{T_j}| - 1)!}{|\mathcal{V}|!}(v'(\mathcal{V}_{T_j}) - v'(\mathcal{V}_{T_j} \setminus V_i))$$

12: end for

13: end for

14: end while

Algorithm 1 The Shapley Algorithm

- Input: a set of individuals V, a set of tasks T, and the corresponding set of impact scores I.
- 2: Output: the influence score ϕ_i of each individual $V_i \in \mathcal{V}$
- 3: // Initialization: $\forall T_i, i = 1, ..., m$ assigned to individual V_i :
- 4: for $j = 1 : |\mathcal{V}|$ do

5:
$$\phi_i^0 = \sum_{i=j}^m I_j$$

6: end for

7: while convergence do 8: Initialize $\phi_i^{t+1}(v') = 0$ 9: for $T_j \in \mathcal{T}$ do 10: for $V_i \in \mathcal{V}_{T_j}$ such that V_i is assigned with task T_j do 11: $\phi_i^{t+1}(v') = \phi_i^{t+1}(v') + \frac{|\mathcal{V}_{T_j}|!(|\mathcal{V}| - |\mathcal{V}_{T_j}| - 1)!}{|\mathcal{V}|!}(v'(\mathcal{V}_{T_j}) - v'(\mathcal{V}_{T_j} \setminus V_i))$ 12: end for 13: end for 14: end while

Termination Criterion

 The iterative algorithm terminates when influence scores at two consecutive iterations converge:

$$\frac{\sum_{i=1}^{|\mathcal{V}|} |\phi_i^t - \phi_i^{t-1}|}{\sum_{i=1}^{|\mathcal{V}|} \phi_i^{t-1}} \le \epsilon \in (0, 1).$$

Enforcing Monotonicity

- Gain function should be
 - monotone, i.e., if $S_1 \subseteq S_2$ then $v(S_1) \leq v(S_2)$.
 - non-negative.
- Compute all pay-offs.
- Identify all pairs of pay-offs such that $S_1 \subseteq S_2$ and $v(S_1) > v(S_2)$.
- Set $v(\mathcal{S}_1) = v(\mathcal{S}_2)$.
- Repeat until all violations are eliminated.

Naïve CC vs. Shapley CC

Naive-CC vs. Shapley-CC

Naïve CC vs. Shapley CC

Naive-CC vs. Shapley-CC

