Ancestor Relations in the Presence of Unobserved Variables

Pekka Parviainen and Mikko Koivisto

Helsinki Institute for Information Technology HIIT
Department of Computer Science
University of Helsinki

ECML PKDD 6.9.2011

Outline

- What are ancestor relations and why should anybody care about them?
- How can ancestor relations be learned?
- Are ancestor relations useful in practice?

Bayesian networks

- Representations of joint probability distributions
- Consist of:
 - The structure is a directed acyclic graph (DAG) that represents conditional independencies between variables.
 - The local conditional probability distributions that are specified by parameters.

Bayesian networks

- Compact, flexible and interpretable
- Sometimes arcs are interpreted as cause-effect pairs

Structure Discovery

- Construct a best-fit DAG from observational data.
- Challenges:
 - The set of conditional independencies can be represented by a number of different DAGs (Markov equivalence class).
 - There may be unobserved variables.
 - Computational complexity.

Approaches

- Constraint-based
 - Test conditional independencies between variables.
 - Theoretically sound treatment of unobserved variables.
- Score-based
 - Assign each DAG a score based on how well it fits to data.
 - Flexible, enables incorporating prior information.
 - Hard to handle unobserved variables in a computationally efficient manner.

Structural features

- There may be several almost equally good DAGs (or Markov equivalence classes) and the best-fit DAG may be highly unlikely.
- ► Therefore, instead of learning a best-fit DAG, it may be useful report posterior probabilities of some structural features of interest, e.g., arcs.
- Every DAG has a posterior probability, the posterior probability of a structural feature is the sum over the posterior probabilities of all DAGs that have the feature in question. This is called (full) Bayesian averaging.

Ancestor relations

Node s is an ancestor of node t, denoted by $s \rightsquigarrow t$, if there is a directed path from s to t.

Ancestor relations

- Ancestor relations can unveil causal information.
- Can ancestor relations be learned in a computationally efficient manner?
- Can ancestor relations be learned reliably if there are some unobserved variables at work?
- Does learning ancestor relations yield more information than learning arcs?

Algorithm

- ▶ Compute $p(s \leadsto t|D)$, where *D* is the data.
- (Full) Bayesian averaging
- Our algorithm computes exact posterior probabilities.
- Based on dynamic programming

Assumptions

Modular likelihood score, i.e.,

$$\rho(D|A) = \prod_{v \in N} \rho(D_v|D_{A_v}, A_v),$$

where A is the (arc set of a) DAG and A_v are the parents of v.

Order-modular structure prior, i.e.,

$$p(A) = \sum_{l} p(A, L),$$

where *L* is a linear order and $p(A, L) = \prod_{v \in N} \rho_v(L_v) q_v(A_v)$.

Dynamic programming - outline

- ▶ Goal: compute $p(s \rightsquigarrow t|D)$.
- ▶ For every node set $S \subseteq N$ and $T \subseteq S$, compute $g_s(S,T)$, the contribution of the DAGs on S that have a directed path from S to every $U \in T$ and not to any other node.
- $p(s \leadsto t, D) = \sum_{T:t \in T} g_s(N, T).$

Dynamic programming - outline

▶ How to compute $g_s(S, T)$?

$$g_{s}(S,T) = \sum_{v \in S} g_{s}(S \setminus \{v\}, T \setminus \{v\}) \rho_{v}(S \setminus \{v\}) \bar{\beta}_{v}(S,T),$$

where $\bar{\beta}_{V}(S,T)$ is the sum over all possible parent sets of v given that there is a directed path from s exactly to the nodes in T.

Dynamic programming - outline

Time and space complexity

- ▶ $O(n3^n)$ time and $O(3^n)$ space for any s and t.
- ▶ $O(n^23^n)$ time and $O(3^n)$ space for all pairs s and t.

Learning power

$$n = 10,000$$

Full vs. partial Bayesian averaging

		Predicted Ancestor Relations			
m	ℓ	both	partial	full	none
100	0	13.6	1.1	1.8	165.5
100	4	5.3	0.3	0.5	84.0
500	0	30.5	0.5	1.3	149.7
500	4	12.7	0.5	0.6	76.3
2000	0	39.7	0.2	0.4	141.8
2000	4	18.6	0.2	0.4	70.8
10000	0	40.9	0.1	0.4	140.7
10000	4	21.6	0.1	0.2	68.0

Conclusions

- Bayesian learning of ancestor relations is computationally feasible (when the number of nodes is moderate).
- Ancestor relations can be discovered with reasonable power even in the presence of unobserved variables.
- Partial Bayesian averaging, i.e., deducing the ancestor relations from arc probabilities seems to work almost as well as full Bayesian averaging.

Conclusions

- Bayesian learning of ancestor relations is computationally feasible (when the number of nodes is moderate).
- Ancestor relations can be discovered with reasonable power even in the presence of unobserved variables.
- Partial Bayesian averaging, i.e., deducing the ancestor relations from arc probabilities seems to work almost as well as full Bayesian averaging.

Thank you!