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Outline
I What are ancestor relations and why should anybody

care about them?
I How can ancestor relations be learned?
I Are ancestor relations useful in practice?



Bayesian networks
I Representations of joint probability distributions
I Consist of:

I The structure is a directed acyclic graph (DAG) that
represents conditional independencies between
variables.

I The local conditional probability distributions that are
specified by parameters.



Bayesian networks
I Compact, flexible and interpretable
I Sometimes arcs are interpreted as cause-effect pairs



Structure Discovery
I Construct a best-fit DAG from observational data.
I Challenges:

I The set of conditional independencies can be
represented by a number of different DAGs (Markov
equivalence class).

I There may be unobserved variables.
I Computational complexity.



Approaches
I Constraint-based

I Test conditional independencies between variables.
I Theoretically sound treatment of unobserved

variables.
I Score-based

I Assign each DAG a score based on how well it fits to
data.

I Flexible, enables incorporating prior information.
I Hard to handle unobserved variables in a

computationally efficient manner.



Structural features
I There may be several almost equally good DAGs (or

Markov equivalence classes) and the best-fit DAG
may be highly unlikely.

I Therefore, instead of learning a best-fit DAG, it may
be useful report posterior probabilities of some
structural features of interest, e.g., arcs.

I Every DAG has a posterior probability, the posterior
probability of a structural feature is the sum over the
posterior probabilities of all DAGs that have the
feature in question. This is called (full) Bayesian
averaging.



Ancestor relations
Node s is an ancestor of node t , denoted by s t , if there
is a directed path from s to t .



Ancestor relations
I Ancestor relations can unveil causal information.
I Can ancestor relations be learned in a

computationally efficient manner?
I Can ancestor relations be learned reliably if there are

some unobserved variables at work?
I Does learning ancestor relations yield more

information than learning arcs?



Algorithm
I Compute p(s t |D), where D is the data.
I (Full) Bayesian averaging
I Our algorithm computes exact posterior probabilities.
I Based on dynamic programming



Assumptions
I Modular likelihood score, i.e.,

p(D|A) = ∏
v∈N

p(Dv |DAv ,Av ),

where A is the (arc set of a) DAG and Av are the
parents of v .

I Order-modular structure prior, i.e.,

p(A) = ∑
L

p(A,L),

where L is a linear order and
p(A,L) = ∏v∈N ρv (Lv )qv (Av ).



Dynamic programming - outline
I Goal: compute p(s t |D).
I For every node set S ⊆ N and T ⊆ S, compute

gs(S,T ), the contribution of the DAGs on S that have
a directed path from s to every u ∈ T and not to any
other node.

I p(s t ,D) = ∑T :t∈T gs(N ,T ).



Dynamic programming - outline
I How to compute gs(S,T )?
I

gs(S,T ) = ∑
v∈S

gs(S \{v},T \{v})ρv (S \{v})β̄v (S,T ),

where β̄v (S,T ) is the sum over all possible parent
sets of v given that there is a directed path from s
exactly to the nodes in T .



Dynamic programming - outline



Time and space complexity
I O(n3n) time and O(3n) space for any s and t .
I O(n23n) time and O(3n) space for all pairs s and t .



Learning power

n = 10,000



Full vs. partial Bayesian averaging

Predicted Ancestor Relations
m ` both partial full none

100 0 13.6 1.1 1.8 165.5
100 4 5.3 0.3 0.5 84.0
500 0 30.5 0.5 1.3 149.7
500 4 12.7 0.5 0.6 76.3
2000 0 39.7 0.2 0.4 141.8
2000 4 18.6 0.2 0.4 70.8

10000 0 40.9 0.1 0.4 140.7
10000 4 21.6 0.1 0.2 68.0



Conclusions
I Bayesian learning of ancestor relations is

computationally feasible (when the number of nodes
is moderate).

I Ancestor relations can be discovered with reasonable
power even in the presence of unobserved variables.

I Partial Bayesian averaging, i.e., deducing the
ancestor relations from arc probabilities seems to
work almost as well as full Bayesian averaging.
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