Efficiently Approximating Markov Tree Bagging for High-Dimensional Density Estimation

F. Schnitzler ${ }^{1}$
S. $A m m a r^{2}$
P. Leray ${ }^{2}$
P. Geurts ${ }^{1}$
L. Wehenkel ${ }^{1}$

fschnitzler@ulg.ac.be
${ }^{1}$ University of Liège
${ }^{2}$ University of Nantes

6 September 2011

The goal of this research is to improve probabilistic reasoning in high-dimensional problems.

Great potential in many applications :

- Bioinformatics (21 000 genes, 1000000 proteins)
- Power networks (10 000 transmission nodes in Europe)

Two main problems :

- Few samples
- Algorithmic complexity
\rightarrow Simple models must be used

Mixtures of trees build on the good properties of Markov trees.

A forest is a tree missing edges :

A mixture of trees is an ensemble method :

$$
\mathbb{P}_{\hat{\mathcal{T}}}(X)=\sum_{i=1}^{m} \mu_{i} \mathbb{P}_{T_{i}}(X)
$$

Mixtures of trees build on the good properties of Markov

 trees.- Several models \rightarrow large modeling power
- Simple models \rightarrow low complexity :
- inference is linear,
- learning : most algorithms are quadratic.

There are two types of mixtures :

- Maximum likelihood
- Variance reduction

Bagging is a good variance reduction method.

- average over m max-likelihood trees learnt from m bootstrap replicates
\rightarrow typically exhibits a lower variance
\rightarrow reduction in overfitting
- A bootstrap replicate \mathbf{D}^{\prime} of a sample set \mathbf{D} is the same size as \mathbf{D} and is drawn with replacement from \mathbf{D}^{\prime}.
- Each additional term improves the mixture.

Example : 200 variables and 200 samples

We developed approximation strategies to accelerate it.

Complexity : $\mathcal{O}\left(m n^{2} \log n\right)$

- Our goal : speeding up learning without sacrificing accuracy.
- Motivation: We need many terms : it keeps improving.
- Bottleneck: number of candidate edges for each tree.

$$
T_{i}\left(\mathbf{D}^{\prime}\right)=\arg \max _{T} \sum_{(X, Y) \in \mathcal{E}(T)} I_{\mathbf{D}^{\prime}}(X ; Y),
$$

Replicate

A	B	C	D
0	1	0	1
1	1	0	1
0	0	1	1
1	1	1	0

Edge weights

Markov Tree T_{i}

Key idea of approximation strategies

- Ideas:
- start with a max-likelihood tree on the original data set
- exploit previous trees to select a good subset \mathcal{S}_{i} of candidate edges.
\rightarrow trees are not independent
- We developed two methods for selecting \mathcal{S}_{i} of fixed size $|\mathcal{S}|$:
- Complexity : $\mathcal{O}\left(m n^{2} \log n\right) \rightarrow \mathcal{O}\left(n^{2} \log n+m|\mathcal{S}| \log |\mathcal{S}|\right)$
- Run time : one order of magnitude faster

1: In the inertial approach, \mathcal{S}_{i} is based on the previous tree T_{i-1}.

- $\left|\mathcal{S}_{i}\right|=\mathrm{K}$ is a parameter.
- $\forall i \geqslant 2, \mathcal{S}_{i}$ is composed of
- $n-1$ edges of T_{i-1},
- $K-n+1$ other randomly sampled edges.
- Explores the set of all Markov Trees defined on the variables.

2 : In the skeleton-based approach, all \mathcal{S}_{i} are equal and based on the first tree.

- Edges with weak weights are
- not likelily to be part of a tree (even if weights are perturbed),
- probably not meaningful (noise or not direct relation).
\rightarrow We can ignore them in the search.
- \mathcal{S} contains only edges whose associated weight is high.
- Explores the subset of trees (or forests) spanning \mathcal{S}.

Edges are tested for independence before inclusion in \mathcal{S}.

- Related to regularization :

$$
T_{C L}^{\lambda}(\mathbf{D})=\arg \max _{T} \sum_{(X, Y) \in \mathcal{E}(T)} / \mathcal{D}(X ; Y)-\lambda|T|
$$

- Comparing $I_{\mathbf{D}}(X ; Y)$ (χ-square distributed under independence) to a threshold depending on a postulated p-value, say $\alpha=0.05$ or smaller.
- \mathcal{S} contains the pairs of variables whose mutual information (on the original data set) is above the threshold.
- Mutual information values are a by-product of the computation of the first tree.

We evaluated our algorithms on synthetic and more

 realistic data sets.Synthetic bayesian networks over binary variables:

- for each X_{i}
- draw the number of parents in $[0, \max (5, i-1)]$
- randomly selecting these parents in $\left\{X_{1}, \ldots, X_{i-1}\right\}$.
- 200 and 1000 variables; 200, 600 and 1000 observations.
- Validation by Monte-Carlo estimation of the Kullback-Leibler divergence (50 000 observations).

The two approaches are working well.

200 samples, 200 variables :

Relative run-time for mixtures of 500 trees (one max-likelihood tree : 1) :

- Bagged max-likelihood trees : 532
- Inertial approximations: 45
- Skeleton-based approximations: 21

Influence of the parameter α in the Skeleton-based approximation :

200 samples, 200 variables :

- The lower α, the faster the convergence.
- Regularization improves the first tree, but averaging over more diverse trees leads to better approximations.

Starting by the max-likelihood tree is necessary in the inertial method.
200 samples, 200 variables:

Starting by the max-likelihood tree is necessary in the inertial method.
1000 samples, 1000 variables :

More realistic data sets (by C. Aliferis, A. Statnikov, I. Tsamardinos \& al).

- 9 models ranging from 200 to 801 variables; 200 and 500 samples:
- 4 classical networks extended by tiling (Child10, Insurance10, Alarm10, Hailfinder10)
- 2 data sets ressimulated from gene expression data (Gene, Lung Cancer)
- 3 expert systems (Munin, Link,Pigs)
- validation by negative log-likelihood of an independent set of 5000 observations

Summary:

- Both approximations methods are working well : 2 instances
- Only the skeleton approach is working well : 8 instances
- 8 instances where we cannot conclude.

Both approximations are better than a maximal-likelihood tree in two experimental cases.
Pigs, 441 variables, 200 samples

In most cases only the skeleton-based approximation is good.
Gene, 801 variables, 200 samples

In one case the skeleton approach first degrades the maximum-likelihood tree before slowly improving.
Lung Cancer, 800 variables, 200 samples

Conclusions

- We propose two algorithms for learning mixtures of Markov trees designed to approach the quality of approximation of mixtures of bagged Chow-Liu trees at a lower computational cost.
- They exploit the computation of the previous or first tree of the mixture in order to test fewer edges in the subsequent trees.
- Searching only significant edges (as assessed on the original data set) is the most robust approach.

Table: Impact of the parameter α on the number of edges, averaged on 5 densities times 6 data sets for $n=1000$ variables and $p=200$ samples

Edges	Numbers (\% of the total) for $\alpha=$			
	$1 E^{-1}$	$5 E^{-2}$	$5 E^{-3}$	$5 E^{-4}$
in T_{1}	998	997.9	993.2	626.8
in \mathcal{S}	$52278(10.5 \%)$	$26821(5.36 \%)$	$3311(0.66 \%)$	$683(0.13 \%)$

