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The goal of this research is to improve probabilistic
reasoning in high-dimensional problems.

Great potential in many applications :

@ Bioinformatics (21 000 genes, 1 000 000 proteins)

@ Power networks (10 000 transmission nodes in Europe)
Two main problems :

@ Few samples

o Algorithmic complexity

— Simple models must be used
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Mixtures of trees build on the good properties of Markov

trees.

A forest is a tree missing
edges :

A mixture of trees is an ensemble method :
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Mixtures of trees build on the good properties of Markov
trees.

@ Several models — large modeling power
@ Simple models — low complexity :

» inference is linear,

> learning : most algorithms are quadratic.

There are two types of mixtures :

Mixture @
@ Maximum likelihood

@ Variance reduction
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Bagging is a good variance reduction method.

@ average over m max-likelihood trees learnt from m bootstrap
replicates
— typically exhibits a lower variance
— reduction in overfitting
@ A bootstrap replicate D’ of a sample set D is the same size as D and
is drawn with replacement from D'.
@ Each additional term improves the mixture.

Example : 200 variables and 200 samples

one max-likelihood tree on original learning set
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We developed approximation strategies to accelerate it.

Complexity : O(mn?log n)
@ Our goal : speeding up learning without sacrificing accuracy.
o Motivation : We need many terms : it keeps improving.

@ Bottleneck : number of candidate edges for each tree.
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Key idea of approximation strategies

@ Ideas :

> start with a max-likelihood tree on the original data set
» exploit previous trees to select a good subset S; of candidate edges.
— trees are not independent
@ We developed two methods for selecting S; of fixed size |S| :
» Complexity : O(mn?log n) — O(n?log n + m|S|log |S|)
» Run time : one order of magnitude faster

Replicate Edge weights Markov Tree T;
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1 : In the inertial approach, S; is based on the previous
tree T,_1.

o |S;| = K is a parameter.
e Vi>2,S;is composed of

» n—1 edges of T;_q,
» K — n—+ 1 other randomly sampled edges.

@ Explores the set of all Markov Trees defined on the variables.
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2 : In the skeleton-based approach, all S; are equal and
based on the first tree.

o Edges with weak weights are
» not likelily to be part of a tree (even if weights are perturbed),
» probably not meaningful (noise or not direct relation).
— We can ignore them in the search.

@ S contains only edges whose associated weight is high.

@ Explores the subset of trees (or forests) spanning S.

Edge weights Edge weights
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Edges are tested for independence before inclusion in S.

o Related to regularization :
T2, (D) = arg maxr 2o x,v)ee(r) p(X;Y) = AT
e Comparing Ip(X; Y) (x-square distributed under independence) to a
threshold depending on a postulated p-value, say a = 0.05 or smaller.
@ S contains the pairs of variables whose mutual information (on the
original data set) is above the threshold.
@ Mutual information values are a by-product of the computation of the

first tree.
Edge weights Edge weights
A|B|C[Dlstatistical_|A[B[C[D
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We evaluated our algorithms on synthetic and more
realistic data sets.

Synthetic bayesian networks over binary variables :
@ for each X;

» draw the number of parents in [0, max(5,i — 1)]
» randomly selecting these parents in {Xy,..., Xi_1}.

@ 200 and 1000 variables; 200, 600 and 1000 observations.

@ Validation by Monte-Carlo estimation of the Kullback-Leibler
divergence (50 000 observations).
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The two approaches are working well.

200 samples, 200 variables :

—~15 One max-likelihood tree on original learning set
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Relative run-time for mixtures of 500 trees (one max-likelihood tree : 1) :
@ Bagged max-likelihood trees : 532
@ Inertial approximations : 45

@ Skeleton-based approximations : 21
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Influence of the parameter « in the Skeleton-based
approximation :

200 samples, 200 variables :
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@ The lower o, the faster the convergence.

@ Regularization improves the first tree, but averaging over more diverse
trees leads to better approximations.
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Starting by the max-likelihood tree is necessary in the

inertial method.

200 samples, 200 variables :
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Starting by the max-likelihood tree is necessary in the

inertial method.
1000 samples, 1000 variables :
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More realistic data sets (by C. Aliferis, A. Statnikov, .
Tsamardinos & al).

@ 9 models ranging from 200 to 801 variables; 200 and 500 samples :

> 4 classical networks extended by tiling (Child10, Insurancel0, Alarm10,
Hailfinder10)

» 2 data sets ressimulated from gene expression data (Gene, Lung
Cancer)

» 3 expert systems (Munin, Link,Pigs)

@ validation by negative log-likelihood of an independent set of 5000
observations
Summary :
@ Both approximations methods are working well : 2 instances
@ Only the skeleton approach is working well : 8 instances

@ 8 instances where we cannot conclude.
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Both approximations are better than a maximal-likelihood

tree in two experimental cases.
Pigs, 441 variables, 200 samples
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In most cases only the skeleton-based approximation is

good.
Gene, 801 variables, 200 samples
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In one case the skeleton approach first degrades the

maximum-likelihood tree before slowly improving.
Lung Cancer, 800 variables, 200 samples
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Conclusions

@ We propose two algorithms for learning mixtures of Markov trees
designed to approach the quality of approximation of mixtures of
bagged Chow-Liu trees at a lower computational cost.

@ They exploit the computation of the previous or first tree of the
mixture in order to test fewer edges in the subsequent trees.

@ Searching only significant edges (as assessed on the original data set)
is the most robust approach.

F. Schnitzler (ULG) Approximating Markov Tree Bagging ECML 2011 18 / 18



TABLE: Impact of the parameter o on the number of edges, averaged on 5
densities times 6 data sets for n = 1000 variables and p = 200 samples

Numbers (% of the total) for o =

Edges 1E-1 \ 5E—2 | 5E | 5E°

in T, 998 997.9 993.2 626.8
in S | 52278(10.5%) | 26821(5.36%) | 3311(0.66%) | 683 (0.13%)
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