Efficiently Approximating Markov Tree Bagging for High-Dimensional Density Estimation

F. Schnitzler¹ S. Ammar² P. Leray² P. Geurts¹ L. Wehenkel¹

fschnitzler@ulg.ac.be

¹University of Liège

²University of Nantes

6 September 2011

The goal of this research is to improve probabilistic reasoning in high-dimensional problems.

Great potential in many applications :

- Bioinformatics (21 000 genes, 1 000 000 proteins)
- Power networks (10 000 transmission nodes in Europe)

Two main problems :

- Few samples
- Algorithmic complexity
- $\rightarrow\,$ Simple models must be used

Mixtures of trees build on the good properties of Markov trees.

edges :

A forest is a tree missing A mixture of trees is an ensemble method :

$$\mathbb{P}_{\hat{\mathcal{T}}}(X) = \sum_{i=1}^m \mu_i \mathbb{P}_{\mathcal{T}_i}(X)$$

Mixtures of trees build on the good properties of Markov trees.

- \bullet Several models \rightarrow large modeling power
- \bullet Simple models \rightarrow low complexity :
 - inference is linear,
 - learning : most algorithms are quadratic.

There are two types of mixtures :

- Maximum likelihood
- Variance reduction

Bagging is a good variance reduction method.

- average over *m* max-likelihood trees learnt from *m* bootstrap replicates
 - \rightarrow typically exhibits a lower variance
 - \rightarrow reduction in overfitting
- A bootstrap replicate **D**' of a sample set **D** is the same size as **D** and is drawn with replacement from **D**'.
- Each additional term improves the mixture.

Example : 200 variables and 200 samples

We developed approximation strategies to accelerate it.

Complexity : $\mathcal{O}(mn^2 \log n)$

- Our goal : speeding up learning without sacrificing accuracy.
- Motivation : We need many terms : it keeps improving.
- Bottleneck : number of candidate edges for each tree.

$$\mathcal{T}_i(\mathbf{D}') = rg\max_{\mathcal{T}} \sum_{(X,Y) \in \mathcal{E}(\mathcal{T})} I_{\mathbf{D}'}(X;Y) \;\;,$$

Replicate

Edge weights

A B C D 0 1 0 1 1 1 0 1 0 0 1 1 1 1 0

Key idea of approximation strategies

- Ideas :
 - start with a max-likelihood tree on the original data set
 - exploit previous trees to select a good subset S_i of candidate edges.
 - $\rightarrow~$ trees are not independent
- We developed two methods for selecting S_i of fixed size |S| :
 - Complexity : $\mathcal{O}(mn^2 \log n) \rightarrow \mathcal{O}(n^2 \log n + m|\mathcal{S}| \log |\mathcal{S}|)$
 - Run time : one order of magnitude faster

1 : In the inertial approach, S_i is based on the previous tree T_{i-1} .

- $|\mathcal{S}_i| = K$ is a parameter.
- $\forall i \ge 2$, S_i is composed of
 - n-1 edges of T_{i-1} ,
 - K n + 1 other randomly sampled edges.
- Explores the set of all Markov Trees defined on the variables.

2 : In the skeleton-based approach, all S_i are equal and based on the first tree.

- Edges with weak weights are
 - not likelily to be part of a tree (even if weights are perturbed),
 - probably not meaningful (noise or not direct relation).
 - \rightarrow We can ignore them in the search.
- S contains only edges whose associated weight is high.
- Explores the subset of trees (or forests) spanning S.

Edges are tested for independence before inclusion in \mathcal{S} .

• Related to regularization :

$$\mathcal{T}^{\lambda}_{\mathit{CL}}(\mathsf{D}) = {\sf arg\,max}_{\mathcal{T}} \sum_{(X,Y) \in \mathcal{E}(\mathcal{T})} {\it I}_{\mathsf{D}}(X;Y) - \lambda |\mathcal{T}|$$

- Comparing I_D(X; Y) (χ-square distributed under independence) to a threshold depending on a postulated p-value, say α = 0.05 or smaller.
- S contains the pairs of variables whose mutual information (on the original data set) is above the threshold.
- Mutual information values are a by-product of the computation of the first tree.

We evaluated our algorithms on synthetic and more realistic data sets.

Synthetic bayesian networks over binary variables :

- for each X_i
 - draw the number of parents in [0, max(5, i-1)]
 - randomly selecting these parents in $\{X_1, ..., X_{i-1}\}$.
- 200 and 1000 variables; 200, 600 and 1000 observations.
- Validation by Monte-Carlo estimation of the Kullback-Leibler divergence (50 000 observations).

The two approaches are working well.

200 samples, 200 variables :

Relative run-time for mixtures of 500 trees (one max-likelihood tree : 1) :

- Bagged max-likelihood trees : 532
- Inertial approximations : 45
- Skeleton-based approximations : 21

Influence of the parameter α in the Skeleton-based approximation :

200 samples, 200 variables :

- The lower α , the faster the convergence.
- Regularization improves the first tree, but averaging over more diverse trees leads to better approximations.

Starting by the max-likelihood tree is necessary in the inertial method.

200 samples, 200 variables :

Starting by the max-likelihood tree is necessary in the inertial method.

1000 samples, 1000 variables :

More realistic data sets (by C. Aliferis, A. Statnikov, I. Tsamardinos & al).

• 9 models ranging from 200 to 801 variables; 200 and 500 samples :

- 4 classical networks extended by tiling (Child10, Insurance10, Alarm10, Hailfinder10)
- 2 data sets ressimulated from gene expression data (Gene, Lung Cancer)
- 3 expert systems (Munin, Link, Pigs)
- validation by negative log-likelihood of an independent set of 5000 observations

Summary :

- Both approximations methods are working well : 2 instances
- Only the skeleton approach is working well : 8 instances
- 8 instances where we cannot conclude.

Conclusions

- We propose two algorithms for learning mixtures of Markov trees designed to approach the quality of approximation of mixtures of bagged Chow-Liu trees at a lower computational cost.
- They exploit the computation of the previous or first tree of the mixture in order to test fewer edges in the subsequent trees.
- Searching only significant edges (as assessed on the original data set) is the most robust approach.

TABLE: Impact of the parameter α on the number of edges, averaged on 5 densities times 6 data sets for n = 1000 variables and p = 200 samples

	Numbers (% of the total) for $lpha=$			
Edges	$1E^{-1}$	$5E^{-2}$	$5E^{-3}$	$5E^{-4}$
in T_1	998	997.9	993.2	626.8
in ${\cal S}$	52278(10.5%)	26821(5.36%)	3311(0.66%)	683 (0.13%)