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Inductive Transfer Learning 

with multiple source tasks  

 Input: source data sets Si (i=1,…,K), target 

data set T. Each instance x has the identical 

nominal attributes set {x1, x2,…, xm-1}, and a 

class label set {0, 1}.  

 Output: A hyperplane classifier of the target 

task. 
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Binary classification 

problems for heart 

disease diagnose 

only 20 labeled samples 
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Problems of the Negative 

Transfer (NT) 

 A source task may be dissimilar with the target task 

due to the different distributions. Directly transferring 

knowledge will lead to Negative Transfer. 

 Not all the data in the similar source tasks are helpful. 

 

4 

Type-I 

Disease Transfer 

Source Domain Target Domain 

Type-II 

Disease 

Type-III 

Disease 

Type-IV 

Disease 

New type 

Heart Disease 

Type-II 

Disease 

Two problems 



ECML PKDD 2011 Kyushu University 

Problems of the Negative 

Transfer (NT) 

 A source task may be dissimilar with the target task 

due to the different distributions. Directly transferring 

knowledge will lead to Negative Transfer. 

 Not all the data in the similar source tasks are helpful. 

 

5 

Type-I 

Disease 

Source Domain Target Domain 

Type-II 

Disease 

Type-III 

Disease 

Type-IV 

Disease 

Similarity New type 

Heart Disease 

Type-II 

Disease 

Type-I 

Disease 

Type-III 

Disease 

Type-IV 

Disease 

Two problems 

negative parts 

positive parts 



ECML PKDD 2011 Kyushu University 

Existing Methods and the 

Objective of our algorithm 

 [Cao 10] considered only one source data set. 

 

 Most methods [Argyriou 08, Dai 07] only consider 

one kind of similarity which is either the similarity 

between tasks or the similarity between instances. 

 

 

 Some methods [Dai 07, Shi 08] are heuristic. 
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We consider multiple source tasks 

We consider not only the similarity between data sets but 

also the similarity of different parts within one data set. 

Our method is based on a solid theoretical foundation 
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Problem Setting and our 

Motivation 
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induce  induce  

hyperplane wi hyperplane vt 

Compact 

 

 Coding 

Similarity Type-I 

Disease 

New type 

Heart Disease 

 A hyperplane classifier              is induced from 

each Si, where                               , and   

                                    . The weight vector of the 

hyperplane in the target task T is denoted 

by                              . 

1 2( , ,... ), m

i i i iw w ww
1 2 1( , ,..., ,1)mx x x x

0i w x

1 2( , ,... ), m

t t ttv v vv
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A Simple Example 

 T has 8 labeled examples with hyperplane vt , 

w1 and w2 are the hyperplanes of two source 

data sets S1 and S2 . 
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x1 

x2 

w2 
vt w1 

-1 3 

-1 

1 

6 1 

Which one is 
more simliar to 
the target task? 

Both w1 and w2 

have one wrong 
prediction, of 
the eight 
examples in T 
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Minimum Description Length 

Principle (MDLP) [Quinlan 89] 

 Best hypothesis:  to minimize  

    code length of the hypothesis +  

    code length of the data using the hypothesis 

 Given the data D and the hypothesis hi (i = 1, 2, 

3, …), the best hypothesis hbest on D is: 
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 argmin log ( | ) log ( )
i

best i i
h

h P D h P h  

Balance the simplicity of the 

hypothesis and the goodness-of-fit to 

the data 

avoid 

overfitting 



ECML PKDD 2011 Kyushu University 

Compact Coding for 

Hyperplane Classifiers (CCHC) 

 Macro Level Evaluation: Sort Si in 

descending order on the degrees of similarity 

with the target data set T. 

 

 Micro Level Evaluation: Divide the data set 

of the related source tasks into several 

components and select related parts to help 

training the classifier in the target domain. 
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Code Length as the Similarity 

Measure 

A posteriori probability of wi given the source 

task Si : 
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P(wi | Si) 
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Code Length as the Similarity 

Measure 
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P(wi | Si) 

P(wi | T) 

P(wi | Si) 
Measure the 
similarity 
between wi 
and T 
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Code Length as the Similarity 

Measure 
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P(wi | Si) 
Measure the 
similarity 
between wi 
and T 

  

P(wi | T) ∝P(T | wi ) P(wi) 
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Code Length as the Similarity 

Measure 
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P(wi | Si) 

P(wi | T) ∝P(T | wi ) P(wi) 

 

P(wi | T, vt) 

Borrow vt 

to help to 
code wi 
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Code Length as the Similarity 

Measure 
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P(wi | Si) 

P(wi | T) ∝P(T | wi ) P(wi) 

 

P(wi | T, vt) ∝P(T | wi ) P(vt | wi ) P(wi) 

      ∝P(T | wi ) P(wi | vt) P(vt) 

    ∝P(T | wi ) P(wi | vt) 

 

Borrow vt 

to help to 
code wi 
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Code Length as the Similarity 

Measure 
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P(wi | Si) 

P(wi | T) ∝P(T | wi ) P(wi) 

 

P(wi | T, vt) ∝P(T | wi ) P(vt | wi ) P(wi) 

      ∝P(T | wi ) P(wi | vt) P(vt) 

    ∝P(T | wi ) P(wi | vt) 

 

Li =﹣log P (T | wi )﹣log P(vt | wi ) 
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Preliminaries of coding  

 The code length of a binary string of  length a 

which consists of b binary 1s and (a-b) binary 

0s.  

 

 Coding a real number x under the assumption 

that x=   is most likely, where    is also a real 

number, and f  is a continuous probability with 

precision   .  
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Coding method of CCHC 

 The first part of the code length is: 

 

 The second part of the code length is: 

 

   where             denotes the number of misclassified 

examples on T.                      
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Calculation of the code length of 

the toy example 
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Which one is 
more simliar to 
the target task? 
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Level 
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Experimental setting 

 Data sets 

 UCI data sets: Three data sets are used in the 

experiments in UCI repository. A pre-processing 

method [Y. Shi 09] is adopted on these data sets to 

split each data to the source and the target data sets. 

 Text data sets: 20NewsGroup Data sets in three 

categories, with pre-processing method given by [W. 

Dai 07] to form different tasks with subcategories. 

 State-of-the-art methods for comparison 

 SVM, TrAdaBoost, k-NN, COITL [Y. Shi 09] and 

AT [X. Shi 08]. 

 22 



ECML PKDD 2011 Kyushu University 

Results on mushroom data sets 

23 

Our method is able to achieve lower error rate with 

only few labeled information available. 

| T | = 50 | T | = 100 
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Results of kr vs kp and splice 
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| T | = 50 | T | = 100 

kr vs kp 

splice 
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Results for rec vs talk as the 

target data set 
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| T | = 50 | T | = 100 

Our method is the best one among all methods. 
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Results for rec vs sci, and talk vs 

sci as the target data set 
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| T | = 50 | T | = 100 

rec vs sci 

talk vs sci 
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Transferred components in text 

data sets in Micro Level 
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Source Data Sets 

S1 : rec vs talk  S2 : rec vs sci   S3 : sci vs talk 

 no parts 

transferred 

1 part 

transferred 

The Micro Level Evaluation is effective which 

can adaptively select related parts for transferring.  
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Summary of this work 

 Motivation: Design a coding method for 

hyperplane classifiers in transfer learning. 

Adaptively select related parts in the source 

tasks in classifying the target task. 

 Methodology: We propose a compact coding 

method inspired by MDLP, to measure the 

similarity between data by the code length. 

 Performance: Experiments conducted on both 

UCI and text data sets show the effectiveness 

of our CCHC. 
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