ECML PKDD 2011 September 5–9, 2011

The Minimum Code Length for Clustering Using the Gray Code

Mahito SUGIYAMA^{†,‡}, Akihiro YAMAMOTO[†]

[†]Kyoto University

[‡]JSPS Research Fellow

Contributions

1. The MCL (Minimum Code Length)

- A new measure to score clustering results
- Needed to distinguish each cluster under some fixed encoding scheme for real-valued variables

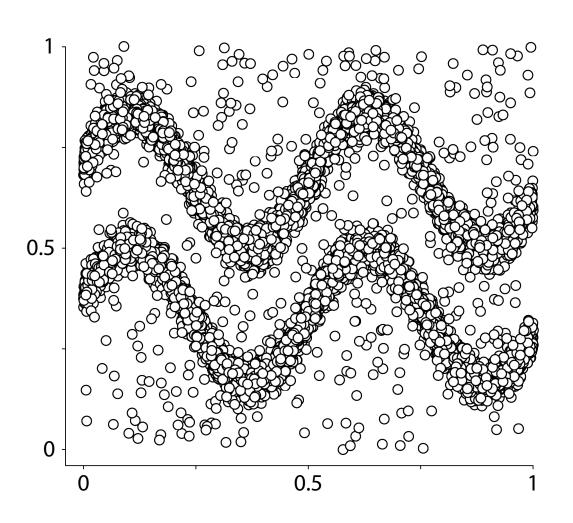
2. COOL (COding-Oriented cLustering)

- A general clustering approach
- Always finds the best clusters (i.e., the global optimal solution)
 which minimizes the MCL in O(nd)
- Parameter tuning is not needed

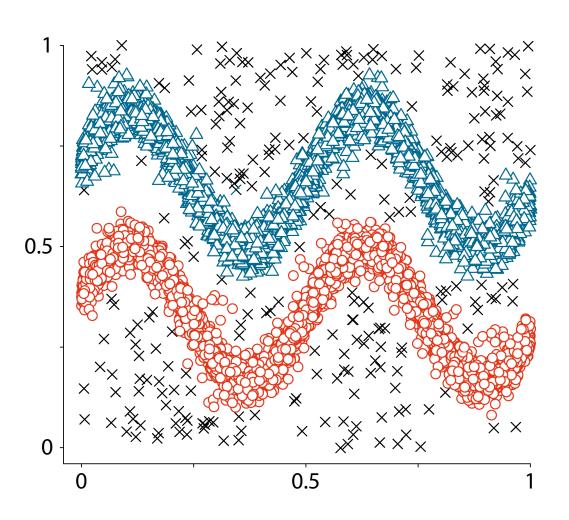
3. G-COOL (COOL with the Gray code)

- Achieves internal cohesion and external isolation
- Finds arbitrary shaped clusters

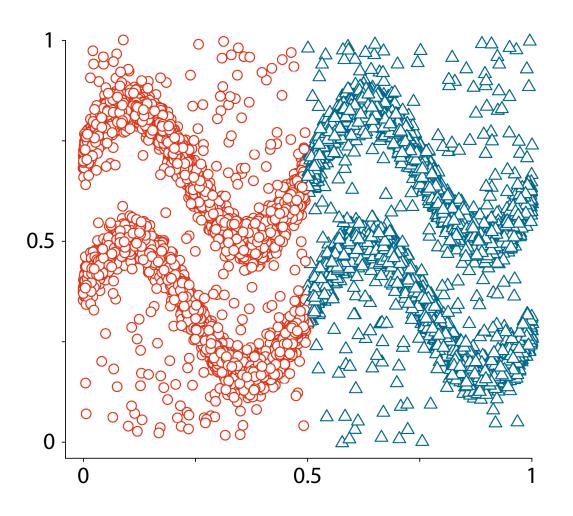
Demonstration (Synthetic Dataset)



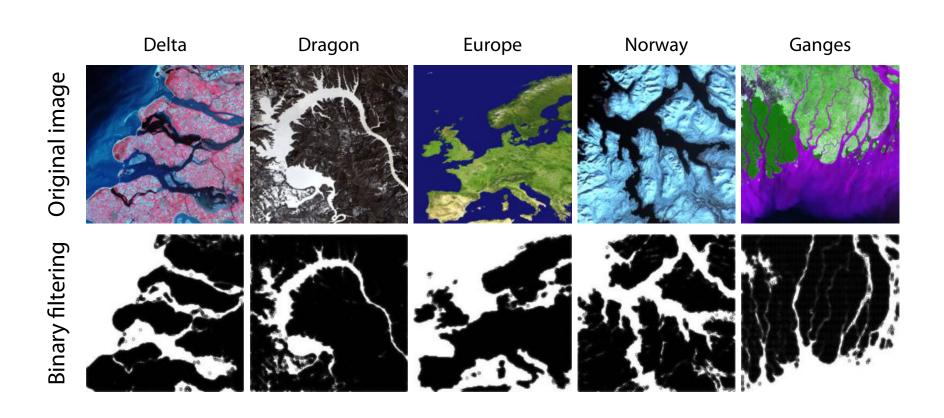
G-COOL



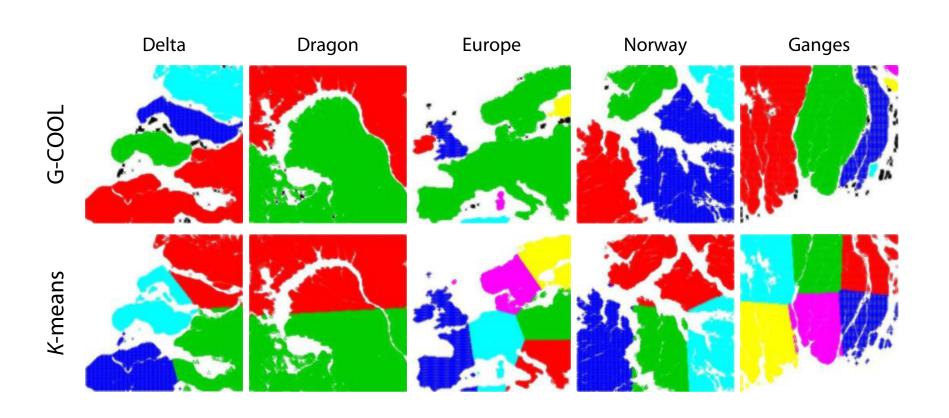
K-means



Results (Real datasets)



Results (Real datasets)



Outline

- o. Overview
- 1. Background and Our Strategy
- 2. MCL and Clustering
- 3. COOL Algorithm
- 4. G-COOL: COOL with the Gray Code
- 5. Experiments
- 6. Conclusion

Outline

- o. Overview
- 1. Background and Our Strategy
- 2. MCL and Clustering
- 3. COOL Algorithm
- 4. G-COOL: COOL with the Gray Code
- 5. Experiments
- 6. Conclusion

Clustering Focusing on Compression

- The MDL approach [Kontkanen et al., 2005]
 - Data encoding has to be optimized
 - All encoding schemes are (implicitly) considered
 - The time complexity $\geqslant O(n^2)$
- The Kolmogorov complexity approach [Cilibrasi, 2005]
 - Measures the distance between data points based on compression of finite sequences
 - Difficult to apply multivariate data
 - Actual clustering process is the traditional agglomerative hierarchical clustering
 - The time complexity $\geqslant O(n^2)$
- Both approaches are not suitable for massive data

Our Strategy

- Requirements:
 - 1. Fast, and linear in the data size
 - 2. Robust to changes in input parameters
 - 3. Can find arbitrary shaped clusters

Our Strategy

- Requirements:
 - 1. Fast, and linear in the data size
 - 2. Robust to changes in input parameters
 - 3. Can find arbitrary shaped clusters
- Solutions:
 - 1. Fix an encoding scheme for continuous variables
 - Motivated by Computable Analysis [Weihrauch, 2000]
 - 2. Clustering = Discretizing real-valued data
 - Always finds the best results w.r.t. the MCL
 - 3. Use the Gray code for real numbers [Tsuiki, 2002]
 - Discretized data points are overlapped and adjacent clusters are merged

Outline

- o. Overview
- 1. Background and Our Strategy
- 2. MCL and Clustering
- 3. COOL Algorithm
- 4. G-COOL: COOL with the Gray Code
- 5. Experiments
- 6. Conclusion

MCL (Minimum Code Length)

- The MCL is the code length of the maximally compressed clusters by using a fixed encoding scheme
- The MCL is calculated in O(nd) by using radix sort
 - n and d are the number of data and dimension, resp.

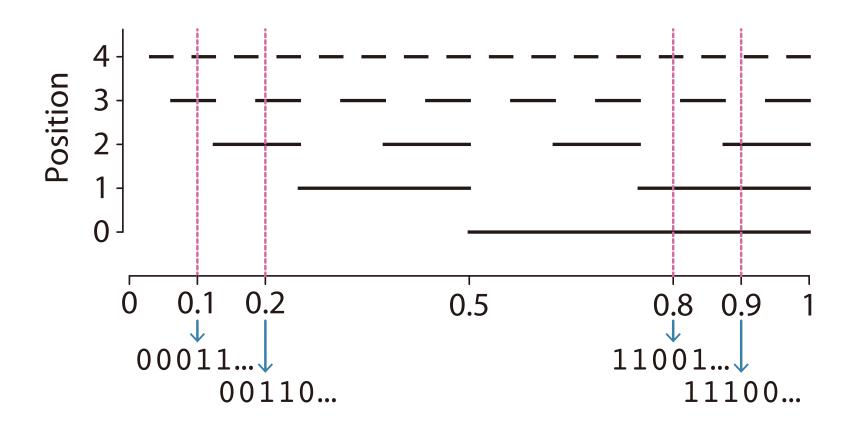
MCL (Minimum Code Length)

- The MCL is the code length of the maximally compressed clusters by using a fixed encoding scheme
- The MCL is calculated in O(nd) by using radix sort
 - n and d are the number of data and dimension, resp.

```
Example: X = \{0.1, 0.2, 0.8, 0.9\},\
\mathscr{C}_1 = \{\{0.1, 0.2\}, \{0.8, 0.9\}\}\}
\mathscr{C}_2 = \{\{0.1\}, \{0.2, 0.8\}, \{0.9\}\}
```

- Use binary encoding
- Which is preferred?

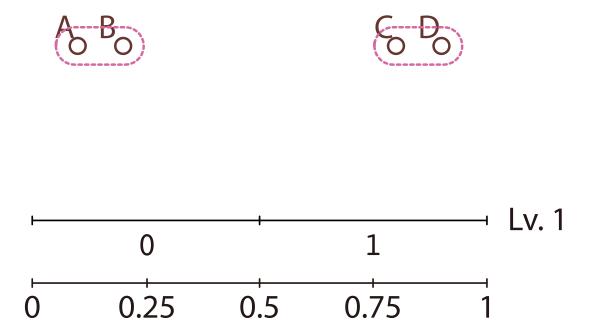
Binary Encoding



		Ą	o B _O		C D)
id	value					
Α	0.1					
В	0.2					
C	0.8					
D	0.9					
		0	0.25	0.5	0.75	1

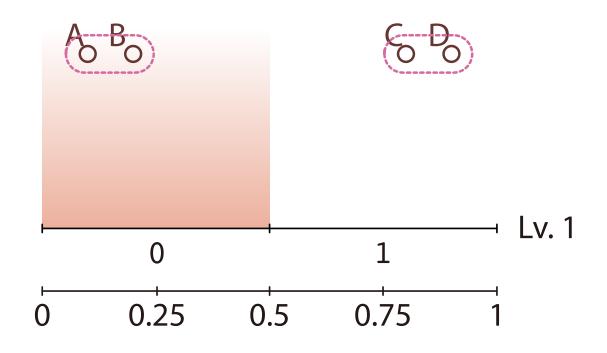
		A	B 0		(O O	5)
id	value				7000000	
A	0.1					
В	0.2					
C	0.8					
D	0.9					
		0	0.25	0.5	0.75	1

id	value
Α	0.1
В	0.2
C	0.8
D	0.9



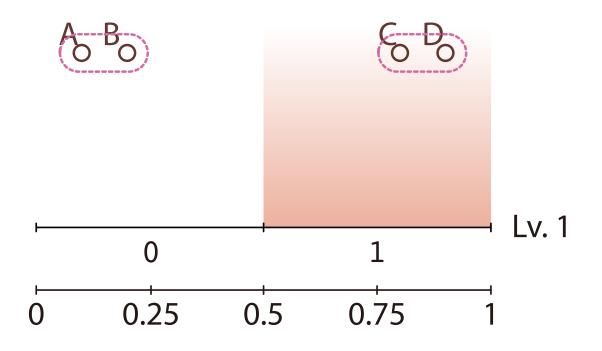
$$MCL = 1 + 1 = 2$$

id	value
Α	0.1
В	0.2
C	0.8
D	0.9



$$MCL = 1 + 1 = 2$$

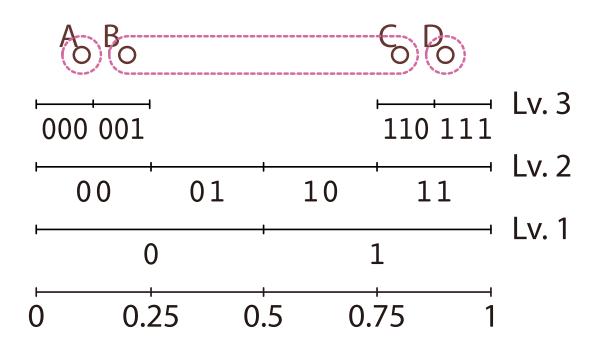
id	value
Α	0.1
В	0.2
C	0.8
D	0.9
·	_



$$MCL = 1 + 1 = 2$$

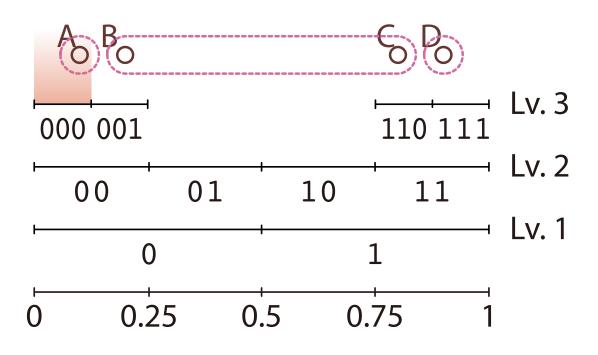
		(2)) (O			5)
id	value		-			
A	0.1					
В	0.2					
C	0.8					
D	0.9					
		0	0.25	0.5	0.75	1

id	value
Α	0.1
В	0.2
C	0.8
D	0.9



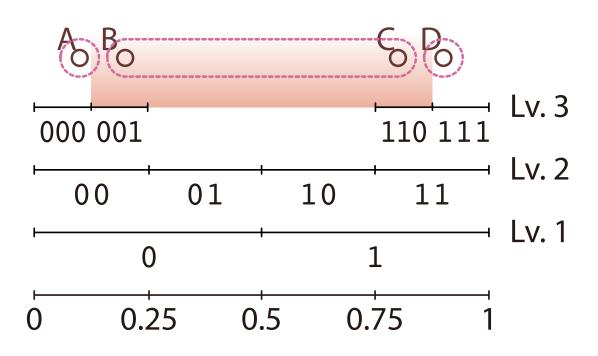
$$MCL = 3 \cdot 4 = 12$$

id	value
Α	0.1
В	0.2
C	0.8
D	0.9
<u> </u>	_



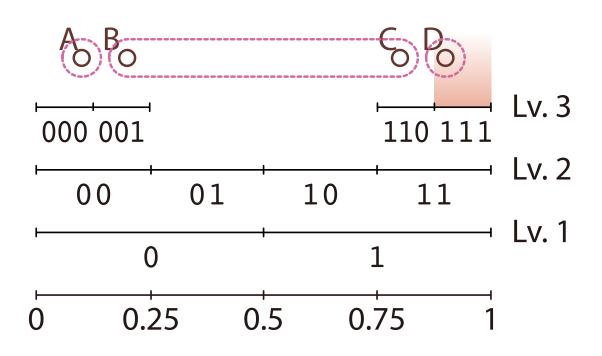
$$MCL = 3 \cdot 4 = 12$$

id	value
Α	0.1
В	0.2
C	0.8
D	0.9
	_



$$MCL = 3 \cdot 4 = 12$$

id	value
Α	0.1
В	0.2
C	0.8
D	0.9
·	·



$$MCL = 3 \cdot 4 = 12$$

Definition of MCL

- Fix an embedding $\gamma: \mathbb{R}^d \to \Sigma^\omega$ ($\Sigma = \{0, 1\}$ usually)
- For $p \in \text{range}(\gamma)$ and $P \subset \text{range}(\gamma)$, define $\Phi(p \mid P) \coloneqq \left\{ w \in \Sigma^* \middle| \begin{array}{l} p \in \uparrow w \text{ and } P \cap \uparrow v = \emptyset \text{ for all } v \\ \text{such that } |v| = |w| \text{ and } p \in \uparrow v \end{array} \right\}$
 - Each element in $\Phi(p|P)$ is a prefix that discriminates p from P

For a partition
$$\mathscr{C} = \{C_1, \dots, C_K\}$$
 of a data set X ,
$$\mathsf{MCL}(\mathscr{C}) \coloneqq \sum_{i \in \{1, \dots, K\}} L_i(\mathscr{C}), \quad \text{where}$$

$$L_i(\mathscr{C}) \coloneqq \min \left\{ |W| \middle| \begin{array}{c} \gamma(C_i) \subseteq \uparrow W \text{ and} \\ W \subseteq \bigcup_{x \in C_i} \Phi(\gamma(x) \mid \gamma(X \setminus C_i)) \end{array} \right\}$$

Minimizing MCL and Clustering

Clustering under the MCL criterion is to find the global optimal solution that minimizes the MCL

- Find \mathscr{C}_{op} such that $\mathscr{C}_{op} \in \operatorname{argmin} \operatorname{MCL}(\mathscr{C}),$ $\mathscr{C} \in \mathscr{C}(X)_{\geqslant K}$ where $\mathscr{C}(X)_{\geqslant K} = \{\mathscr{C} \text{ is a partition of } X \mid \#C \geqslant K\}$
- We give the lower bound of the number of clusters K as a input parameter
 - \mathscr{C}_{op} becomes one set $\{X\}$ without this assumption

Outline

- o. Overview
- 1. Background and Our Strategy
- 2. MCL and Clustering
- 3. COOL Algorithm
- 4. G-COOL: COOL with the Gray Code
- 5. Experiments
- 6. Conclusion

Optimization by COOL

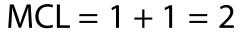
- COOL solves the optimization problem in O(nd)
 - n and d are the number of data and dimension, resp.
 - The naïve approach takes exponential time and space
 - Computing process of the MCL becomes clustering process itself via discretization
- COOL is level-wise, and makes the level-k partition \mathcal{C}^k from k = 1, 2, ..., which holds the following condition:
 - For all x, y ∈ X, they are in the same cluster \iff v = w for some v ⊏ γ(x) and w ⊏ γ(y) with |v| = |w| = k
 - Level-k partitions form hierarchy
 - For $C \in \mathcal{C}^k$, there exists $\mathcal{D} \subseteq \mathcal{C}^{k+1}$ such that $\bigcup \mathcal{D} = C$
- For all $C \in \mathscr{C}_{op}$, there exists k such that $C \in \mathscr{C}^k$

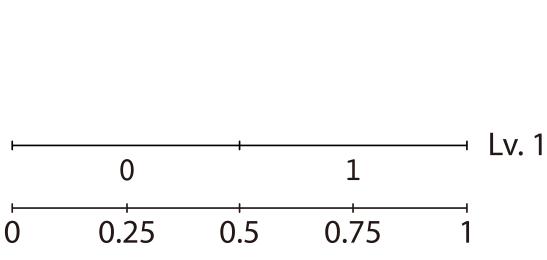
		Λ	[
id	value	70)	00	6 6	
A	0.113					
В	0.398					
C	0.526					
D	0.701					
Е	0.796					
		0	0.25	0.5	0.75	<u></u>

		Λ				
id	value	75	E	00	0 0	
Α	0.113					
В	0.398					
C	0.526					
D	0.701	——		+		— Lv. 1
Ε	0.796		0		1	
			0.25	0.5	0.75	
		U	0.25	0.5	0.75	

		Λ		2	D E	
id	value	75	ı	3° C	D _O E _O	
Α	0					
В	0					
C	1					
D	1	——		+		— Lv. 1
Ε	1		0		1	
		0	0.25	0.5	0.75	1

Λ		
6	value	id
	0	A
	0	В
	1	C
	1	D
	1	Ε
0		





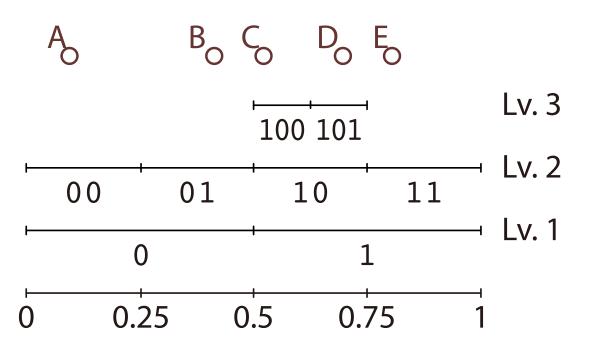
id	value	A	Bo	C Do	Eo	
A	0 0					
В	01			4	4	→ Lv. 2
C	10	0.0	01	10	11	· LV. Z
D	10	I		+		→ Lv. 1
Е	11		0		1	
		0 0	.25 0	.5 0.	, 75	

 $MCL = 2 \cdot 4 = 8$

id	value	6	BO 60 00 00 00 00 00 00 00 00 00 00 00 00			
Α	00					
В	01		+	1	1	
C	10	00	01	10	11	
D	10	———		 		
Ε	11		0		1	
		0 0.	25 0	.5 0.	† 75	

COOL with Binary Encoding

id	value
Α	00
В	01
C	100
D	101
E	11

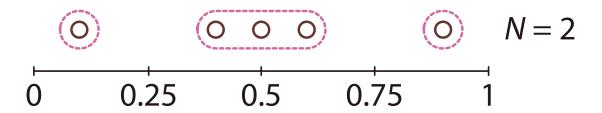


COOL with Binary Encoding

id	value		6)	B	6	O	6	
A B	00				100	0 101		L
C	100	-	00	01	+	10	11	→ L
D E	$\begin{array}{c} 101 \\ 11 \end{array}$		()			L	→ [
MCL	 = 6 + 6 = 12	0	0.2	25	0.5	0.7	75	1

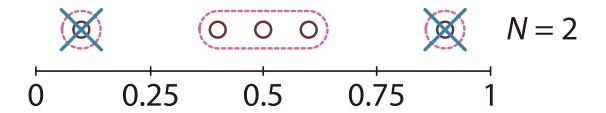
Noise Filtering by COOL

- Noise filtering is easily implemented in COOL
- Define $\mathscr{C}_{\geqslant N} := \{C \in \mathscr{C} \mid \#C \geqslant N\}$ for a partition \mathscr{C}
 - See a cluster C as noises if #C < N
- Example: Given $\mathscr{C} = \{\{0.1\}, \{0.4, 0.5, 0.6\}, \{0.9\}\}$
 - $-\mathscr{C}_{\geqslant 2} = \{\{0.4, 0.5, 0.6\}\}, \text{ and } 0.1 \text{ and } 0.9 \text{ are noises}$
- We input the lower bound N of the cluster size as a input parameter



Noise Filtering by COOL

- Noise filtering is easily implemented in COOL
- Define $\mathscr{C}_{\geqslant N} := \{C \in \mathscr{C} \mid \#C \geqslant N\}$ for a partition \mathscr{C}
 - See a cluster C as noises if #C < N
- Example: Given $\mathscr{C} = \{\{0.1\}, \{0.4, 0.5, 0.6\}, \{0.9\}\}$
 - $-\mathscr{C}_{\geqslant 2} = \{\{0.4, 0.5, 0.6\}\}, \text{ and } 0.1 \text{ and } 0.9 \text{ are noises}$
- We input the lower bound N of the cluster size as a input parameter



Algorithm of COOL

```
Input: A data set X, two lower bounds K and N
Output: The optimal partition \mathscr{C}_{op} and noises
function Cool(X, K, N)
1: Find partitions \mathscr{C}^1_{\geq N}, \ldots, \mathscr{C}^m_{\geq N} such that \|\mathscr{C}^{m-1}_{\geq N}\| < K \leq \|\mathscr{C}^m_{\geq N}\|
2: (\mathscr{C}_{op}, MCL(\mathscr{C}_{op})) \leftarrow FINDCLUSTERS(X, K, \{\mathscr{C}_{\geq N}^1, \dots, \mathscr{C}_{\geq N}^m\})
3: return (\mathscr{C}_{op}, X \setminus [\ ]\mathscr{C}_{op})
function FINDCLUSTERS(X, K, \{\mathscr{C}^1, \dots, \mathscr{C}^m\})
1: Find k such that \|\mathscr{C}^{k-1}\| < K and \|\mathscr{C}^k\| \ge K
2: \mathscr{C}_{op} \leftarrow \mathscr{C}^k
     if K = 2 then return (\mathscr{C}_{op}, MCL(\mathscr{C}_{op}))
4: for each C in \mathscr{C}^1 \cup ... \cup \mathscr{C}^{k-1}
       (\mathscr{C}, L) \leftarrow \mathsf{FINDCLUSTERS}(X \setminus C, K - 1, \{\mathscr{C}^1, \dots, \mathscr{C}^k\})
    if MCL(\mathscr{C} \cup C) < MCL(\mathscr{C}_{op}) then \mathscr{C}_{op} \leftarrow C \cup \mathscr{C}
7: return (\mathscr{C}_{op}, MCL(\mathscr{C}_{op}))
```

Outline

- o. Overview
- 1. Background and Our Strategy
- 2. MCL and Clustering
- 3. COOL Algorithm
- 4. G-COOL: COOL with the Gray Code
- 5. Experiments
- 6. Conclusion

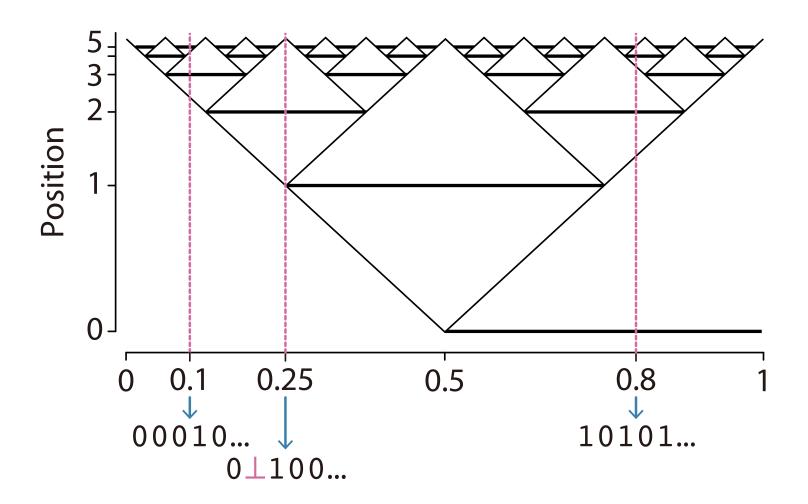
Gray Code

- Real numbers in [0, 1] are encoded with 0, 1, and \perp
 - Binary: $0.1 \rightarrow 00011..., 0.25 \rightarrow 00111...$
 - Gray: $0.1 \rightarrow 00010 \dots, 0.25 \rightarrow 0 \perp 100 \dots$
- Originally, another binary encoding of natural numbers
 - Especially important in applications of conversion between analog and digital information [Knuth, 2005]

The Gray code embedding is an injection γ_G that maps $x \in [0, 1]$ to an infinite sequence $p_0 p_1 p_2 \dots$, where

- $p_i := 1$ if $2^{-i}m 2^{-(i+1)} < x < 2^{-i}m + 2^{-(i+1)}$ for an odd $m, p_i := 0$ if the same holds for an even m, and $p_i := \bot$ if $x = 2^{-i}m 2^{-(i+1)}$ for some integer m
- For a vector $\mathbf{x} = (x^1, ..., x^d)$, $\gamma_G(\mathbf{x}) = p_1^1 ... p_1^d p_2^1 ... p_2^d ...$

Gray Code Embedding

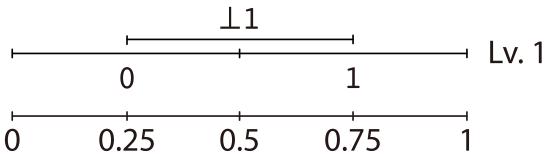


		Λ				
id	value	75		00	0 0	
A	0.113					
В	0.398					
C	0.526					
D	0.701					
Е	0.796					
		0	0.25	0.5	0.75	1

		Λ				
id	value	70	C	00	0 6	
A	0.113					
В	0.398					
C	0.526			⊥1		
D	0.701	—	 	+	I	— Lv. 1
Е	0.796		0		1	
		<u> </u>	0.25	0 5	0.75	
		U	0.23	0.5	0.75	ı

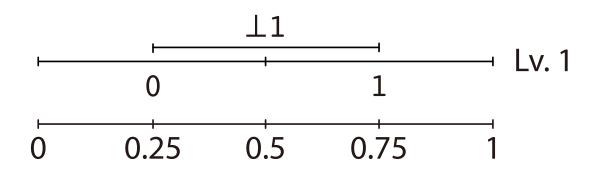
		Λ		\sim	D E	
id	value	7	L	30 0	D _o E _o	
A	0					
В	0,⊥1					
C	$1, \perp 1$			⊥1		
D	$1, \perp 1$	——	<u> </u>			— Lv. 1
Ē	1		0		1	_v. 1
		0	0.25	0.5	0.75	<u></u> 1

/		
(value	id
	0	A
	0, ⊥1	В
	$1, \perp 1$	C
—	$1, \perp 1$	D
	1	Е



0 0, ⊥1
0, ⊥1
1 1
$egin{array}{c} 1, ot1 \ 1, ot1 \end{array}$
1

$$MCL = 1 \cdot 2 = 2$$



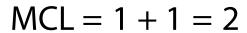
id value	A B C D E
A 00 B 01, ⊥10 C 10, ⊥10 D 10, 1⊥1 E 11, 1⊥1	0 1 1 10 11 Lv. 2 00 01 1 10 11 Lv. 1
	0 0.25 0.5 0.75 1

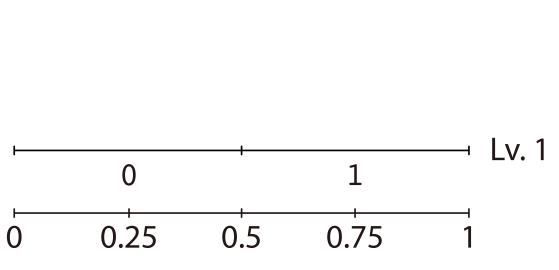
		^	D.	E	
id	value	(D)	(0)(0)	(0)(0)	
A	00	0	⊥1 ⊥1 0	1⊥1	
В	$01, \pm 10$	<u> </u>	+ + + + + + + + + + + + + + + + + + + +	+	— Lv. 2
C	$10, \pm 10$	00	01 11	10 11	· Lv. Z
D	$10, 1 \bot 1$	 	-		— Lv. 1
-	-	·	0	1	
E	$11,1 \bot 1$		U	Τ.	
		———	+ +	+	———
		0 0	.25 0.5	0.75	1

	_	A. B. C. D. E.	
id	value	6 0 0 0	
A B C D E	$00 \\ 01, \bot 10 \\ 10, \bot 10 \\ 10, 1 \bot 1 \\ 11, 1 \bot 1$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	— Lv. 2 — Lv. 1
MCL	$2 \cdot 3 = 6$	0 0.25 0.5 0.75	1

COOL with Binary Encoding

id	value
A	0
В	0
C	1
D	1
Е	1

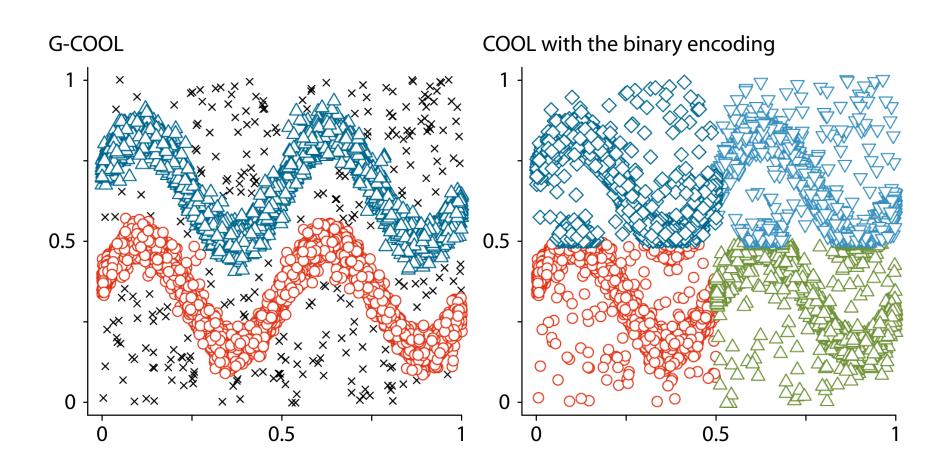




Theoretical Analysis of G-COOL

- Use the Gray code as a fixed encoding in COOL
 - It achieves internal cohesion and external isolation
- Theorem: For the level-k partition \mathscr{C}^k , $x,y \in X$ are in the same cluster if $d_{\infty}(x,y) < 2^{-(k+1)}$
 - Thus x, y are in the different clusters only if $d_{\infty}(x, y) \geqslant 2^{-(k+1)}$
 - $d_{\infty}(x, y) = \max_{i \in \{1, \dots, d\}} |x_i y_i| \quad (L_{\infty} \text{ metric})$
 - Two adjacent intervals overlap and they are agglomerated
- Corollary: In the optimal partition \mathscr{C}_{op} , for all $x \in C$ ($C \in \mathscr{C}_{op}$), its nearest neighbor $y \in C$
 - y is nearest neighbor of $x \iff y \in \operatorname{argmin}_{y \in X} d_{\infty}(x, y)$

Demonstration of G-COOL

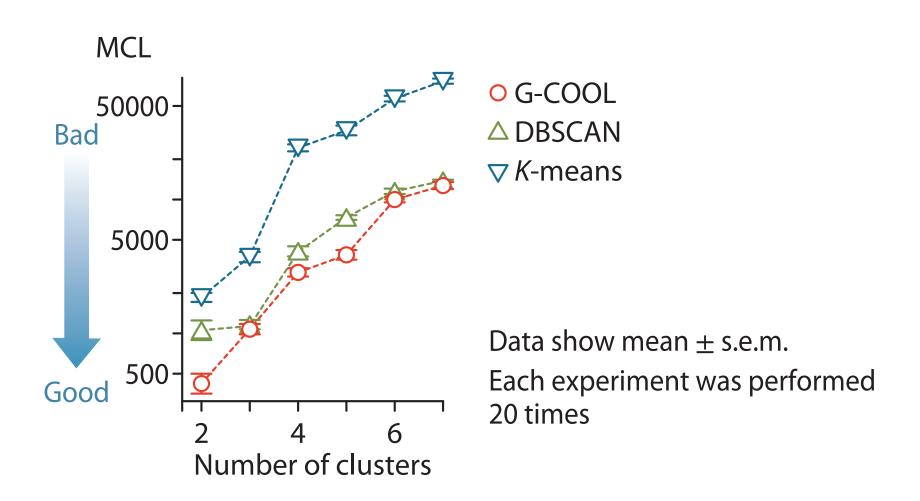


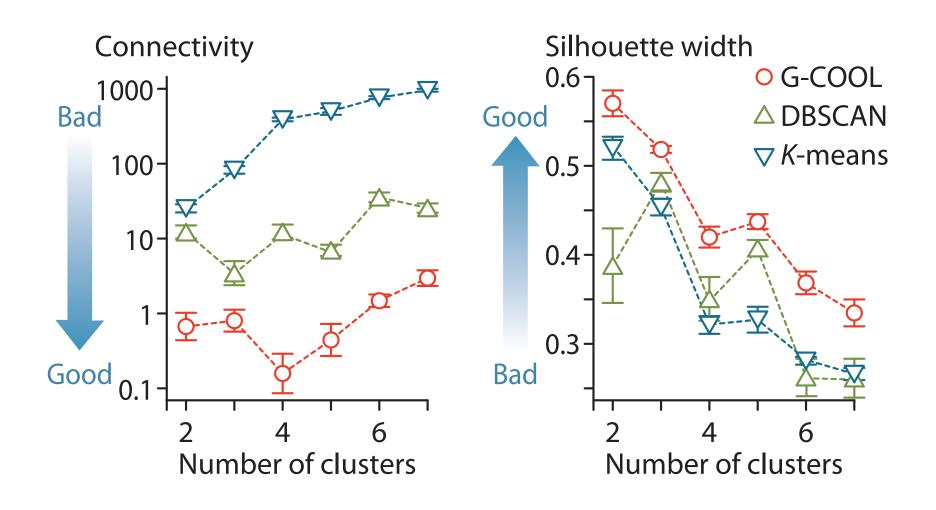
Outline

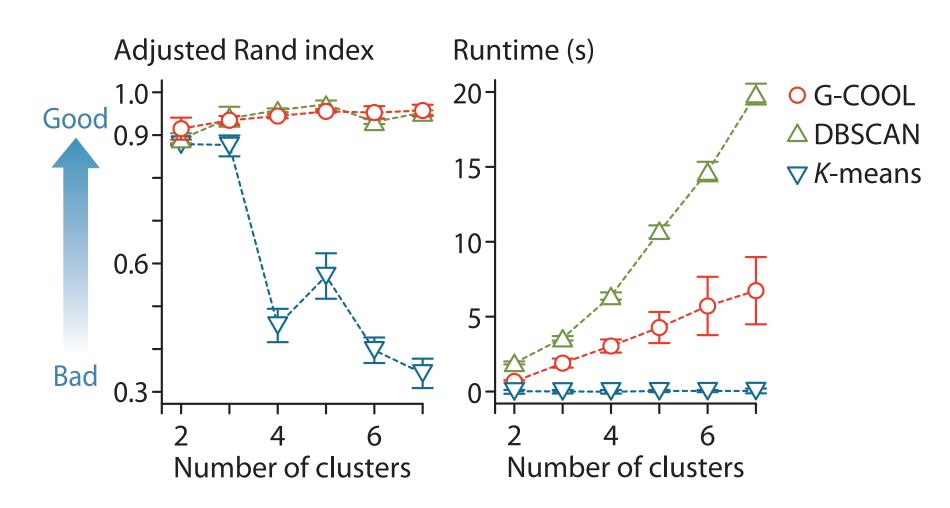
- o. Overview
- 1. Background and Our Strategy
- 2. MCL and Clustering
- 3. COOL Algorithm
- 4. G-COOL: COOL with the Gray Code
- 5. Experiments
- 6. Conclusion

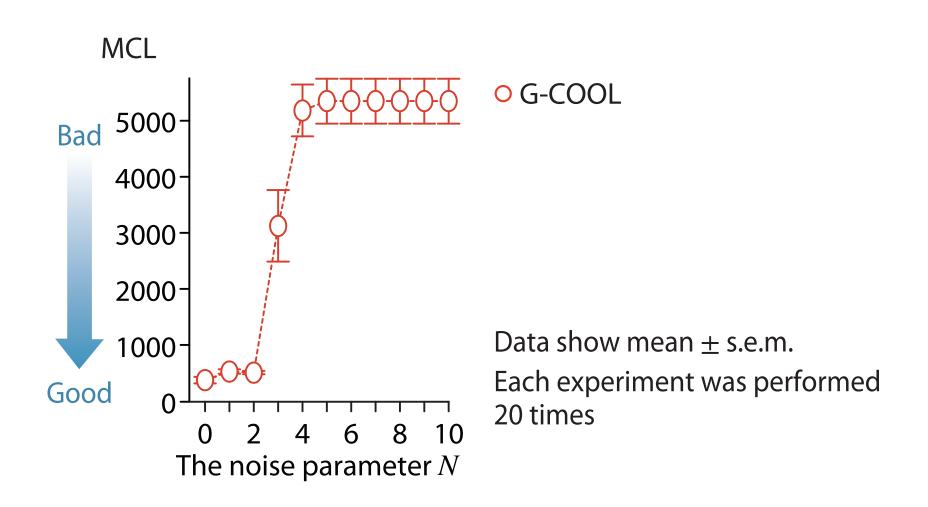
Experimental Methods

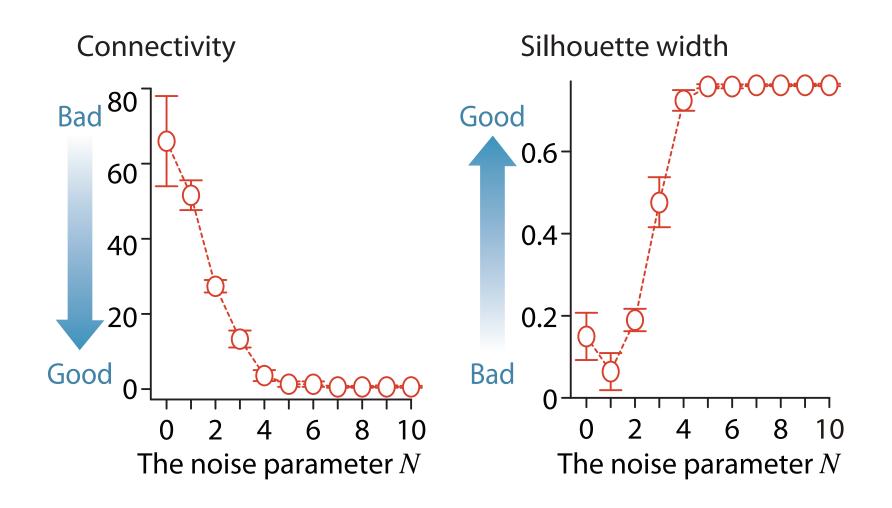
- Analyze G-COOL empirically with synthetic and real datasets compared to DBSCAN and K-means
 - Synthetic datasets were generated by the R package cluster-Generation [Qiu and Joe, 2006]
 - n = 1,500 for each cluster and d = 3
 - Real datasets were geospatial images from Earth-as-Art
 - \circ reduced to 200 \times 200 pixels, translated into binary images
 - All data were normalized by min-max normalization
- G-COOL was implemented by R (version 2.12.1)
- Internal and External measure were used
 - Internal: MCL, connectivity, Silhouette width
 - External: adjusted Rand index

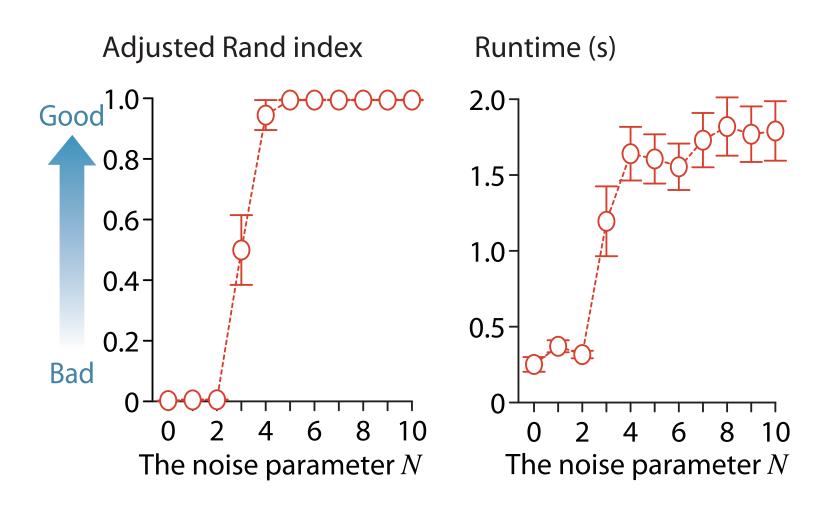




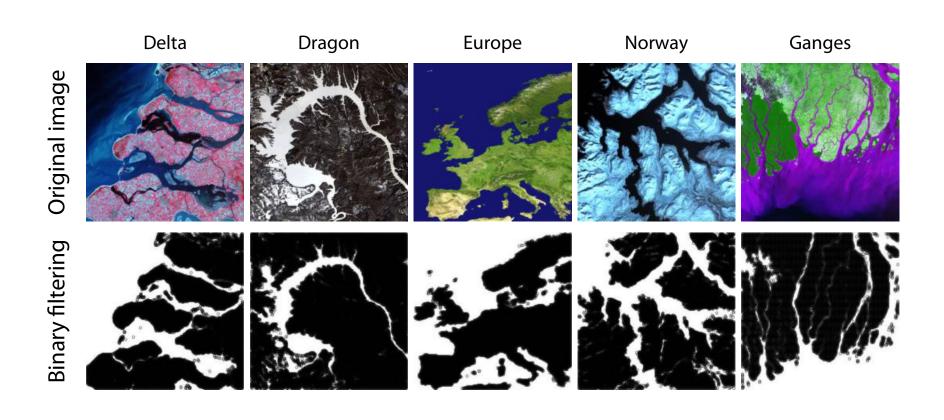




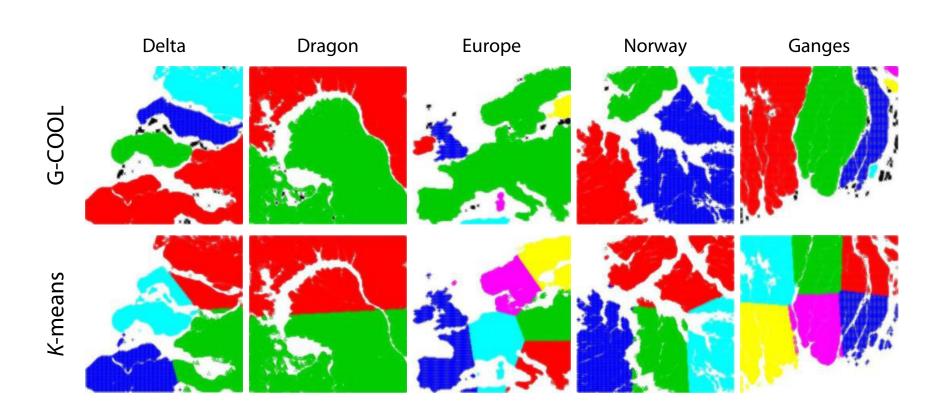




Results (Real datasets)



Results (Real datasets)



Results (Real datasets)

Name	n	K	Running	g time (s)	M	CL
			GC	KM	GC	KM
Delta	20748	4	1.158	0.012	4010	4922
Dragon	29826	2	0.595	0.026	3906	7166
Europe	17380	6	2.404	0.041	2320	12210
Norway	22771	5	0.746	0.026	1820	6114
Ganges	18019	6	0.595	0.026	2320	12526

GC: G-COOL, KM: K-means

Outline

- o. Overview
- 1. Background and Our Strategy
- 2. MCL and Clustering
- 3. COOL Algorithm
- 4. G-COOL: COOL with the Gray Code
- 5. Experiments
- 6. Conclusion

Conclusion

- Integrate clustering and its evaluation in the codingoriented manner
 - An effective solution for two essential problems, how to measure goodness of results and how to find good clusters
 - No distance calculation and no data distribution

Key ideas:

- 1. Fix of an encoding scheme for real-valued variables
 - Introduced the MCL focusing on compression of clusters
 - Formulated clustering with the MCL, and constructed COOL that finds the global optimal solution linearly

2. The Gray code

 We showed efficiency and effectiveness of G-COOL by theoretically and experimentally

Appendix

Notation (1/2)

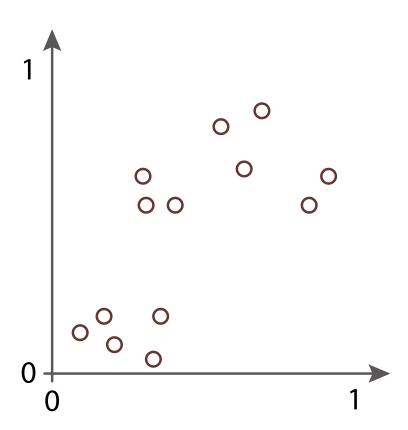
- A datum $\mathbf{x} \in \mathbb{R}^d$, a data set $X = \{x_1, \dots, x_n\}$
 - +X is the number of elements in X
 - $-X \setminus Y$ is the relative complement of Y in X
- Clustering is partition of X into K subsets (clusters) C_1, \ldots, C_K
 - $-C_i \neq \emptyset$ and $C_i \cap C_j = \emptyset$
 - We call $\mathscr{C} = \{C_1, \dots, C_K\}$ a partition of X
 - $-\mathscr{C}(X) = \{\mathscr{C} \mid \mathscr{C} \text{ is a partition of } X\}$
- The set of finite and infinite sequences over an alphabet Σ are denoted by Σ^* and Σ^{ω} , resp.
 - The length |w| is the number of symbols other than \perp
 - If $w = 11 \perp 100 \perp \perp \dots$, then |w| = 5
 - For a set of sequences W, $|W| = \sum_{w \in W} |w|$

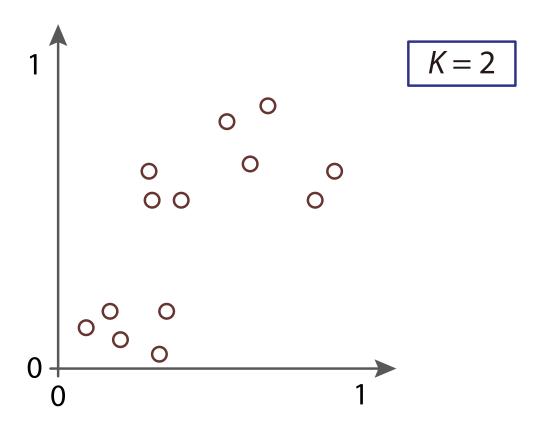
Notation (2/2)

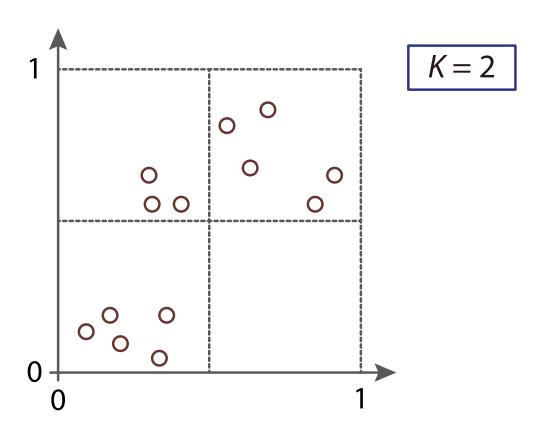
- An embedding of \mathbb{R}^d is an injective function γ from \mathbb{R}^d to Σ^ω
- For $p, q \in \Sigma^{\omega}$, define $p \leq q$ if $p_i = q_i$ for all i with $p_i \neq \bot$
 - Intuitively, q is more concrete than p
- For $w \in \Sigma^*$, we write $w \sqsubset p$ if $w \perp^{\omega} \leq p$
 - $\uparrow w = \{p \in \text{range}(\gamma) \mid w \sqsubset p\} \text{ for } w \in \Sigma^*$
 - ↑ $W = \{p \in \text{range}(y) \mid w \sqsubset p \text{ for some } w \in W\} \text{ for } W \subseteq \Sigma^*$
- The following monotonicity holds
 - $\gamma^{-1}(\uparrow v) \subseteq \gamma^{-1}(\uparrow w) \text{ iff } v \perp^{\omega} \geqslant w \perp^{\omega}$

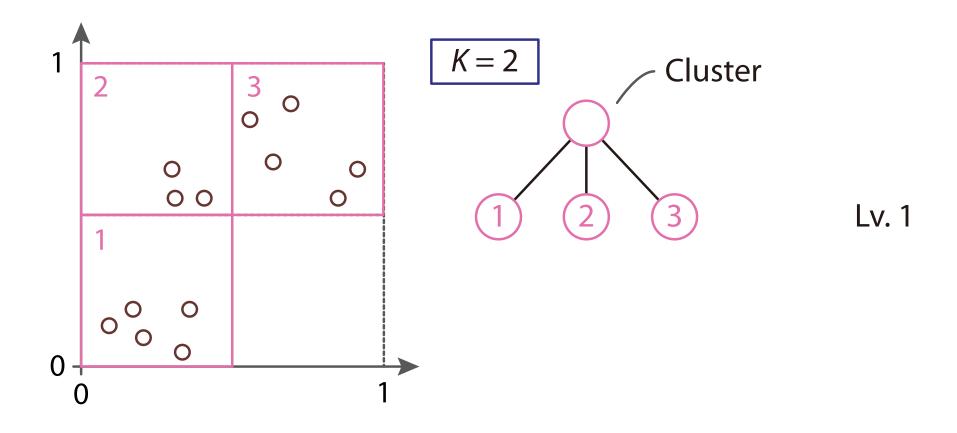
Optimization by COOL (cont.)

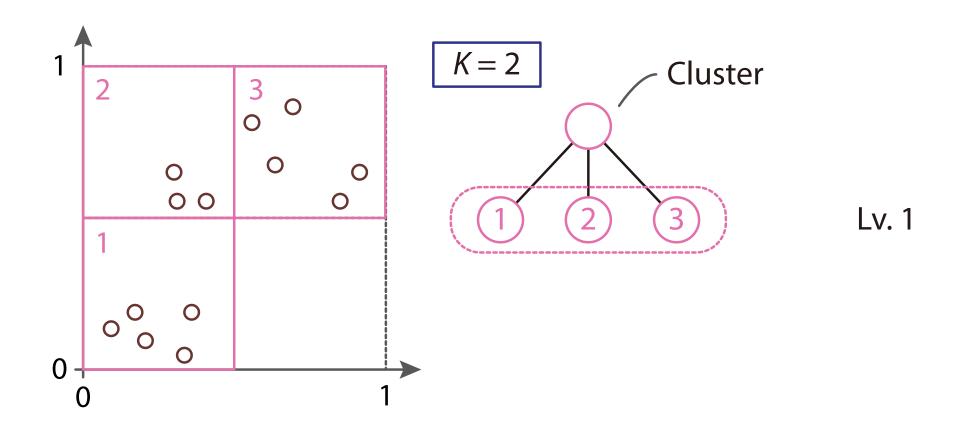
- The optimal partition \mathcal{C}_{op} can be constructed by the level- k partitions
- For all $C \in \mathscr{C}_{op}$, there exists k such that $C \in \mathscr{C}^k$
- The level-k partitions have the hierarchical structure
 - For each $C \in \mathscr{C}^k$ we have $\bigcup \mathscr{D} = C$ for some $D \subseteq \mathscr{C}^{k+1}$
 - COOL is similar to divisive hierarchical clustering
- COOL always outputs the global optimal partition $\mathscr{C}_{\mathsf{op}}$
- The time complexity is O(nd) (best) and O(nd + K!) (worst)
 - Usually $K \ll n$ holds, hence O(nd)

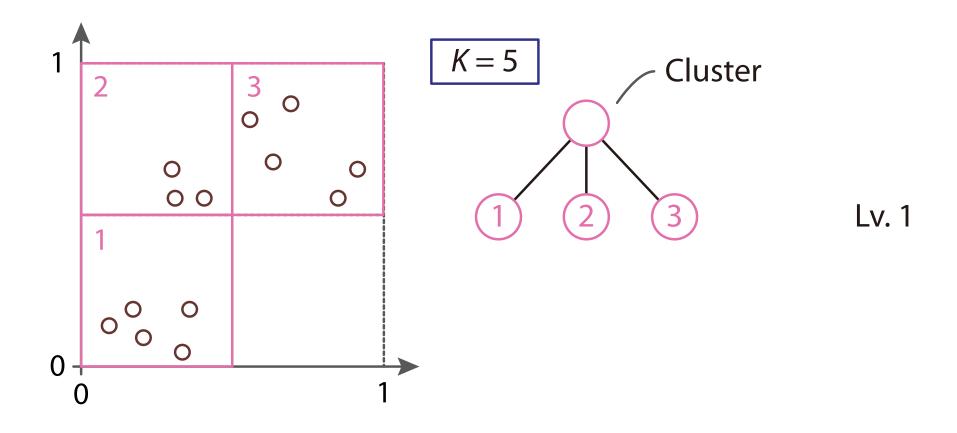


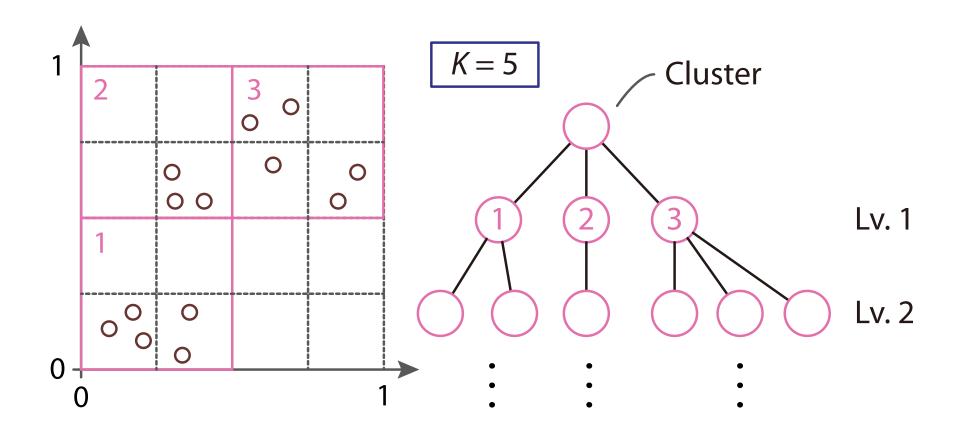


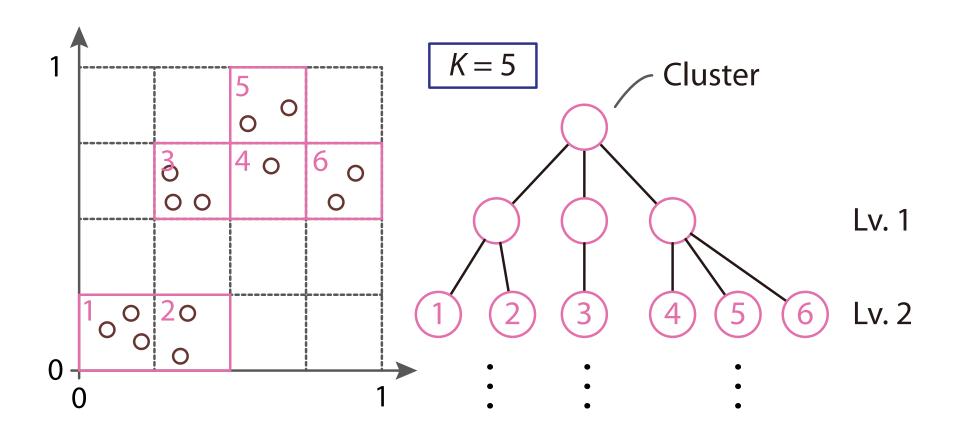


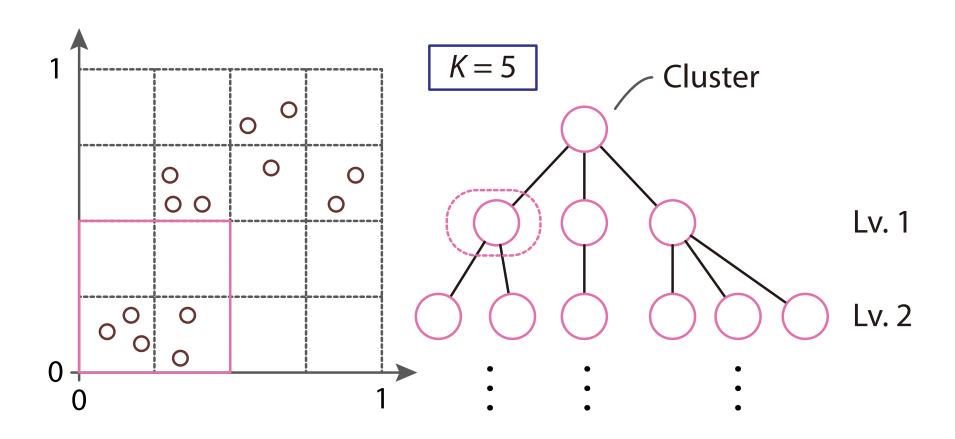


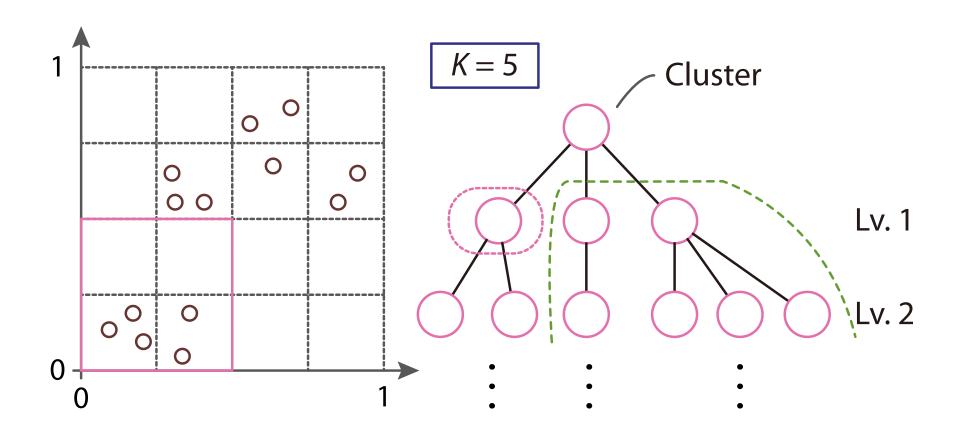


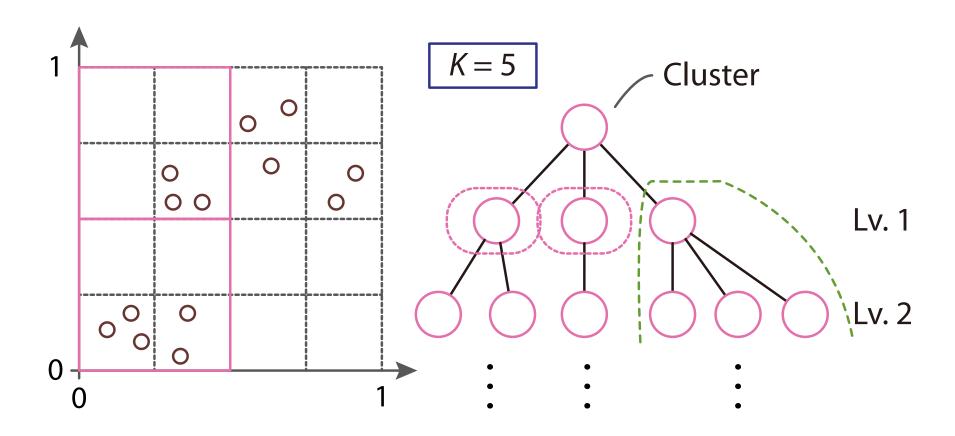


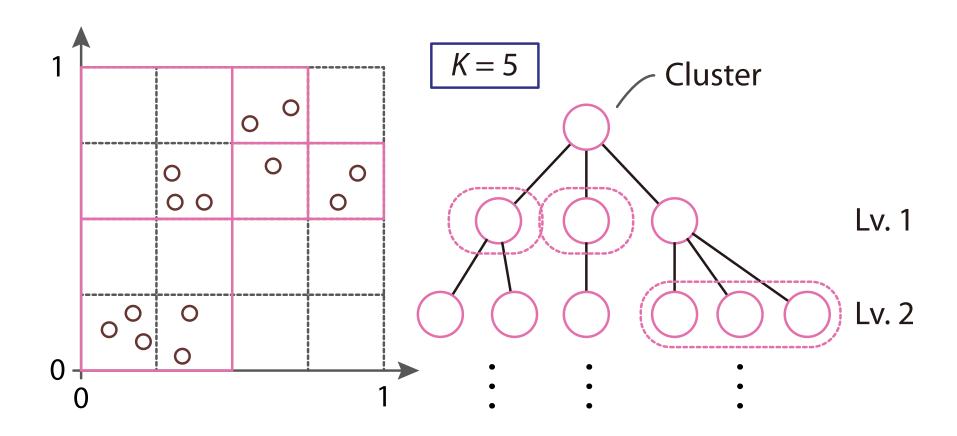












The Multi-Dimensional Gray Code

- Use the wrapping function $\varphi(p^1, \dots, p^d) := p_1^1 \dots p_1^d p_2^1 \dots p_2^d \dots$
 - Define the *d*-dimensional Gray code embedding $\gamma_G^d: \mathcal{I} \to \Sigma_{\perp,d}^{\omega}$ by $\gamma_G^d(x_1,\ldots,x_d) := \varphi(\gamma_G(x_1),\ldots,\gamma_G(x_d))$
- We abbreviate d of γ_G^d if it is understood from the context

Internal Measures

- Connectivity [Handl et al., 2005]
 - $Conn(\mathscr{C}) = \sum_{x \in X} \sum_{i=1}^{M} f(x, nn(x, i))/i$
 - nn(x, j) is the i-th neighbor of x, f(x, y) is 0 if x and y belong to the same cluster, and 1 otherwise
 - M is an input parameter (we set as 10)
 - Takes values from 0 to ∞ , should be minimized
- Silhouette width
 - The average of Silhouette value S(x) for each x $S(x) = (b(x) a(x) / \max(b(x), a(x)))$
 - $a(x) = ||C||^{-1} \sum_{y \in C} d(x, y) (x \in C)$
 - $b(x) = \min_{D \in \mathcal{C} \setminus C} \|D\|^{-1} \sum_{y \in D} d(x, y)$
 - Takes values from -1 to 1, should be maximized

External Measures

- Adjusted Rand index
 - Let the result be $\mathscr{C} = \{C_1, \dots, C_K\}$ and the correct partition be $\mathscr{D} = \{D_1, \dots, D_M\}$
 - Suppose $n_{ij} := ||\{x \in X \mid x \in C_i, x \in D_j\}||$. Then $\frac{\sum_{i,j \mid n_{ij}} C_2 (\sum_{i \mid |C_i||} C_2 \sum_{h \mid |D_j||} C_2)/_n C_2}{2^{-1} (\sum_{i \mid |C_i||} C_2 + \sum_{h \mid |D_i||} C_2) (\sum_{i \mid |C_i||} C_2 \sum_{h \mid |D_j||} C_2)/_n C_2}$

Discussion

- Results for synthetic datasets
 - Best performance under the internal measures
 - (nearly) Best performance under the internal measures
 - G-COOL is efficient and effective
 - DBSCAN is sensitive to input parameters
 - The MCL works well as an internal measure
- Results for real datasets
 - not good, and not bad
 - There are no clear clusters originally
- G-COOL is a good clustering method

Related Work

- Partitional methods [Chaoji et al., 2009]
- Mass-based methods [Ting and Wells, 2010]
- Density-based methods (DBSCAN [Ester et al., 1996])
- Hierarchical clustering methods (CURE [Guha et al., 1998], CHAMELEON [Karypis et al., 1999])
- Grid-based methods (STING [Wang et al., 1997], WaveCluster [Sheikholeslami et al., 1998])

Future Works

- Speeding up by using tree-structures such as BDD
- Apply to anomaly detection
- Theoretical analysis, in particular relation with Computable Analysis
 - Admissibility is a key property

References

- [Berkhin, 2006] P. Berkhin. A survey of clustering data mining techniques. *Grouping Multidimensional Data*, pages 25–71, 2006.
- [Chaoji et al., 2009] V. Chaoji, M. A. Hasan, S. Salem, and M. J. Zaki. SPARCL: An effective and efficient algorithm for mining arbitrary shape-based clusters. *Knowledge and Information Systems*, 21(2):201–229, 2009.
- [Cilibrasi and Vitányi, 2005] R. Cilibrasi and P. M. B. Vitányi. Clustering by compression. *IEEE Transactions on Information Theory*, 51(4):1523–1545, 2005.
- [Ester et al., 1996] M. Ester, H. P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering clusters in large spatial databases with noise. In *Proceedings of KDD*, 96, 226–231, 1996.
- [Guha et al., 1998] S. Guha, R. Rastogi, and K. Shim. CURE: An efficient clustering algorithm for large databases. *Information Systems*, 26(1):35–58, 1998.
- [Handl et al., 2005] J. Handl, J. Knowles, and D. B. Kell. Computational

- cluster validation in post-genomic data analysis. *Bioinformatics*, 21(15):3201, 2005.
- [Karypis *et al.*, 1999] G. Karypis, H. Eui-Hong, and V. Kumar. CHAMELEON: Hierarchical clustering using dynamic modeling. *Computer*, 32(8):68–75, 1999.
- [Kontkanen and Myllymäki, 2008] P. Kontkanen and P. Myllymäki. An empirical comparison of NML clustering algorithms. In *Proceedings of Information Theory and Statistical Learning*, 2008.
- [Kontkanen *et al.*, 2005] P. Kontkanen, P. Myllymäki, W. Buntine, J. Rissanen, and H. Tirri. An MDL framework for data clustering. In P. Grünwald, I. J. Myung, and M. Pitt, editors, *Advances in Minimum Description Length: Theory and Applications*. MIT Press, 2005.
- [Knuth, 2005] D. E. Knuth. *The Art of Computer Programming, Volume 4, Fascicle 2: Generating All Tuples and Permutations*. Addison-Wesley Professional, 2005.
- [Qiu and Joe, 2006] W. Qiu and H. Joe. Generation of random clusters with specified degree of separation. *Journal of Classification*, 23:315–334, 2006.

- [Sheikholeslami et al., 1998] G. Sheikholeslami, S. Chatterjee, and A. Zhang. WaveCluster: A multi-resolution clustering approach for very large spatial databases. In *Proceedings of the 24th International Conference on Very Large Data Bases*, pages 428–439, 1998.
- [Ting and Wells, 2010] K. M. Ting and J. R. Wells. Multi-dimensional mass estimation and mass-based clustering. In *Proceedings of 10th IEEE International Conference on Data Mining*, pages 511 520, 2010.
- [Tsuiki, 2002] Hideki Tsuiki. Real number computation through Gray code embedding. *Theoretical Computer Science*, 284(2):467–485, 2002.
- [Wang et al., 1997] W. Wang, J. Yang, and R. Muntz. STING: A statistical information grid approach to spatial data mining. In *Proceedings* of the 23rd International Conference on Very Large Data Bases, pages 186–195, 1997.
- [Weihrauch, 2000] K. Weihrauch. *Computable Analysis*. Springer, 2000.