Learning to Infer Social Ties in Large Networks

Wenbin Tang, Honglei Zhuang, Jie Tang
Dept. of Computer Science
Tsinghua University

Real social networks are complex...

- Nobody exists only in one social network.
- Public network vs. private network
- Business network vs. family network
- However, existing networks (e.g., Facebook and Twitter) are trying to lump everyone into one big network
- FB tries to solve this problem via lists/groups
- However...
- Google+

which circle? Users do not take time to create it.

Even complex than we imagined!

- Only 16% of mobile phone users in Europe have created custom contact groups
- users do not take the time to create it
- users do not know how to circle their friends
- The fact is that our social network is black-white... How to infer social ties?

Example: Mobile network

Example: Coauthor networks

Advisor-Advisee
Advisee-Advisor
Coauthor

Challenges

1. Relationships in Mobile Network

Challenges

1. Relationships in Mobile Network

Challenges:

3. - A generalized framework for inferring social ties?
Co_{0}

- A scalable, efficient method?

Problem Formulation

Input: $G=\left(V, E^{L}, E^{U}, R^{L}, W\right)$

Problem Formulation

Input: $G=\left(\cup E^{L}, E^{U}, R^{L}, W\right)$

Problem Formulation Input: $G=\left(V(E) E^{U}\right.$, (R) $\left.w\right)$

Problem Formulation

 Input: $\left.G=\left(V, E^{L}, E\right), R^{L}, W\right)$

Problem Formulation

 Input: $\left.G=\left(V, E^{L}, E\right), R^{L}, W\right)$

Problem Formulation

$$
\text { Input: } G=\left(V, E^{L}, E^{U}, R^{L}, W\right)
$$

> Input:
> $G=\left(V, E^{L}, E^{U}, R^{L}, W\right)$

Basic Idea

Partially Labeled Pairwise Factor Graph Model (PLP-FGM)

Partially Labeled Pairwise Factor Graph Model (PLP-FGM)

Map relationship to nodes in model

Partially Labeled Pairwise Factor Graph Model (PLP-FGM)

Map relationship to nodes in model
Example:
Call frequency between two users?

Partially Labeled Pairwise Factor Graph Model (PLP-FGM)

Map relationship to nodes in model

Example:

A makes call to B immediately after the call to C.

Partially Labeled Pairwise Factor Graph Model (PLP-FGM)

Map relationship to nodes in model

Partially Labeled Pairwise Factor Graph Model (PLP-FGM)

Problem:

Ma
For each relationship, identify which type has the highest probability?

Solutions $_{\left(\text {con't }^{\prime}\right)}$

- Different ways to instantiate factors
- We use exponential-linear functions
- Attribute Factor:

$$
f\left(y_{i}, \mathbf{x}_{i}\right)=\frac{1}{Z_{\lambda}} \exp \left\{\lambda^{T} \boldsymbol{\Phi}\left(y_{i}, \mathbf{x}_{i}\right)\right\}
$$

- Correlation / Constraint Factor:

$$
\begin{aligned}
& g\left(y_{i}, G\left(y_{i}\right)\right)=\frac{1}{Z_{\alpha}} \exp \left\{\sum_{y_{j} \in G\left(y_{i}\right)} \alpha^{T} \mathbf{g}\left(y_{i}, y_{j}\right)\right\} \\
& h\left(y_{i}, H\left(y_{i}\right)\right)=\frac{1}{Z_{\beta}} \exp \left\{\sum_{y_{j} \in H\left(y_{i}\right)} \beta^{T} \mathbf{h}\left(y_{i}, y_{j}\right)\right\}
\end{aligned}
$$

- $\quad \theta=[\lambda, \alpha, \beta], s=\left[\Phi^{T}, g^{T}, h^{T}\right]^{T}$
- Log-Likelihood of labeled data:

$$
\mathcal{O}(\theta)=\log \sum_{Y \mid Y^{L}} \exp \left\{\theta^{T} \mathbf{S}\right\}-\log \sum_{Y} \exp \left\{\theta^{T} \mathbf{S}\right\}
$$

Learning Algorithm

- Maximize the log-likelihood of labeled relationships

```
Input: learning rate \(\eta\)
Output: learned parameters \(\theta\)
Initialize \(\theta\);
repeat
    Calculate \(\mathbb{E}_{p_{\theta}\left(Y \mid Y^{L}, G\right)} \mathbf{S}\) using LBP ;
    Calculate \(\mathbb{E}_{p_{\theta}(Y \mid G)} \mathbf{S}\) using LBP ;
    Calculate the gradient of \(\theta\) according to Eq. 7:
    \(\nabla_{\theta}=\mathbb{E}_{p_{\theta}\left(Y \mid Y^{L}, G\right)} \mathbf{S}-\mathbb{E}_{p_{\theta}(Y \mid G)} \mathbf{S}\)
    Update parameter \(\theta\) with the learning rate \(\eta\) : Expectation Computing
    \(\theta_{\text {new }}=\theta_{\text {old }}-\eta \cdot \nabla_{\theta}\) Loopy Belief Propagation
until Convergence;
```

Algorithm 1: Learning PLP-FGM.

Gradient Decent Method

Challenges

1. Relationships in Mobile Network

Challenges:

3. - A generalized framework for inferring social ties?

- A scalable, efficient method?

Distributed Learning

Data Sets

- Coauthor Network (Publication)
- To infer Advisor-Advisee relationship
- Papers from DBLP
- Email Network (Email)
- To infer Manger-Subordinate relationship
- Using Enron Email Dataset
- Mobile Network (Mobile)
- To infer Friendship
- 107 users (ten-month). Published by MIT

Data Set	Users	Unlabeled Relationships	Labeled Relationships
Publication	$1,036,990$	$1,984,164$	6,096
Email	151	3,424	148
Mobile	107	5,122	314

Baselines

- Baselines:
- SVM:
- Use the same features defined in our model to train a classification model
- TPFG:
- An unsupervised method to identify advisor-advisee relationships
- PLP-FGM-S
- Do not use partially-labeled property
- Train parameters on the labeled sub-graph

Performance Analysis

Data Set	Method	Precision	Recall	F $_{\mathbf{1}}$-score
Publication	SVM	72.5	54.9	62.1
	TPFG	82.8	$\mathbf{8 9 . 4}$	86.0
	PLP-FGM-S	77.1	78.4	77.7
	PLP-FGM	$\mathbf{9 1 . 4}$	87.7	$\mathbf{8 9 . 5}$
Email	SVM	79.1	$\mathbf{8 8 . 6}$	83.6
	PLP-FGM-S	85.8	85.6	85.7
	PLP-FGM	$\mathbf{8 8 . 6}$	87.2	$\mathbf{8 7 . 9}$
Mobile	SVM	$\mathbf{9 2 . 7}$	64.9	76.4
	PLP-FGM-S	88.1	71.3	78.8
	PLP-FGM	89.4	$\mathbf{7 5 . 2}$	$\mathbf{8 1 . 6}$

SVM: Use the same feature to train a classification model
TPFG: An unsupervised method to identify advisor-advisee relationships
PLP-FGM-S:Train PLP-FGM model on the labeled sub-graph

Performance Analysis

Data Set	Method	Precision	Recall	F $_{\mathbf{1}}$-score
Publication	SVM	72.5	54.9	62.1
	TPFG	82.8	$\mathbf{8 9 . 4}$	86.0
	PLP-FGM-S	77.1	78.4	77.7
	PLP-FGM	$\mathbf{9 1 . 4}$	87.7	$\mathbf{8 9 . 5}$
Email	SVM	79.1	$\mathbf{8 8 . 6}$	83.6
	PLP-FGM-S	85.8	85.6	85.7
	PLP-FGM	$\mathbf{8 8 . 6}$	87.2	$\mathbf{8 7 . 9}$
Mobile	SVM	$\mathbf{9 2 . 7}$	64.9	76.4
	PLP-FGM-S	88.1	71.3	78.8
	PLP-FGM	89.4	$\mathbf{7 5 . 2}$	$\mathbf{8 1 . 6}$

SVM: Use the same feature to train a classification model
TPFG: An unsupervised method to identify advisor-advisee relationships
PLP-FGM-S:Train PLP-FGM model on the labeled sub-graph

Factor Contribution Analysis (Email)

- Co-Recipient : $a \rightarrow(b, c)$ more than 10 mails
- Co-Manager : (a, b) - (a, c)
- Co-Subordinate: (b, a) - (c, a)

Factor Contribution Analysis (Email)

Distributed Learning Performance

System cs: Armecrimer

Conclusion

- Formulate the problem of inferring the types of social ties
- Propose the PLP-FGM model to solve this problem, and present a distributed learning algorithm
- Validate the approach in different real data sets

Future work

- Make online social networks colorful
- How to involve user into learning process?
- Connect with social theories?

Thank you!

Any Questions?

Correlation Definition

- Mobile Dataset:
- Co-location
- 3 users in the same location.
- Related-call
- A Make a call to B\&C at the same place/time
- For more information, please refer to the paper©

Feature Definition

Data set	Factor	Description
Publication	Paper count	$\left\|P_{i}\right\|, \mid P_{j}$
	Paper ratio	$P_{i}\left\|/\left\|P_{j}\right\|\right.$
	Coauthor ratio	$P_{i} \cap P_{j}\left\|/\left\|P_{i}\right\|,\left\|P_{i} \cap P_{j}\right\| /\left\|P_{j}\right\|\right.$
	Conference coverage	The proportion of the conferences which both v_{i} and v_{j} attended among conferences v_{j} attended.
	First-paper-year-diff	The difference in year of the earliest publication of v_{i} and v_{j}.
Email	Traffics	Sender \quad Recipients Include
		$v_{i} \quad v_{j}$
		$v_{j} \quad \square v_{i}$
		$v_{i} \quad v_{k}$ and not v_{j}
		$v_{j} \quad v_{k}$ and not v_{i}
		$v_{k} \quad v_{i}$ and not v_{j}
		$v_{k} \quad v_{j}$ and not v_{i}
		$v_{k} \quad v_{i}$ and v_{j}
Mobile	\#voice calls	The total number of voice call logs between two users.
	\#messages	Number of messages between two users.
	Night-call ratio	The proportion of calls at night (8pm to 8am).
	Call duration	The total duration time of calls between two users.
	\#proximity	The total number of proximity logs between two users.
	In-role proximity ratio	The proportion of proximity logs in "working place" and in working hours (8 am to 8 pm).

Existing Methods...

- [Diehl:07] try to identify the relationships by learning a ranking function in Email network.
- Wang et al. [Wang:10] propose an unsupervised algorithm for mining the advisor-advisee relationships from the Publication network.
- Both algorithms focus on a specific domain
- not easy to extend to other problems.

