Learning to Infer Social Ties in Large Networks

Wenbin Tang, Honglei Zhuang, Jie Tang Dept. of Computer Science Tsinghua University

Real social networks are complex...

- Nobody exists only in one social network.
 - Public network vs. private network
 - Business network vs. family network
- However, existing networks (e.g., Facebook and Twitter) are trying to lump everyone into one big network
 - FB tries to solve this problem via lists/groups
 - However...
- Google+

which circle? Users do not take time to create it.

Even complex than we imagined!

- Only 16% of mobile phone users in Europe have created custom contact groups
 - users do not take the time to create it
 - users do not know how to circle their friends
- The fact is that our social network is
 black-white...
 How to infer social ties?

Example: Mobile network

Example: Coauthor networks

Coauthor

Challenges

Challenges

Advisor-Advisee

Advisee-Advisor

Coauthor

Problem Formulation Input: $G = (V, E^L, E^U, R^L, W)$

Problem Formulation Input: $G = (V E^L, E^U, R^L, W)$

V: Set of Users

Problem Formulation Input: $G = (V, E^{L}, E^{U}, R^{L}, W)$

V: Set of Users

E^L,*R^L*: Labeled relationships

Problem Formulation Input: $G = (V, E^L, E^D, R^L, W)$

V: Set of Users

E^L,*R^L*: Labeled relationships

E^U: Unlabeled relationships

Problem Formulation Input: $G = (V, E^L, E^D, R^L, W)$

V: Set of Users

E^L,*R^L*: Labeled relationships

E^U: Unlabeled relationships

Output:

 $f: G \rightarrow R$

Problem:

Ma For each relationship, identify which type has the highest probability?

Solutions_(con't)

Different ways to instantiate factors

- We use exponential-linear functions
 - Attribute Factor:

$$f(y_i, \mathbf{x}_i) = \frac{1}{Z_{\lambda}} \exp\{\lambda^T \Phi(y_i, \mathbf{x}_i)\}$$

• Correlation / Constraint Factor:

$$g(y_i, G(y_i)) = \frac{1}{Z_{\alpha}} \exp\{\sum_{y_j \in G(y_i)} \alpha^T \mathbf{g}(y_i, y_j)\}$$
$$h(y_i, H(y_i)) = \frac{1}{Z_{\beta}} \exp\{\sum_{y_j \in H(y_i)} \beta^T \mathbf{h}(y_i, y_j)\}$$

- $\quad \theta = [\lambda, \alpha, \beta], s = [\Phi^T, g^T, h^T]^T$
- Log-Likelihood of labeled data:

$$\mathcal{O}(\theta) = \log \sum_{Y|Y^L} \exp\{\theta^T \mathbf{S}\} - \log \sum_{Y} \exp\{\theta^T \mathbf{S}\}$$

Learning Algorithm

Maximize the log-likelihood of labeled relationships

Input: learning rate η Output: learned parameters θ

Initialize θ ;

repeat

Calculate $\mathbb{E}_{p_{\theta}(Y|Y^{L},G)}\mathbf{S}$ using LBP ; Calculate $\mathbb{E}_{p_{\theta}(Y|G)}\mathbf{S}$ using LBP ; Calculate the gradient of θ according to Eq. 7:

 $\nabla_{\theta} = \mathbb{E}_{p_{\theta}(Y|Y^{L},G)} \mathbf{S} - \mathbb{E}_{p_{\theta}(Y|G)} \mathbf{S}$

Update parameter θ with the learning rate η : Expectation Computing

 $\theta_{new} = \theta_{old} - \eta \cdot \nabla_{\theta}$ Loopy Belief Propagation

until Convergence;

Algorithm 1: Learning PLP-FGM.

Gradient Decent Method

Challenges

Employee

Advisor-Advisee Advisee-Advisor Coauthor

Data Sets

- Coauthor Network (Publication)
 - To infer Advisor-Advisee relationship
 - Papers from DBLP
- Email Network (Email)
 - To infer Manger-Subordinate relationship
 - Using Enron Email Dataset
- Mobile Network (Mobile)
 - To infer Friendship
 - 107 users (ten-month). Published by MIT

Data Set	Users	Unlabeled Relationships	Labeled Relationships
Publication	1,036,990	1,984,164	6,096
Email	151	3,424	148
Mobile	107	5,122	314

Baselines

Baselines:

- SVM:
 - Use the same features defined in our model to train a classification model
- TPFG:
 - An unsupervised method to identify advisor-advisee relationships

- PLP-FGM-S

- Do not use partially-labeled property
- Train parameters on the labeled sub-graph

Performance Analysis

Data Set	Method	Precision	Recall	F ₁ -score	
Publication	SVM	72.5	54.9	62.1	
	TPFG	82.8	89.4	86.0	
	PLP-FGM-S	77.1	78.4	77.7	
	PLP-FGM	91.4	87.7	89.5	
	SVM	79.1	88.6	83.6	
Email	PLP-FGM-S	85.8	85.6	85.7	
	PLP-FGM	88.6	87.2	87.9	
	SVM	92.7	64.9	76.4	
Mobile	PLP-FGM-S	88.1	71.3	78.8	
	PLP-FGM	89.4	75.2	81.6	

SVM: Use the same feature to train a classification model **TPFG**: An unsupervised method to identify advisor-advisee relationships **PLP-FGM-S**:Train PLP-FGM model on the labeled sub-graph

Performance Analysis

Data Set	Method	Precision	Recall	F ₁ -score	
Publication	SVM	72.5	54.9	62.1	
	TPFG	82.8	89.4	86.0	
	PLP-FGM-S	77.1	78.4	77.7	
	PLP-FGM	91.4	87.7	89.5	
	SVM	79.1	88.6	83.6	
Email	PLP-FGM-S	85.8	85.6	85.7	
	PLP-FGM	88.6	87.2	87.9	
	SVM	92.7	64.9	76.4	
Mobile	PLP-FGM-S	88.1	71.3	78.8	
	PLP-FGM	89.4	75.2	81.6	

SVM: Use the same feature to train a classification model **TPFG**: An unsupervised method to identify advisor-advisee relationships **PLP-FGM-S**:Train PLP-FGM model on the labeled sub-graph

Factor Contribution Analysis (Email)

	Data Set	Factor used	F ₁ -score	87.9
		Attributes	64.9	
	Publication	+Co-advisor	75.0(+10.1%)	+7.6
80.3		+Co-advisee	74.7(+9.8%)	
		All	89.5(+24.6%)	
	Email	Attributes	80.3	
		+Co-recipient	80.6(+0.3%)	
Attributes Only		+Co-manager	83.2(+2.9%)	All
		+Co-subordinate	85.0(+4.7%)	
		All	87.9(+7.6%)	
		Attributes	80.2	nails
	Mobile	+Co-location	80.4(+0.2%)	
	Mobile	+Related-call	80.2(+0.0%)	
		All	81.6(+1.4%)	

Distributed Learning Performance

System (Ametaliar

Conclusion

- Formulate the problem of inferring the types of social ties
- Propose the PLP-FGM model to solve this problem, and present a distributed learning algorithm
- Validate the approach in different real data sets

Future work

- Make online social networks colorful
- How to involve user into learning process?
- Connect with social theories?

Thank you!

Any Questions?

Correlation Definition

- Mobile Dataset:
 - Co-location
 - 3 users in the same location.
 - Related-call
 - A Make a call to B&C at the same place/time

• For more information, please refer to the paper

Feature Definition

Data set	Factor	Description		
	Paper count	$ P_i , P$	P_j	
	Paper ratio	$ P_i / P_j $		
Publication	Coauthor ratio	tio $ P_i \cap P_j / P_i , P_i \cap P_j / P_j $		
	Conference coverage	The pro	oportion of the conferences which both v_i and v_j at-	
		tended among conferences v_i attended.		
	First-paper-year-diff	The dif	ference in year of the earliest publication of v_i and	
		v_j .		
		Sender	Recipients Include	
		v_i	v_j	
Email	Traffics	v_j	v_i	
		v_i	v_k and not v_j	
		v_j	v_k and not v_i	
		v_k	v_i and not v_j	
		v_k	v_j and not v_i	
		v_k	v_i and v_j	
	#voice calls	The total number of voice call logs between two users.		
	#messages	Number of messages between two users.		
Mobile	Night-call ratio	The proportion of calls at night (8pm to 8am).		
	Call duration	The total duration time of calls between two users.		
	#proximity	The total number of proximity logs between two		
		users.		
	In-role proximity ratio			
		working	g hours (8am to 8pm).	

Existing Methods...

- [Diehl:07] try to identify the relationships by learning a ranking function in Email network.
- Wang et al. [Wang:10] propose an unsupervised algorithm for mining the advisor-advisee relationships from the Publication network.
- Both algorithms focus on a specific domain
 - not easy to extend to other problems.