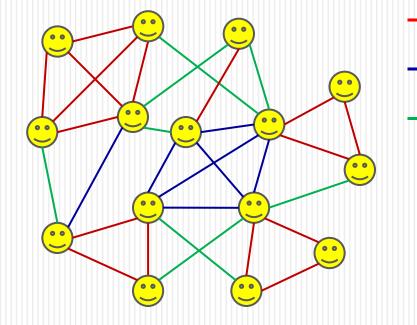


A Community-Based Pseudolikelihood Approach for Relationship Labeling in Social Networks

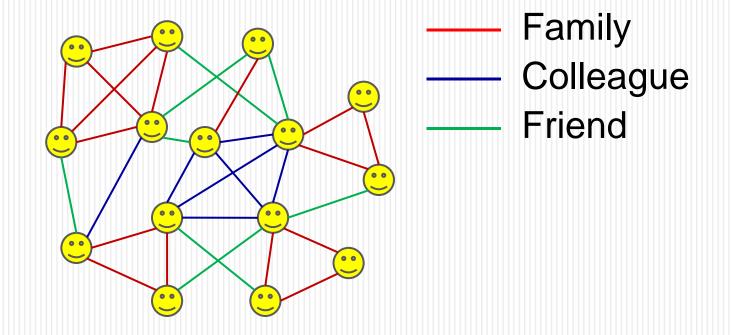
Huaiyu Wan, Youfang Lin, Zhihao Wu, Houkuan Huang

- Introduction
- Related Works
- Our Proposed Approach
- Experiments & Results
- Conclusion & Future Work

Relationship Labeling Problem

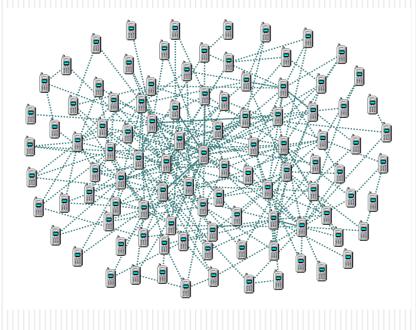


Family
Colleague
Friend

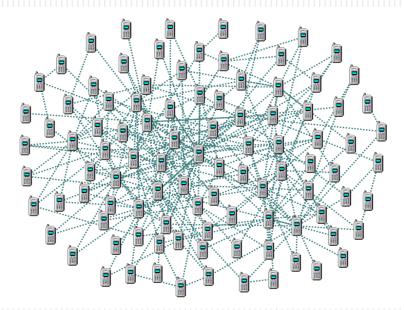


Given a snapshot of a social network, can we infer the types of the relationships between the individuals?

Mobile Social Networks



Mobile Social Networks



Online Social Networks

Criminal Networks

How to label relationships?

- Traditional Classifiers
 - use only content attributes
 - require the IID assumption

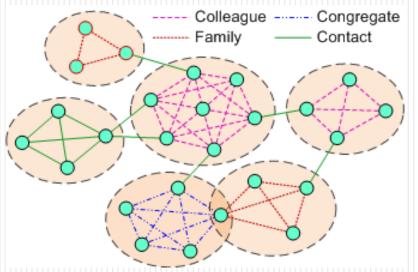
- Traditional Classifiers
 - use only content attributes
 - require the IID assumption
 - Relational Classifiers
 - Taskar et al. proposed relational Markov networks (RMNs) and use it for link prediction
 - Zhao et al. use RMNs to label the relationships in terrorist social networks

- Collective Classification
 - not require the IID assumption
 - more accurate then separate classification
- Undirected Graphical Model
 - not require the acyclicity constraint
- Discriminative Training
 - more accurate over generative training given enough training examples

- High Computational Complexity
 - multiple rounds of approximate inference
- Uncertain Prediction Accuracy
 - the accuracy is directly dependent on the definition of relational clique templates

Ideas of Our Approach

- Using Community Structure to Assist Collective Classification
 - community structure is one of the most important properties
 - "birds of a feather flock together"



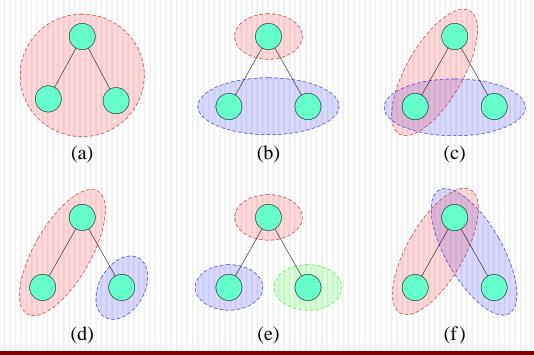
Ideas of Our Approach

- Using the Pseudolikelihood Technique to Drop the Computational Complexity
 - an effective alternative of likelihood
 - successfully used in relational learning field

- Step 1: Community Detection
 - to find a meaningful division of nodes in a social network
 - non-overlapping & overlapping algorithms

- Step 2: Constructing CRFs
 - goal: define the cliques of CRFs (i.e., establish the links between the relationship labels)
 - just consider pairwise CRFs here

- Step 2: Constructing CRFs
 - goal: define the cliques of CRFs (i.e., establish the dependencies between the relationship labels)
 - just consider pairwise CRFs here



Step 3: The Pseudolikelihood Model

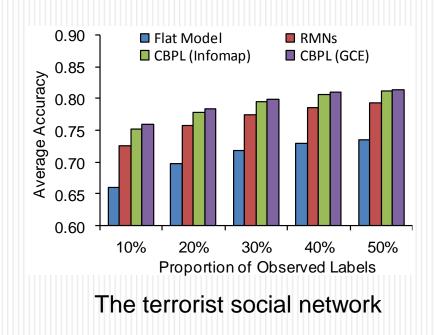
	Pseudolikelihood	Likelihood		
Joint Probability	$P(\mathbf{y} \mid \mathbf{x}, \mathbf{r}) = \prod_{i=1}^{n} P(y_i \mid MB(y_i))$ $P(y_i \mid MB(y_i)) = \frac{1}{Z_i(\mathbf{x}_i, \mathbf{r}_i)} \prod_{v_j \in MB(y_i)} \phi(y_i, v_j)$	$P(\mathbf{y} \mid \mathbf{x}, \mathbf{r}) = \frac{1}{Z(\mathbf{x}, \mathbf{r})} \prod_{C \in C} \prod_{c \in C(I)} \phi_C(\mathbf{x}_c, \mathbf{y}_c)$		
Partition Function	$Z_i(\mathbf{x}_i, \mathbf{r}_i) = \sum_{y_i'} \prod_{v_j \in MB(y_i')} \phi(y_i', v_j)$	$Z(\mathbf{x},\mathbf{r}) = \sum_{\mathbf{y}'} \prod_{C \in C} \prod_{c \in C(I)} \phi_C(\mathbf{x}_c, \mathbf{y}'_c)$		

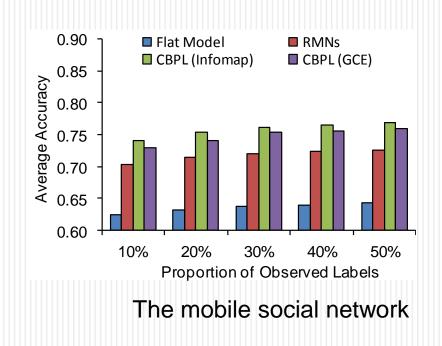
Datasets

- a terrorist networks
 - ✓ 244 nodes and 840 relationships
 - ✓ 1224 features for each relationship
- a mobile social networks
 - ✓ 1623 nodes & 4295 relationships
 - ✓ take the communication information between two users as the features of their relationships
 - ✓ use service packages (family or group package) to label the dataset

Results

average accuracy





Results

average training times

	The t	errorist soc	ial network		
Approach –	Proportion of Observed Labels				
	10%	20%	30%	40%	50%
Flat Model	0.81	2.06	3.64	7.79	11.83
RMNs	4.49	25.86	96.41	289.05	820.60
CBPL (Infomap)	2.01	6.02	15.48	34.85	51.27
CBPL (GCE)	2.53	7.91	18.96	39.58	58.73
	The	mobile soci	al network		
Approach –	Proportion of Observed Labels				
	10%	20%	30%	40%	50%
Flat Model	0.79	1.64	2.45	3.31	5.87
RMNs	6.53	33.62	133.84	437.76	1362.54
CBPL (Infomap)	1.26	4.92	12.85	27.41	46.05
CBPL (GCE)	1.67	5.63	15.39	32.27	53.72

Conclusion & Future Works

- proposed a relationship labeling approach which:
 - uses community structure to assist construct CRFs
 - uses the pseudolikelihood technique to drop the computational complexity

Conclusion & Future Works

- proposed a relationship labeling approach which:
 - uses community structure to assist construct CRFs
 - uses the pseudolikelihood technique to drop the computational complexity
- Future Works:
 - the quantification of community structure
 - the generalization of our approach to multipartite or even multimode networks

Thank you!

Huaiyu Wan, Youfang Lin, Zhihao Wu, Houkuan Huang