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Problem and motivations

@ Supervised classification
problem

@ A geometric point of view
on the manifold processing

© In 3 dimension problems,
strong parallel with
computer graphics



Q Sampling problems in computer graphics

© Application to machine learning and classification
© Experimental results

@ Future works

© Conclusion
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Qutline

@ Sampling problems in computer graphics
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Sampling problems
©0®000

Sampling point clouds in computer graphics

@ Too many points required to
sample real life objects

©Q The reduction of the
number of samples leads
to compact storing

@ Only the informative enough
samples are kept
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Sampling problems
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Spectral sampling

Need for metric to quantify the modification of the definition of the
object surface induced by a new sample [Oztireli, Alexa & Gross, 2010].
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Sampling problems

@ The surface is assumed to be
a Riemannian manifold .#
(i.e. differentiable
everywhere).

@ The Laplace-Beltrami
operator AA(.) is a
generalization of the Laplace
operator for Riemannian
manifolds.

© The spectrum of A(#)
completely defines .Z up to
an isometry.
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Sampling problems

@ The surface being unknown, the computation of A(.Z) is
impossible.

Q It can be approximated with the Gram matrix K of the
samples {x1,...,x;,...xn}, fitted with a Gaussian
dissimilarity measure:

[Ixi — ][>

© The spectrum of K is used to characterize the real object
surface [Coifman & Lafon, 2006] and its pertubation is used to
evaluate the interest of a sample [Oztireli, Alexa & Gross, 2010].
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Application to ML

© Application to machine learning and classification
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The pertubation of K:

@ In computer graphics, it quantifies the interest of a sample.

Perturbation of

Projection onto

the Manifold

the Manifold
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The pertubation of K:

@ In computer graphics, it quantifies the interest of a sample.

@ |In statistics ?

Perturbation of

Projection onto

the Manifold

the Manifold
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Application to ML

The pertubation of K:

@ In computer graphics, it quantifies the interest of a sample.
Q In statistics 7

@ Only an outlier modifies the distribution of its class

Estimated density
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Application to ML

The pertubation of K:
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Application to ML

The pertubation of K:

@ In computer graphics, it quantifies the interest of a sample.
Q In statistics 7

@ Only an outlier modifies the distribution of its class
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Application to ML

The pertubation of K:
@ In computer graphics, it quantifies the interest of a sample.
Q In statistics ?
@ Only an outlier modifies the distribution of its class
@ An interesting clue of the membership of a sample to a class !

Estimated density
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Application to ML

@ For each class 4, a
dedicated manifold .#; is
considered

V3

@ All the manifold are
learned independently

© Each class / is
represented by a
particular matrix Kj

Figure: Fictive example of a 2-class
problem where each class is embed in a
dedicated manifold.



Application to ML
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Remarks and notations

Remarks:
@ Ky is also the classical Gram matrix in the Gaussian RKHS

Q@ The proxy for Laplace-Beltrami operator = a kernel trick

Notations:
X' The input space (generated by the problem variables)
Z The feature space associated to the Gaussian kernel
o() the mapping from X onto Z
Ty The set of training examples for .,
K, The Gram matrix of ¢(7;) in Z
X A test sample in X
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Application to ML

Let us project ¢(X) on the manifold .#; in Z, i.e. < ¢(Ty) >:

P(%) = re(%) + 0r(X) (2)
~—~— ——
coplanar to <¢(7;)> orthogonal to <¢(7:)>
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Application to ML

Let us project ¢(X) on the manifold .#; in Z, i.e. < ¢(Ty) >:

P(%) = re(%) + 0r(X) (2)
~—~— ——
coplanar to <¢(7;)> orthogonal to <¢(7:)>

From [Oztireli, Alexa & Gross, 2010], the perturbation of K, by X
comes from oy(X). Thus, the perturbation measure reads:

og(X)||? ro(%)|[2
%) = (B = gy~ P @
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Application to ML

Let us project ¢(X) on the manifold .#; in Z, i.e. < ¢(Ty) >:

P(%) = re(%) + 0r(X) (2)
~—~— ——
coplanar to <¢(7;)> orthogonal to <¢(7:)>

From [Oztireli, Alexa & Gross, 2010], the perturbation of K, by X
comes from oy(X). Thus, the perturbation measure reads:

oy (%) I? re(%)|I?
_Nloe(X)]] _1_He()?)|| =1-n®IF )

B 15 T P T

If &y is the matrix whose columns are the elements of ¢(7;), then,
the projector over < ¢(7;) > can be written as: ®y(®/ ;) 1]
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Application to ML
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Application to ML
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Application to ML

IR = [|@e(®] &) 0] $(X)]|?

= (0(x)7) (&/0)T)7! (®/0(X)  (4)
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Application to ML

eI = |lee(®] &) 0] G(%)]|?

= (0(x)7) (&/0)T)7! (®/0(X)  (4)
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kJ (%) K, ke(%)

Finally:
7(% ) = 1= k[ (K k() (5)
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Application to ML

IR = [|@e(®] &) 0] $(X)]|?

= (0(x)7) (&/0)T)7! (®/0(X)  (4)
W

k] (%) K, k(%)
Finally:
T(%,#0) = 1~ k[ (R)K; k() (5)
. .‘-.) X
. L d
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Application to ML
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PerTurbo: A new classification algorithm

Training step:
V class ¢, KZI is computed.
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Application to ML
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PerTurbo: A new classification algorithm

Training step:
V class ¢, KZI is computed.

Testing step:
Q@ The dissimilarity of a new test sample X to each class ¢ is
derived from the perturbation of .#; induced by X:

(%, ) =1 — k[ (%K, k() (6)

Q@ The sample X is associated to the class with the least induced
perturbation, which reads as:

arg min (X, .#;) (7)
L
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PerTurbo: A new classification algorithm

Training step:
V class ¢, KZI is computed.

Testing step:
Q@ The dissimilarity of a new test sample X to each class ¢ is
derived from the perturbation of .#; induced by X:
7(%,A0) = 1~ k] (R)K; ke(%) (6)

Q@ The sample X is associated to the class with the least induced
perturbation, which reads as:

arg min (X, .#;) (7)
L
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Q Experimental results
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Experimental results

Experimental setting:

@ Several tests conducted on simulated and real datasets
[UCI Machine Learning Repository]

@ Comparison to several algorithms (among which SVMs)
© SVMs are fully optimized with cross validation

© Several versions of PerTurbo are tested (see article)
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Experimental results

Experimental setting:

@ Several tests conducted on simulated and real datasets
[UCI Machine Learning Repository]

@ Comparison to several algorithms (among which SVMs)
© SVMs are fully optimized with cross validation

© Several versions of PerTurbo are tested (see article)

Qualitative results of PerTurbo:
@ Performances similar to SVMs
Q Less efficient with missing values or binary variables

© Depending on the problem, the best version is not the same
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Experimental results
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Table: Description of simulated/UCI datasets

[ Datasets [[ #Training | #Tests | #Classes | #Variables | Comments
SimData-1 200 800 10 19 64 components
SimData-2 200 800 10 26 64 components
SimData-3 200 800 10 31 75 components
lonosphere 71 280 2 34

diabets 154 614 2 8 missing values
Blood-transfusion 150 598 2 4

Ecoli 67 269 8 7 too small for CV
Glasses 43 171 6 9
Wines 36 142 3 13
Parkinsons 39 156 2 22
Letter-reco 4000 16000 26 16

Hill-valleyl 606 606 2 100 50% unlabeled

Hill-valley?2 606 606 2 100 50% unlabeled
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Experimental results
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ccuracy rates

Table: Comparison of the accuracy rates (mean and standard deviation,
in percentages) with SVM (with optimized parameters and
hyper-parameters)

[ Datasets [[ PerTurbo | SVM | Comparison ]
SimData-1 79.0 (1.8) | 76.7 (1.3)
SimData-2 54.7 (2.5) | 45.0 (1.8)
SimData-3 107 (1.2) | 16.2 (1.3)
lonosphere 92.1 (1.6) | 92.5(1.8) °

diabets 726 (22) | 740 (1.7) .

Blood-transfusion 76.9 (1.0) | 77.6 (1.5) °

Ecoli 83.7 (2.5) | 832 (2.2)

Glass 65.4 (2.0) | 60.6 (4.4)

Wines 72.60 (1.3) | 96.1 (1.7) .
Parkinsons 83.8 (1.3) | 85.0(3.3) °
Letter-reco 92.7 (0.2) | 91.9 (0.3)
Hill-valleyl 60.7 56.4
Hill-valley2 59.9 55.3
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@ Future works
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Future works
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Active Learning (1

It rather simple to find the borders of the classes:
B ={x€ X st. |1)(x) — 7(2)(x)| = 0}

where r(i) is the ith least perturbated classes by x.
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Future works

[o] lele]

Active Learning (1

It rather simple to find the borders of the classes:
B ={x€ X st. |1)(x) — 7(2)(x)| = 0}
where r(i) is the ith least perturbated classes by x. Then,
B' = {x € X s.t. |1,1)(x) — Tr2)(X)| <}

with v < 1, corresponds to the region to query with an active
learning policy.
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Future works
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Future works
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Others

Regularization:
Q@ What if Ky is not invertible 7 = pseudo inverse

@ Matrix regularization

Graph Laplacian Eigenmaps, dimensionality reduction:
@ K, has the same spectrum as Graph Laplacian
@ We provide a new “projection method” for GLE [Belkin, 2003]

Kernel Mahalanobis distance:
@ Mahalanobis in Kernel space [Haasdonk & Pekalska, 2008]

@ The perturbation measure is similar to some of their distances

Exhaustive study for parameter tuning:
@ The standard deviation o associated to the Gaussian kernel

Q@ Additional parameters: Regularization, spectrum truncation...

thomas.burger@univ-ubs.fr 23/26



Conclusion
®00

© Conclusion
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Conclusion
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Q@ Classification algorithm inspired by computer graphics results
Q@ With very few parameters to tune
© Performances similar to SVM
@ Perspectives:
@ Active learning
@ Matrix regularization

© Manifold learning and dimensionality reduction
@ Kernel Mahalanobis distance
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Conclusion
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Thank you !
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