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Problem and motivations

1 Supervised classification
problem

2 A geometric point of view
on the manifold processing

3 In 3 dimension problems,
strong parallel with
computer graphics
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Sampling point clouds in computer graphics

1 Too many points required to
sample real life objects

2 The reduction of the
number of samples leads
to compact storing

3 Only the informative enough
samples are kept

thomas.burger@univ-ubs.fr 5/26



Sampling problems Application to ML Experimental results Future works Conclusion

Spectral sampling

Need for metric to quantify the modification of the definition of the
object surface induced by a new sample [Öztireli, Alexa & Gross, 2010].
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Riemanian manifolds and the Laplace-Beltrami Operator

1 The surface is assumed to be
a Riemannian manifold M
(i.e. differentiable
everywhere).

2 The Laplace-Beltrami
operator 4(.) is a
generalization of the Laplace
operator for Riemannian
manifolds.

3 The spectrum of 4(M )
completely defines M up to
an isometry.
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Approximating the Laplace-Beltrami operator

1 The surface being unknown, the computation of 4(M ) is
impossible.

2 It can be approximated with the Gram matrix K of the
samples {x1, . . . , xi , . . . xN}, fitted with a Gaussian
dissimilarity measure:

Kij = k(xi , xj) = exp

(
−
||xi − xj ||2

2σ2

)
(1)

3 The spectrum of K is used to characterize the real object
surface [Coifman & Lafon, 2006] and its pertubation is used to
evaluate the interest of a sample [Öztireli, Alexa & Gross, 2010].
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Idea #1 : Comparing a class to a surface

The pertubation of K:
1 In computer graphics, it quantifies the interest of a sample.

2 In statistics ?

1 Only an outlier modifies the distribution of its class
2 An interesting clue of the membership of a sample to a class !
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Idea #2: Class-wise manifold learning

Figure: Fictive example of a 2-class
problem where each class is embed in a
dedicated manifold.

1 For each class `, a
dedicated manifold M` is
considered

2 All the manifold are
learned independently

3 Each class ` is
represented by a
particular matrix K`
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Remarks and notations

Remarks:

1 K` is also the classical Gram matrix in the Gaussian RKHS

2 The proxy for Laplace-Beltrami operator ≡ a kernel trick

Notations:

X The input space (generated by the problem variables)

Z The feature space associated to the Gaussian kernel

φ() the mapping from X onto Z
T` The set of training examples for M`

K` The Gram matrix of φ(T`) in Z
x̃ A test sample in X
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The perturbation measure in the Gaussian RKHS (1)

Let us project φ(x̃) on the manifold M` in Z, i.e. < φ(T`) >:

φ(x̃) = r`(x̃)︸︷︷︸
coplanar to <φ(T`)>

+ o`(x̃)︸ ︷︷ ︸
orthogonal to <φ(T`)>

(2)

From [Öztireli, Alexa & Gross, 2010], the perturbation of K` by x̃
comes from o`(x̃). Thus, the perturbation measure reads:

τ(x̃,M`) =
||o`(x̃)||2

||φ(x̃)||2
= 1− ||r`(x̃)||2

||φ(x̃)||2
= 1− ||r`(x̃)||2 (3)

If Φ` is the matrix whose columns are the elements of φ(T`), then,
the projector over < φ(T`) > can be written as: Φ`(ΦT

` Φ`)
−1ΦT

`
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The perturbation measure in the Gaussian RKHS (2)

||r`(x̃)||2 = ||Φ`(ΦT
` Φ`)

−1ΦT
` φ(x̃)||2

(4)

Finally:
τ(x̃,M`) = 1− kT` (x̃)K−1` k`(x̃) (5)
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PerTurbo: A new classification algorithm

Training step:
∀ class `, K−1` is computed.

Testing step:

1 The dissimilarity of a new test sample x̃ to each class ` is
derived from the perturbation of M` induced by x̃:

τ(x̃,M`) = 1− kT` (x̃)K−1` k`(x̃) (6)

2 The sample x̃ is associated to the class with the least induced
perturbation, which reads as:

argmin
`

τ(x̃,M`) (7)
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Experimental setting and analysis of the results

Experimental setting:

1 Several tests conducted on simulated and real datasets
[UCI Machine Learning Repository]

2 Comparison to several algorithms (among which SVMs)

3 SVMs are fully optimized with cross validation

4 Several versions of PerTurbo are tested (see article)

Qualitative results of PerTurbo:

1 Performances similar to SVMs

2 Less efficient with missing values or binary variables

3 Depending on the problem, the best version is not the same
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Datasets

Table: Description of simulated/UCI datasets

Datasets #Training #Tests #Classes #Variables Comments

SimData-1 200 800 10 19 64 components
SimData-2 200 800 10 26 64 components
SimData-3 200 800 10 31 75 components

Ionosphere 71 280 2 34
diabets 154 614 2 8 missing values

Blood-transfusion 150 598 2 4
Ecoli 67 269 8 7 too small for CV

Glasses 43 171 6 9
Wines 36 142 3 13

Parkinsons 39 156 2 22
Letter-reco 4000 16000 26 16
Hill-valley1 606 606 2 100 50% unlabeled
Hill-valley2 606 606 2 100 50% unlabeled
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Accuracy rates

Table: Comparison of the accuracy rates (mean and standard deviation,
in percentages) with SVM (with optimized parameters and
hyper-parameters)

Datasets PerTurbo SVM Comparison

SimData-1 79.0 (1.8) 76.7 (1.3) •
SimData-2 54.7 (2.5) 45.0 (1.8) •
SimData-3 19.7 (1.2) 16.2 (1.3) •
Ionosphere 92.1 (1.6) 92.5 (1.8) •

diabets 72.6 (2.2) 74.0 (1.7) •
Blood-transfusion 76.9 (1.0) 77.6 (1.5) •

Ecoli 83.7 (2.5) 83.2 (2.2) •
Glass 65.4 (2.9) 60.6 (4.4) •
Wines 72.60 (1.3) 96.1 (1.7) •

Parkinsons 83.8 (1.3) 85.0 (3.3) •
Letter-reco 92.7 (0.2) 91.9 (0.3) •
Hill-valley1 60.7 56.4 •
Hill-valley2 59.9 55.3 •
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Active Learning (1)

It rather simple to find the borders of the classes:

B = {x ∈ X s.t. |τr(1)(x)− τr(2)(x)| = 0}

where r(i) is the ith least perturbated classes by x .

Then,

B ′ = {x ∈ X s.t. |τr(1)(x)− τr(2)(x)| < γ}

with γ < 1, corresponds to the region to query with an active
learning policy.
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Active Learning (2)
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Others

Regularization:

1 What if K` is not invertible ? ⇒ pseudo inverse

2 Matrix regularization

Graph Laplacian Eigenmaps, dimensionality reduction:

1 K` has the same spectrum as Graph Laplacian

2 We provide a new “projection method” for GLE [Belkin, 2003]

Kernel Mahalanobis distance:

1 Mahalanobis in Kernel space [Haasdonk & Pekalska, 2008]

2 The perturbation measure is similar to some of their distances

Exhaustive study for parameter tuning:

1 The standard deviation σ associated to the Gaussian kernel

2 Additional parameters: Regularization, spectrum truncation...
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PerTurbo: Main results

1 Classification algorithm inspired by computer graphics results

2 With very few parameters to tune

3 Performances similar to SVM

4 Perspectives:
1 Active learning
2 Matrix regularization
3 Manifold learning and dimensionality reduction
4 Kernel Mahalanobis distance
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Questions

Thank you !
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