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Statistical Inference: an Overview

Data P(v) Aspects of P

Inference

@ Classification problems, probability of X given evidence e:
P(xle)

@ Disease correlates (for diagnosis), data mining, intelligent
agents, etc.

@ The Netflix problem (million dollar problem!)




Causal Inference: an Overview

Causal inference is reasoning about change

Data P(v)

change

P*(v)

— Aspects of P*(v)

T

Inference

What happens when P(v) changes due to “outside forces” or

experimentation?

@ key question: what changes, and what stays invariant.

@ causes of disease (etiology), treatment effects, gene
regulation, scientific theories (econometrics, social

science), etc.



Why Should We Care About Causal Inference?

@ “l would rather discover one causal law than be king of
Persia!” — Democritus




Why Should We Care About Causal Inference?

@ “l would rather discover one causal law than be king of
Persia!” — Democritus

@ Human beings understand the world in terms of causes
and effects

@ There is consensus on the meaning of causal statements
@ Empirical science is about establishing cause

@ Causal inference gives a mathematical language for causal
statements, and tools to solve causal problems formally




Why Should We Care About Graphical Models?

@ Computing things from P(v) can be difficult, because P(v)
can be large: in a binary model if [V| = n, |P(v)| = 2"
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@ Computing things from P(v) can be difficult, because P(v)
can be large: in a binary model if [V| = n, |P(v)| = 2"

@ Graphical models tame this complexity with conditional
independence constraints (tractable learning/inference)
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Why Should We Care About Graphical Models?

@ Computing things from P(v) can be difficult, because P(v)
can be large: in a binary model if [V| = n, |P(v)| = 2"

@ Graphical models tame this complexity with conditional
independence constraints (tractable learning/inference)

@ Graphical models give a visual interpretation for
dependence/independence
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Why Should We Care About Graphical Models?

@ Computing things from P(v) can be difficult, because P(v)
can be large: in a binary model if [V| = n, |P(v)| = 2"

@ Graphical models tame this complexity with conditional
independence constraints (tractable learning/inference)

@ Graphical models give a visual interpretation for
dependence/independence

@ Graphical models admit a causal interpretation
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Graphical Models




Graphical Models

@ P(v) =[] P(xi|parents(x;))




Graphical Models

@ P(v) =[], P(xi|parents(x))
@ P(a,b,c,d,e,f) =
P(a)P(bla)P(cla)P(d|b,c)P(e|d)P(f|d)




Graphical Models

@ P(v) = II; P(xi|parents(xi))
@ P(a,b,c,d,e,f) =
P(a)P(bja)P(cla)P(d|b,c)P(e|d)P(f|d)
@ Conditional independence constraints:
(X; 1L Non-descendants(X;) | Parents(X;))
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Graphical Models

P(v) = [T; P(xi|parents(x;))
P(a,b,c,d,e,f) =
P(a)P(bla)P(cla)P(d|b,c)P(e|d)P(f|d)
@ Conditional independence constraints:

(X; 1L Non-descendants(X;) | Parents(X;))

@ Other conditional independences implied by this, can be
read off via d-separation

© ©
® @
® ®



D-separation (Examples)

@ D-separation metaphor: dependence as flow of influence
along paths. All paths “blocked” implies independence.

@ A set Z* blocks a path from X to Y if one of these triples
occurs on the path:

o—2Z —0 o+«~2Z —0 o—W «—o
(Z € z*, De(W)g does not intersect Z*)
@ (AL F|B)duetoanopenpathA—C —-D —F.
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D-separation (Examples)

@ D-separation metaphor: dependence as flow of influence
along paths. All paths “blocked” implies independence.

@ A set Z* blocks a path from X to Y if one of these triples
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D-separation (Examples)

@ D-separation metaphor: dependence as flow of influence
along paths. All paths “blocked” implies independence.

@ A set Z* blocks a path from X to Y if one of these triples
occurs on the path:

o—2Z —0 o+<—Z —0 o—-W+«+o
(Z € Z*, De(W)g does not intersect Z*)
@ (AL F|B)duetoanopenpathA—C —-D —F.
@ (C 1L B|A). BoththepathC —~ A—BandC — D «— B

are blocked
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Interventions in Causal Models

An action do(x) sets X to the value x regardless of the natural
influences on X.

@ The causal effect of do(x) on P(v) is an interventional
distribution Px(v) or P(v | do(x)).
@ Avariable Y under do(x) is sometimes written as Yy.

@ do(x) removes all arrows (causal influences) incoming to
X in model M to create a submodel M.

Genetic factors Genetlc factors

O—0 O 0—0

Smoking  Cancer  Smoking Tar Cancer



An Example From Medicine

Causal effect of a time-varying treatment on a patient outcome
from longitudinal data collected in an observational study.

@ Domain: HIV.

@ CD4 is the immune cell destroyed by the HIV virus.
Counts: 600-1000 is normal, 200 is a high risk of
opportunistic infection.

@ HAART is highly active anti-retroviral therapy, three drug
cocktail.

@ Medical question: what is the optimal CD4 count at which
to start HAART in HIV infected patients.




HIV Example (cont.)

@ HAART turned HIV into a chronic disease, increases CD4
counts, virus undetectable in blood (until resistance).

@ Starting too late: chance of opportunistic infection,
irreversible immune system damage, etc.

@ Starting too early: resistance, side effects.

@ Randomized trial data only on patients with CD4 < 200
(cuts death rate in half).

@ Must use observational data.




Conditioning vs Interventions

@ Have to be careful with observational data, easy to get silly
conclusions.

@ People who get HAART tend to die a lot more.
@ Does this mean HAART should not be used?




Conditioning vs Interventions

@ Have to be careful with observational data, easy to get silly
conclusions.

@ People who get HAART tend to die a lot more.
@ Does this mean HAART should not be used?

@ No! HAART is prescribed to people who are already very
sick: p(death | HAART) # p(death | do(HAART)).

@ Medical question: how would outcome of patients differ
between HAART treatment and no HAART treatment.

@ Want to estimate p(death | do(HAART)) from
observational data.




HIV Example (cont.)

2
é;)
g

@ CD4 (Lo, ..., Lg) is a “time-varying confounder”.
@ Affects both treatment (doctors prescribe HAART based on

CD4 counts, confounding by indication) and outcome
(cause of clinical AIDS).

@ Earlier treatment affects CD4 counts also.

@ Unspecified latent variables may affect both outcome and
CD4, but treatments (Ag, . . . A¢) are only affected by CD4
measurements.

@ Given p(lp,ag,---,lk,a0,y). Want: p(y | do(ag, . ..,ax)).



Fundamental Questions in Causal Inference

@ Representation: formalizing intuitive causal notions (actual
cause, direct effect, discrimination, etc.)

@ |dentification: expressing a causal quantity in terms of
observational data (using causal assumptions).

@ Estimation: given an identifiable causal quantity, what's the
best way of estimating it from data?

@ Structure learning: if the causal graph is not available from
experts, which parts of this graph can we infer from
observational data?




Causal Effect Identification

@ Need to link observational and interventional data.

@ Crucial assumption (consistency): (A=a) = (Ya=Y).
(Yais Y after do(a)).

@ Untestable assumption, but needed to link observations
and interventions.

@ Simple example with no confounding:
p(y | do(a)) = p(y | &).

@ Intuition: model postulates no common causes of A and Y
— therefore observed dependence of A and Y must be
causal.



Identification With Confounding

O—-®—O
@ More complex example: L a common cause of Aand Y.
@ Observed dependence of A and Y could be due to
non-causal influence via L.

@ Solution: “adjust for” L. Conditioning on L d-separates all
non-causal paths from A and Y. Average over levels of L.

p(y | do(a)) = Zp(y,l | do(a))
= Zpyldo ,p(l | do(a))
= Zp |a,l)p



Identification With Time-varying Confounding

ONOEOEO

@ Time varying confounding: L is both a child of treatment,
and a cause of treatment.

@ Adjust for confounders recursively, conditioned on the past.

p(y | do(ag,a1)) = » p(y |I,do(ag,a1))p(l | do(ap,a1))
|
= ) p(y |1,a1,do(ao))p(l | do(a))
|
= > p(y [1,a1,80)p(l | a)
|



General Identification Algorithm

o Want p(y | do(ao, as)).




General Identification Algorithm

RCEeE =

@ Want p(y | do(ao, ay)).
@ First compute
P(lo, 11,21,y | do(ao)) = p(y. a1l [ ao,lo)p(lo)




General Identification Algorithm

SCRCES

@ Want p(y | do(ag,az)).
@ First compute

P(lo, 11,21,y [ do(ag)) = p(y,as, 1 | a0, lo)p(lo)
@ Then marginalize Lg:

P&, (Ysa1, 1) =32 (Y, a1, 11 [ @0, lo)p(lo)




General Identification Algorithm
T —
ORNSO

@ Want p(y | do(ag,a1)).
@ First compute
P(lo, 11,21,y | do(ao)) = p(y,au,l1 | ao,lo)p(lo)
@ Then marginalize Lg:
Pa,(Y.a1,11) =32, (Y, a1, 11 [ @0, lo)p(lo)
@ Then compute p; (v, 1 | do(a1)) = pa,(y | a1, 11)pz,(11)




General Identification Algorithm
)

@ Want p(y | do(ap,a1)).

@ First compute
P(lo, 11, a1,y | do(ag)) = p(y,as,l | ao,lo)p(lo)
@ Then marginalize Lo:
Pa, (Y, a1, 1) =22 p(Y, a1, | @, lo)p(lo)
@ Then compute pz (y,l1 | do(as1)) = pa,(y | a1,11)P5,(11)
@ Finally, marginalize Ly: p3; 4, (Y) = X1, Pa, (Y | a1, 11)p3, (11)-




General Identification Algorithm

e,

COCH

@ Want p(y | do(ag,a1)).
@ First compute
P(lo, 11,21,y | do(ao)) = p(y,au, 1 [ @, lo)p(lo)
@ Then marginalize Lg:
Pa,(Ysa1,11) =32 Py, a1, 11 [ @0, lo)p(lo)
@ Then compute pz (Y, 1 | do(a1)) = pa, (Y [ @1, 11)pz, (1)
o Finally, marginalize Ly: P54, () = 3, P2, (Y | @z, l1)p3 (I1).
@ Can show that p(y | do(ao,a1)) = Pz, a,(Y)



General Identification Scheme

p(y | do(ag,a;)) = szo(y | ag, l1)pa, (1)

Iy
where
pzo(y7 az, Il) = Z p(y7 az, Il | o, IO)p(IO)
lo

1 Divide by p(ap | lp)

2 Marginalize Lg

3 Divide by p3 (a1 | 1)

4 Marginalize Ly
General approach by Tian (2002), proved complete by Shpitser

(2006), also Huang and Valtorta (2006).
Complete: if the algorithm gives no answer, there is no answer.



The Curse of Dimensionality in Causal Inference

@ Many causal effects are identified by covariate adjustment:

p(y | do(a)) Zpy!al

In fact, lots of causal effects in practice are of the form:

1

Ely | dofa)] = E[Ely a1 = Ely - 5oy

]

L is “a lot” of covariates.
Curse of dimensionality applies to p(y | a,l) and/or p(a | I).

Have to model without a lot of data (but what if modeling
assumptions are wrong?)

Handling conditional distributions may be computationally
intractable.



Addressing the Curse

@ The curse is a statistical problem (need lots of samples)
and a computational problem (big graphs are intractable)
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Addressing the Curse

@ The curse is a statistical problem (need lots of samples)
and a computational problem (big graphs are intractable)
@ Statistical way out: modeling. Danger: mis-specification!
@ Solution: there is an estimator ¢ for E[y | do(a)] that
combines models for p(y | a,1) and p(a | I) such that:
e Ifp(a|l)is correct, d is consistent (even if model for
p(y | a,1) is wrong!)

o Ifp(y | a,1) is correct,  is consistent (even if model for
p(a | 1) is wrong!)

@ So called “doubly robust” (or multiply robust) estimators
(papers by Robins, Rotnitzky, van der Laan, others)




Addressing the Curse

@ The curse is a statistical problem (need lots of samples)
and a computational problem (big graphs are intractable)

@ Statistical way out: modeling. Danger: mis-specification!

@ Solution: there is an estimator ¢ for E[y | do(a)] that
combines models for p(y | a,1) and p(a | I) such that:

e Ifp(a|l)is correct, d is consistent (even if model for

p(y | a,1)iswrong!)
o If p(y | a,1) is correct, 4 is consistent (even if model for
p(a | 1) is wrong!)

@ So called “doubly robust” (or multiply robust) estimators
(papers by Robins, Rotnitzky, van der Laan, others)

@ Computational way out: exploiting Markov factorization via
belief propagation, etc.

@ Plug: see my talk for how to do this in latent variable
models.



Induction: Inferring (Causal) Theories From Data.

@ Central problem of empirical science
@ Very important problem in Al (vast literature)

Induction

. Constraints
Generative model |—>@|




Induction: Inferring (Causal) Theories From Data.

@ Central problem of empirical science
@ Very important problem in Al (vast literature)

@ In Al, causal theories are represented as directed graphs
using the graphical models formalism

@ The causal induction problem is to infer the directed graph
from the constraints it places on the joint probability
distribution over observables
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Induction: Inferring (Causal) Theories From Data.

@ Central problem of empirical science
@ Very important problem in Al (vast literature)

@ In Al, causal theories are represented as directed graphs
using the graphical models formalism

@ The causal induction problem is to infer the directed graph
from the constraints it places on the joint probability
distribution over observables

®;—/’@\ No ind.ep. %()5;5%{)
@ @ constraints : :




Current Approaches

@ Constraint based: FCI algorithm (Spirtes et al)
@ search for constraints in the data, rule out graphs without
these constraints
@ Issues: multiple hypothesis testing, doing many
independence tests is intractable.




Current Approaches

@ Constraint based: FCI algorithm (Spirtes et al)
@ search for constraints in the data, rule out graphs without
these constraints
@ Issues: multiple hypothesis testing, doing many
independence tests is intractable.

@ Search and score: GES algorithm (Chickering) using BIC
(Schwartz)

@ Score each graph by how well it explains the data, penalize
big graphs (Occam’s razor). Search for a high scoring
graph.

@ Issues: BIC only has asymptotic guarantees, highest
scoring model not always informative.




Current Approaches

@ Constraint based: FCI algorithm (Spirtes et al)

@ search for constraints in the data, rule out graphs without
these constraints

@ Issues: multiple hypothesis testing, doing many
independence tests is intractable.

@ Search and score: GES algorithm (Chickering) using BIC
(Schwartz)

@ Score each graph by how well it explains the data, penalize
big graphs (Occam’s razor). Search for a high scoring
graph.

@ Issues: BIC only has asymptotic guarantees, highest
scoring model not always informative.

@ Big issue: both approaches (so far!) only exploit conditional
independences. Latent models have other constraints..



“Odd” Constraints in Latent Models.
N T

@ Consider a binary model pictured above.

@ No conditional independences, according to current theory
this model is saturated (24 — 1 = 15 parameters).

@ There is a dimension-reducing constraint in this model (!)

0
%0 ;p(ﬁ | X1, %2, X3)P(X2 [ X1) =0
@ Stay tuned for the second part, where | will discuss what

these types of constraints buy us, and their relationship to
causal effect identification.



Conclusions (part 1)

@ Causal inference is about identification and estimation of
causal effects, and learning causal structure from data.

@ Important in medicine, social sciences, computational
biology, etc.

@ Many published studies contain causal inference problems.

@ Graphical models are a useful tool for representing
causality.

@ Big problems:




Conclusions (part 1)

@ Causal inference is about identification and estimation of
causal effects, and learning causal structure from data.

@ Important in medicine, social sciences, computational
biology, etc.

@ Many published studies contain causal inference problems.

@ Graphical models are a useful tool for representing
causality.

@ Big problems:

@ What to do when quantity of interest is not identifiable?
(instruments, bounds, pseudo-randomization)

@ Dealing with the curse of dimensionality.

@ Dealing with latent models (more on this in part 2).
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“Odd” Constraints: What's Going On?

0
%, %:p(x4 | X1,X%2,X3)p(X2 | X1) =0

@ What is the interpretation of this constraint?

@ Assume this is a causal graph, and consider identifying
P(X4 | do(X3, X1)).

@ Identifiable and equal to >, p(Xa | X1, X2, X3)P(X2 | X1).

@ Constraint: p(x4 | do(xs,X1)) = p(X4 | do(x3)), or X; is
independent of X, if we intervene on (not condition on!) Xs.



“Odd” Constraints: What's Going On?

0
%, %:D(M | X1,X2,X3)p(X2 | X1) =0

@ What is the interpretation of this constraint?

@ Assume this is a causal graph, and consider identifying
P(X4 | do(X3, X1)).

@ Identifiable and equal to >, p(X4 | X1, X2, X3)P(X2 | X1).

@ Constraint: p(X4 | do(Xs,X1)) = p(X4 | do(X3)), or X; is
independent of X, if we intervene on (not condition on!) Xs.

@ Graphical interpretation: intervention on Xz cuts arcs
pointing to X3, this can create new d-separation.



Generalized Independence Constraints
-
~_ > 7

0
%, %:p(x4 | X1,X%2,X3)P(X2 | X1) =0

i ion: im P(X1,X2,X3,X4)
@ Another mterpretgtlon. X1 AL X4 0N D (xaxe, %)
(“post-truncation independence”)

@ Usual conditional independences: X; L X4 in %

@ Recall: in DAG models we have p(v) = [[; p(xi | pa(xi)),

which implies X; I Non-descendants(X;) in p(gg(/ii))'

@ Want something similar for these generalized
independences in graphical models with latents.




A New Factorization: What Are The Pieces?

@ In the Markov factorization of DAG models, p(v | pa(v))
are the building blocks.

@ What should the building blocks be for us?

@ Since we have latent variables, some variables cannot be
made independent no matter what we do.

@ Thus: our building blocks will involve sets.

. p(v .
@ We want to represent X; L X; in p(xbx)m), which

“corresponds to” independence after do(xy ).

@ Thus: our building blocks will involve interventional
distributions.




Intrinsic Sets

e,

COTEHP

@ Intrinsic set S: P(s | do(pa(s) \ s)) identifiable, nodes in S
are a spanning tree in < subgraph.

@ Intrinsic sets: {Lo}, {Ao}, {A1}, {Lo, L1}, {Lo,L1,A1},
{Lo, L1, A1, Y} {L1, Y} {Y}.

@ Not intrinsic: {Lg,Ag} (not a spanning tree in < subgraph),
{Lo,A1} (p(lp,az | do(l1)) not identifiable)

@ Note: unlike the DAG case, intrinsic sets overlap.



Recall: General Identification

o Want p(y | do(ao, as)).




Recall: General Identification

RCEeE =

@ Want p(y | do(ao, ay)).
@ First compute
P(lo, 11,21,y | do(ao)) = p(y. a1l [ ao,lo)p(lo)




Recall: General Identification

SCRCES

@ Want p(y | do(ag,az)).
@ First compute

P(lo, 11,21,y [ do(ag)) = p(y,as, 1 | a0, lo)p(lo)
@ Then marginalize Lg:

P&, (Ysa1, 1) =32 (Y, a1, 11 [ @0, lo)p(lo)




Recall: General Identification
 —
@ R—=®

@ Want p(y | do(ag,a1)).
@ First compute
P(lo, 11,21,y | do(ao)) = p(y,au,l1 | ao,lo)p(lo)
@ Then marginalize Lg:
Pa,(Y.a1,11) =32, (Y, a1, 11 [ @0, lo)p(lo)
@ Then compute p; (v, 1 | do(a1)) = pa,(y | a1, 11)pz,(11)




Recall: General Identification
¥

@ Want p(y | do(ap,a1)).

@ First compute
P(lo, 11, a1,y | do(ag)) = p(y,as,l | ao,lo)p(lo)
@ Then marginalize Lo:
Pa, (Y, a1, 1) =22 p(Y, a1, | @, lo)p(lo)
@ Then compute pz (y,l1 | do(as1)) = pa,(y | a1,11)P5,(11)
@ Finally, marginalize Ly: p3; 4, (Y) = X1, Pa, (Y | a1, 11)p3, (11)-




Recall: General Identification

e,

COCH

@ Want p(y | do(ag,a1)).
@ First compute
P(lo, 11,21,y | do(ao)) = p(y,au, 1 [ @, lo)p(lo)
@ Then marginalize Lg:
Pa,(Ysa1,11) =32 Py, a1, 11 [ @0, lo)p(lo)
@ Then compute pz (Y, 1 | do(a1)) = pa, (Y [ @1, 11)pz, (1)
o Finally, marginalize Ly: P54, () = 3, P2, (Y | @z, l1)p3 (I1).
@ Can show that p(y | do(ao,a1)) = Pz, a,(Y)



General Identification Scheme

P(y | do(ag,a1)) = > pa(y | as,l)ps, (1)

Iy
where
pzo(y7 al7 Il) = Z p(y7 al7 Il ‘ a07 IO)p(IO)
lo

1 Divide by p(ap | lp)

2 Marginalize Lg

3 Divide by p3 (a1 | 1)

4 Marginalize L
Identification is recursive. At any stage of the recursion, we

might have an independence constraint. Thus our factorization
must itself be recursive.



Recursive Factorization (Preliminaries)

@ Ancestral set A: x € A = an(x) C A. All ancestral sets in
G: A(9).

0 A(G) = {Xo}, {X1, X}, {X1, X2, X3}, {X1, X2, X5, Xa}.

@ A district of G is a set of nodes forming a maximal
spanning tree in < subgraph of G.

@ A set of districts D(G) in G always forms a unique partition
of nodes in G. D(G) = {X1, X3}, {X2,Xs}.
@ Property of causal models (district factorization):

p(v)= T p(d | do(pa(d)\ d))

deD(G)



Recursive Factorization (Preliminaries)

@ Ancestral set A: x € A = an(x) C A. All ancestral sets in
G: A(G).

@ A(G) = {Xu}, {X1, X2}, {X1, X2, X3}, {X1, X2, X3, Xa}.

@ A district of G is a set of nodes forming a maximal
spanning tree in < subgraph of G.

@ A set of districts D(G) in G always forms a unique partition
of nodes in G. D(G) = {X1, X3}, {X2, X4}
@ Property of causal models (district factorization):

P(X1,X2,X3,X4) = P(X3, X1 | dO(X2))P(X2, X4 | dO(X1,X3))



Recursive Factorization

Definition

p(v) recursively factorizes according to G if district factorization
holds for p(v) at “the outer level,” and any interventional
distribution corresponding to a district itself factorizes according
to the appropriate subgraph of G.

Formally: p(v) recursively factorizes with respect to G and a set
{p(s |do(pa(s)\s)) | S € Z(G)} if for every A € A(G):

@ p(a) = [Igep(g,) P(d | do(pa(d) \ d))
@ if [D(Ga)| > 1, then for every D € Ga, and every
assignment v to pa(D) \ D:

@ p(d | do(v)) r-factorizes according to Gp and
{p(s [ do(pa(s) \ s)) | S € Z(dp)}-

where G, is a restriction of G to A.



N

@ Intrinsic sets: {X1}, {Xa}, {X1, X3}, {X3}, {X2,Xa}, {Xs}.
@ R-factors: p(x1), p(X2 | do(x1)), p(X1, X3 | do(xz2)),
P(X3 | do(X2)), P(X2, X4 | dO(X1,X3)), P(Xa | dO(X3)).

@ “Outer” factorization:
P(X1,X2,X3,X4) = P(X2,Xa | dO(X1, X3))P(X1, X3 | dO(X2)).




Intrinsic sets: {X1}, {X2}, {X1, X3}, {Xs}, {X2, Xa}, {Xa}.

R-factors: p(x1), p(xz | do(x1)), p(x1, X3 | do(x2)),

P(x3 [ do(x2)), P(X2,Xa | dO(X1,X3)), P(Xa | dO(X3)).

@ “Outer” factorization:
P(X1,X2,X3,X4) = P(X2,Xa | dO(X1,X3))P(X1, X3 | dO(X2)).

@ “Inner” factorization of p(Xz, X4 | do(X1,X3)): ancestral sets
of {X2, X4} in the subgraph: {X5}, {Xs}.

@ p(X4 | do(X1,X3)) = P(X4 | dO(x3)).

@ All r-factors p(s | do(pa(s) \ s)) are identifiable from p(v),

so the factorization is “about” p(v). This is a statistical
model!



Obtaining The Model Dimension
(D) —(—()—()

@ Binary DAG model. 15 parameters without Markov
factorization.

@ But we know
P(X1,X2,X3,X4) = P(X1)P(X2 | X1)P(X3 | X2)P(Xa | X3).

@ Thus model dimensionis 1+ 2 + 2 + 2 = 7 (parameters:
p(xi = 0| pa(xi))).




Obtaining The Model Dimension
N

@ Binary DAG model. 15 parameters without Markov
factorization.

@ But we know
P(X1,X2,X3,Xa) = P(X1)P(X2 | X1)P(X3 | X2)P(X4 | X3)-

@ Thus model dimensionis 1 + 2 + 2 + 2 = 7 (parameters:
p(xi =0 | pa(x))).

@ Binary latent model. No conditional independence
constraints: 15 parameters.

@ We know p(xq | do(x1,X3)) = p(xa | do(xs)).
@ Can we parameterize to take advantage of this?



Parameters For Binary R-Factorizing Models

@ Intrinsic sets: {X3}, {Xao}, {X1, X3}, {X3}, {X2,Xs}, {Xa}.
@ R-factors: p(x1), p(xz | do(x1)), p(X1,Xs | do(x2)),

P(xs | do(x2)), P(x2, X4 | do(X1,X3)), P(X4 | do(x3)).
@ Parameters: p(x; = 0), p(xg = 0 | do(xy)),

P(x1 = 0,x3 = 0| do(xz)), p(x3 = 0 | do(xz)),

P(Xz = 0,X4 = 0 | do(Xy,X3)), P(X4 = O | do(x3)).

@ Model dimension: 14+2+2+2+4+2=13.




General Parameterization

@ For an intrinsic set S in G, let the recursive head rh(S) be
the subset of S with no children in S.

@ For an r-factor p(s | do(pa(s) \ s)), let its parameters be

Qr(s)(Pa(S)) = p(rh(S) = 0 [ s \ rh(s), do(pa(s) \ s))

@ Note: intrinsic sets overlap, so parameters are derived
from overlapping marginals.

@ Parameterization is variation dependent.

@ Mobius transform can be used to obtain p(v) from
parameters.

@ Models are smooth, in the curved exponential family.



What Is This Good For: Efficient Inference
CD—C)—Ca)— - ()

@ Say we want to compute p(xx) = >y . P(X1,.. ., Xk)
@ Naive algorithm for summing is intractable (big table).

@ Algorithms for DAG models exploit Markov factorization to
perform sums efficiently (belief propagation, variable
elimination, sampling methods, variational methods, etc.):

= P [ X—1) D P(Xu—1 | Xk—2)- prl (X2 | X1)

Xk—1 Xk —2

@ See my talk for how to do this with these new parameters.



What Is This Good For: Variance Minimizing

Estimators

@ An identifiable causal effect p(y | do(x)) has multiple
functionals in terms of p(v). Which one minimizes the
variance?

@ For an r-factorizing model: fit parameters by ML, express
p(y | do(x)) in terms of ML parameters.

@ The resulting estimator minimizes variance among all
estimators in the model.

@ See my talk for more on this.




What Is This Good For: Causal Discovery
o~

@ Say we want to reconstruct this graph from data.

@ FCI sees no conditional independences, returns a
complete graph.

@ GES can't score latent models.
@ Structural EM: slow, infinite search space, singularities.

@ An alternative: write down a likelihood using new
parameters, use local search with BIC (code exists).
@ A single independence in this model (X4 LL X5) in

% is enough to narrow things down to one graph.

@ Can distinguish this model from a complete graph.
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@ R-factorizing models do not make any assumptions on
latents.
@ Assume binary DAG model, we only observe X, ..., Xk.

@ This model is parameterized by p(u; = 0),...,p(ux = 0),
P(Xo = 0| ug), p(x = 0| uj,uiy1) (O(k) parameters).
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@ R-factorizing models do not make any assumptions on
latents.

@ Assume binary DAG model, we only observe X, ..., Xk.

@ This model is parameterized by p(u; = 0),...,p(ux = 0),
P(Xo =0 uy), p(X; = 0] uj,ui+1) (O(k) parameters).

@ An R-factorizing model has O(k?) parameters.

@ Difference: DAG model does not represent all DAG
marginal distributions with above graph (what if u; nodes
have more than 2 states?)



Why Not DAGs With Latents?

@ DAGs with latents already in use (HMMs, Kalman filters,
many others).
@ Algorithms exist: (structural) EM.

@ Why new models?




Why Not DAGs With Latents?

@ DAGs with latents already in use (HMMs, Kalman filters,
many others).

@ Algorithms exist: (structural) EM.
@ Why new models?

@ Marginal DAG models are “nasty” (distributions not in nice
form, singularities)

@ Infinite search space for learning graphs (how many latents
to add?)

@ If latent state spaces not big enough there will be
misspecification bias.




Advantages Of R-factorizing Models

Smooth.

In the curved exponential family.

Finite search space for causal discovery.
Makes no assumptions on latents

Explicitly incorporates “native” latent model constraints:
(Xi iR Xj) in p(v)

P(Xk [Xm) *




Conclusions (part 2)

@ Latent variable models contain constraints of the form

(X Ll X;) in (2("’)() 7

@ A new factorization (and parameterization) exists which
takes advantage of these constraints for learning and
inference.

@ Factorization fairly complex, but can be interpreted in
terms of pieces corresponding to certain interventions
(causal effects).

@ In DAG models the pieces are p(x; | pa(x;)) for every node
Xi. In the new models, the pieces are p(s | do(pa(s) \ s))
for certain sets S.

@ Models are a generalization of Bayesian networks to the
latent variable case.



Future Work

@ d-separation is the global Markov property for DAGs. What
is the equivalent for r-factorizing models? (difficult to do on
the original graph, Lauritzen’s chain graphs involved, etc.)

@ How to do belief propagation on these models? (Variable
elimination already known — see my talk).

@ What do continuous r-factorizing models look like?
(Copulas?)

@ Can it be shown there are no more dimension reducing
constraints in marginal DAG models other than

1wy in P(V)
X0 e )

@ Causal discovery, applications.



Future Work

@ d-separation is the global Markov property for DAGs. What
is the equivalent for r-factorizing models? (difficult to do on
the original graph, Lauritzen’s chain graphs involved, etc.)

@ How to do belief propagation on these models? (Variable
elimination already known — see my talk).

@ What do continuous r-factorizing models look like?
(Copulas?)

@ Can it be shown there are no more dimension reducing
constraints in marginal DAG models other than

(Xi AL Xj) in 7’3(\/)
P(Xk | Xm)
@ Causal discovery, applications.

@ Finding a job :).



