Some Recent Advances in the Theory of Low-rank Modeling

Emmanuel Candès

Machine Learning Summer School (MLSS 2001) Carcans Maubuisson, September 2011

Objective

- Explosion of research on theory of low-rank modeling
- Our goal is to discuss some recent works
 - Some of it is ours
 - Some of it is not

Agenda

- Matrix completion
- Product Principal Component analysis

Matrix Completion

The Netflix problem

- Netflix database
 - About half a million users
 - About 18,000 movies
- People rate movies
- Sparsely sampled entries

GR Subscriptions | Contact Us | Affiliates | Press Room | About Us | Privacy Policy | John | Investor Relations | General | 855 0 1997-2004 Halflor, Inc. All rights reserved. U.S. Potert No. 6504450 <u>Serve at Use</u>. (113) USA

The Netflix problem

Netflix database

- About half a million users
- About 18,000 movies
- People rate movies
- Sparsely sampled entries

The Netflix problem

Netflix database

- About half a million users
- About 18,000 movies
- People rate movies
- Sparsely sampled entries

Challenge

Complete the "Netflix matrix"

Many such problems \rightarrow collaborative filtering, partially filled out surveys...

Global positioning from local distances

- Points $\{x_j\}_{1 \le j \le n} \in \mathbb{R}^d$
- Partial information about distances

$$L_{ij} = \|x_i - x_j\|^2$$

Example (Singer, Biswas et al.)

- Low-powered wirelessly networked sensors
- Each sensor can construct a distance estimate from nearest neighbor

Global positioning from local distances

- Points $\{x_j\}_{1 \le j \le n} \in \mathbb{R}^d$
- Partial information about distances

$$L_{ij} = \|x_i - x_j\|^2$$

Example (Singer, Biswas et al.)

- Low-powered wirelessly networked sensors
- Each sensor can construct a distance estimate from nearest neighbor

Problem

Locate the sensors

Other problems of this kind

- Linear system identification (Vandenberghe et al.)
- Quantum-state tomography (Gross et al.)
- Partially observed covariance matrix (Vaidyanathan et al.)
- Low-rank matrix completion in machine learning (Srebro et al. Vert et al.)
- Structure-from-motion problem in computer vision (Tomasi et al.)

• ...

Matrix completion

- Matrix $L \in \mathbb{R}^{n_1 \times n_2}$
- Observe subset of entries
- Can we guess the missing entries?

[×	?	?	?	×	?]
?	?	×	×	?	?
×	?	?	×	?	?
?	?	×	?	?	×
×	?	?	?	?	?
?	?	×	×	?	?

Matrix completion

- Matrix $L \in \mathbb{R}^{n_1 \times n_2}$
- Observe subset of entries
- Can we guess the missing entries?

Everybody would agree this looks impossible

×	?	?	?	\times	?]
?	?	×	×	?	?
×	?	?	×	?	?
?	?	×	?	?	×
×	?	?	?	?	?
?	?	×	×	?	?

Massive high-dimensional data

Engineering/scientific applications: unknown matrix has often (approx.) low rank

Images

U.F. COMMERCE'S OFTICE FAVE VER UNDERVAL

Commerce Dept. undersecretary of economic affairs Robert Ortner said that he believed the dollar at current levels was fairly priced against most E uropea

In a wide ranging address sponsored by the Export-Import Ban the bank's senior economist also said he believed that the yen was un and could go up by 10 or 15 pct.

" do not regard the dollar as un

e said. On the other hand, Ortner said that he thought that "the yen is ittle bit undervalued," and "could go up another 10 or 15 pct." In addition, Ortner, who said he was speaking personally, said he that the dollar against most European currencies was "fairly priced." Ortner said his analysis of the writous exchance rate values was bas

economic particulars as wage rate differentiations. Ortner said there had been little impact on U.S. trade act on U.S. trade de cit by the overvalued and that the "rst 15 pct decline had little impact.

He said there were indications now that the trade de cit was and on

Turning to Brazil and Mexico, Orther made it clear that it would b most impossible for those countries to earn enough foreign exchange to pay re service on their debts. He said the best way to deal with this was to use the policies outlined in Treasury Secretary James Baker's debt initiative

Videos * ++ ** te. 22 *

High-dimensionality but often low-dimensional structure

Text

Web data

Low-rank matrix completion?

Engineering/scientific applications: unknown matrix has often (approx.) low rank

Netflix matrix

- ⁽²⁾ Sensor-net matrix: $||x_i x_j||^2$, $\{x_i\} \in \mathbb{R}^d$
 - rank 2 if d = 2
 - rank 3 if d = 3

• ...

Many others (e.g. quantum-state tomography, computer vision, system id, ...)

Announcing a *Joint Seminar* of the **Committee on Applied and Theoretical Statistics** and the **Committee on National Statistics** of *The National Academies...*

THE STORY OF THE Netflix Prize

Friday, November 4, 2011 • 3:00-5:00 pm

Reception to Follow

Keck Center of the National Academies, Room 100 500 Fifth Street NW Washington, DC 20001

Kobert Bell AT&T Labs Researc

University of California, Berkeley

Emmanuel Candes Stanford University Just over five years ago, Netflix released more than 100 million movie ratings as part of a data analysis constraints to improve methods for recommending movies to customers based on ratings they had provided for previously remet movies. A price of S1 million was offered for a "recommender" algorithm that outperformed the existing Netflix system Cinematch⁴⁴ by a less 10% in terms of root mens arguard prediction error. In a textbook example of "crowdsourcing" more than 20,000 teams from over 150 counties submitted lagorithms, BA August 2009, after almost three years of effort, two teams, BellKor's Pragmatic Choos and The Ememble, had subgrassed the 10% joint and a final more of its own movies

Bob Bell (BellKor's Pagmatic Chaos) and Lester Mackey (The Insemble) will describe the overall seven of the competition, the challenges it posed, the main ideas underlying their recommender algorithms, and the interaction among the leading competitors. Emmanuel Candes will then discuss the research avenues simulated by the various algorithms developed in this competition, some of the resulting advances, and some difficult problems that remain.

- Open to the Public • Please RSVP! -

For planning and building check-in purposes, please RSVP by October 31 to Agnes Gaskin at agaskin@nas.edu or (202) 334-3096.

Low-rank matrix completion?

 $L: n_1 \times n_2$ matrix of <u>rank r</u>

• Singular value decomposition: $L = U \Sigma V^{\ast}$

• L depends upon $(n_1 + n_2 - r)r$ degrees of freedom < ambient dimension

Low-rank matrix completion?

 $L: n_1 \times n_2$ matrix of <u>rank r</u>

• Singular value decomposition: $L = U \Sigma V^{\ast}$

• L depends upon $(n_1 + n_2 - r)r$ degrees of freedom < ambient dimension

Do we need to see all the entries to recover L?

Which entries do we get to see?

Rank-1 matrix $L = xy^*$

$$L_{ij} = x_i y_j$$

If single row (or column) is not sampled \rightarrow recovery is not possible

Which entries do we get to see?

If single row (or column) is not sampled \rightarrow recovery is not possible

What happens for almost all sampling sets?

m entries selected uniformly at random $\rightarrow \Omega_{\rm obs}$

$$L = e_1 e_n^* = \begin{bmatrix} 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & 0 \end{bmatrix}$$

Cannot be recovered from a small set of entries

$$L = \begin{bmatrix} * & * & 0 & \cdots & 0 & 0 \\ * & * & 0 & \cdots & 0 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 0 \end{bmatrix}$$

Cannot be recovered from a small set of entries

$$L = e_1 x^* = \begin{bmatrix} x_1 & x_2 & x_3 & \cdots & x_{n-1} & x_n \\ 0 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 0 \end{bmatrix}$$

Cannot be recovered from a small set of entries

$$L = e_1 x^* = \begin{bmatrix} x_1 & x_2 & x_3 & \cdots & x_{n-1} & x_n \\ 0 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 0 \end{bmatrix}$$

Cannot be recovered from a small set of entries

Intuition: column and row spaces cannot be aligned with basis vectors

Coherence

$$L \in \mathbb{R}^{n \times n} = U\Sigma V^* \qquad r = \operatorname{rank}(L)$$

Coherence parameter $\mu \ge 1$ (C. and Recht '08): for all $e_i = (0, \dots, 0, 1, 0, \dots, 0)$

$$|U^*e_i||^2 \le \frac{\mu r}{n} \quad ||V^*e_i||^2 \le \frac{\mu r}{n}$$

and

$$|UV^*|_{ij}^2 \le \frac{\mu r}{n^2}$$

Roughly: small value of $\mu \to {\rm sing.}$ vectors not sparse

Condition holds if $|U_{ij}|^2 \vee |V_{ij}|^2 \leq \mu/n$

Random plane of dimension $r \ge \log n$

 $\max_{i} \|U^* e_i\|^2 \le O(1)r/n$

What is information theoretically possible?

C. and Tao (09)

Roughly, no method whatsoever can succeed

$$m \lesssim \mu imes nr imes \log n pprox \mathsf{df} imes \mu \log n$$

For rectangular matrices $n = \max \dim$

- Fundamental role played by coherence parameter
- With $\mu = O(1)$ (incoherence), need $m \gtrsim nr \log n$

Recovery algorithm

Hope: only one low-rank matrix consistent with the sampled entries

Recovery by minimum comple	xity		
minimize subject to	$rank(\hat{L})\\ \hat{L}_{ij} = L_{ij}$	$(i,j)\in\Omega_{\rm obs}$	
NP-hard: not feasible for $n > 10!$			

Recovery algorithm

Hope: only one low-rank matrix consistent with the sampled entries

Recovery by nuclear-norm mi	nimization (SDP)	
minimize subject to	$\begin{split} \ \hat{L}\ _* &= \sum_{i=1}^n \sigma_i(\hat{L}) \\ \hat{L}_{ij} &= L_{ij} (i,j) \in \Omega_{\text{obs}} \end{split}$	

• Convex relaxation of the rank minimization program

• Ball $\{X : \|X\|_* \leq 1\}$: convex hull of rank-1 matrices obeying $\|xy^*\| \leq 1$

Recovery algorithm

Hope: only one low-rank matrix consistent with the sampled entries

Recovery by nuclear-norm min	imization (SDP)
minimize subject to	$\begin{split} \ \hat{L} \ _* &= \sum_{i=1}^n \sigma_i(\hat{L}) \\ \hat{L}_{ij} &= L_{ij} (i,j) \in \Omega_{\text{obs}} \end{split}$

- Convex relaxation of the rank minimization program
- Ball $\{X: \|X\|_* \leq 1\}$: convex hull of rank-1 matrices obeying $\|xy^*\| \leq 1$

Trace norm heuristics

- Mesbahi & Papavassilopoulos '97
- Beck & D'Andrea '98
- Fazel '02

Near-optimal matrix completion

 $\begin{array}{ll} \mbox{minimize} & \|\hat{L}\|_* \\ \mbox{subject to} & \hat{L}_{ij} = L_{ij} \ (i,j) \in \Omega_{\rm obs} \end{array}$

$$\begin{bmatrix} \times & ? & ? & ? & \times & ? \\ ? & ? & \times & \times & ? & ? \\ \times & ? & ? & \times & ? & ? \\ ? & ? & \times & ? & ? & \times \\ \times & ? & ? & ? & ? & ? & 2 \\ ? & ? & \times & \times & ? & ? \end{bmatrix}$$

Theorem (C. and Tao '09 improving C. and Recht '08)

• $\operatorname{rank}(L) = r$

• Ω_{obs} random set of size m

Solution to SDP is exact with probability at least $1 - n^{-10}$ if

 $m \gtrsim \mu nr \log^a n$ $a \leq 6$ (sometimes 2)

Gross' near-optimal improvement

 $m \gtrsim \mu \, nr \log^2 n$

Related work

- Related results
 - Recht Parrilo Fazel '07
 - Keshavan, Oh and Montanari '09
- Earlier result [C. and Recht '08]:

$$m \gtrsim \mu n^{6/5} r \log n$$

- Other contributions
 - Cai, C. and Shen '08
 - Mazumder, Hastie and Tibshirani '09
 - Ma and Goldfarb '09
 - ...

Geometry

minimize subject to

$$\begin{split} \|\hat{L}\|_* \\ \hat{L}_{ij} &= L_{ij} \quad (i,j) \in \Omega \end{split}$$

$$\begin{bmatrix} \times & ? & ? & ? & \times & ? \\ ? & ? & \times & \times & ? & ? \\ \times & ? & ? & \times & 2 & ? \\ ? & ? & \times & ? & ? & \times \\ \times & ? & ? & ? & ? & 2 \\ ? & ? & \times & \times & ? & ? \end{bmatrix}$$

Geometry

minimize subject to

$$\begin{split} \| \hat{L} \|_* \\ \hat{L}_{ij} &= L_{ij} \quad (i,j) \in \Omega \end{split}$$

$$\begin{bmatrix} \times & ? & ? & ? & \times & ? \\ ? & ? & \times & \times & ? & ? \\ \times & ? & ? & \times & 2 & ? \\ ? & ? & \times & ? & ? & 2 \\ ? & ? & \times & ? & ? & 2 \\ 2 & ? & \times & & ? & ? & ? \\ ? & ? & \times & \times & ? & ? \end{bmatrix}$$

-0.5

У

х

General formulation

• A_1, \ldots, A_N (orthonormal) basis of $\mathbb{R}^{n \times n}$ $(N = n^2)$ • $\Omega \subset \{1, \ldots, N\}$

$$\begin{array}{ll} \mbox{minimize} & \|X\|_* \\ \mbox{subject to} & \langle A_k, X \rangle = \langle A_k, L \rangle \quad k \in \Omega \\ \end{array}$$

If incoherence between sensing matrices $\{A_k\}$ and col. + row space

everything should work ...

Example: C. and Recht '08

- Two orthonormal bases $F = [f_1, \ldots, f_n]$, $G = [g_1, \ldots, g_n]$
- Orthobasis of $n \times n$ matrices: $\{f_i g_j^*\}_{1 \le i,j \le n}$

$$\begin{array}{ll} \mbox{minimize} & \|X\|_* \\ \mbox{subject to} & f_i^*Xg_j = f_i^*Lg_j & (i,j) \in \Omega \end{array}$$

Succeeds if col. (resp. row) space of L incoherent with $\{f_i\}$ (resp. $\{g_i\}$)

Example: C. and Recht '08

- Two orthonormal bases $F = [f_1, \ldots, f_n]$, $G = [g_1, \ldots, g_n]$
- Orthobasis of $n \times n$ matrices: $\{f_i g_j^*\}_{1 \le i,j \le n}$

$$\begin{array}{ll} \mbox{minimize} & \|X\|_* \\ \mbox{subject to} & f_i^* X g_j = f_i^* L g_j \quad (i,j) \in \Omega \end{array}$$

Succeeds if col. (resp. row) space of L incoherent with $\{f_i\}$ (resp. $\{g_i\}$)

Why? Because $f_i^*Xg_j = e_i^*(F^*XG)e_j$

Quantum-state tomography

• $k \operatorname{spin} 1/2$ system in an *unknown* quantum state $L \in \mathbb{C}^{n \times n}$ (density matrix)

$$m = 2^k$$
, trace $(L) = 1$, $L \succcurlyeq 0$

• Quantum measurements (data)

 $\mathbb{E}[\text{measurement with observable } A_j] = \langle A_j, L \rangle = \text{trace}(A_j^*L)$

e.g. $\{A_j\}$: tensor Pauli matrices

Q? Can we reduce # measurements by using the structure of special classes of quantum states?

- pure state $\rightarrow \operatorname{rank}(L) = 1$
- interesting mixed states \rightarrow (approx) low rank
Quantum-state tomography

• $k \operatorname{spin} 1/2$ system in an *unknown* quantum state $L \in \mathbb{C}^{n \times n}$ (density matrix)

$$m = 2^k$$
, trace $(L) = 1$, $L \succcurlyeq 0$

• Quantum measurements (data)

 $\mathbb{E}[\text{measurement with observable } A_j] = \langle A_j, L \rangle = \text{trace}(A_j^*L)$

e.g. $\{A_j\}$: tensor Pauli matrices

Q? Can we reduce # measurements by using the structure of special classes of quantum states?

- pure state $\rightarrow \operatorname{rank}(L) = 1$
- interesting mixed states \rightarrow (approx) low rank

A. Yes. Sample in proportion to the rank of the quantum state (Gross '09)

General statement

 A_1, \ldots, A_{n^2} (orthonormal) basis of $\mathbb{R}^{n imes n}$ and observe ($L = U \Sigma V^*$)

$$y_k = \langle A_k, L \rangle \quad k \in \Omega$$

 Ω random set of size m

• Coherence assumption

$$\max_{k} \|P_{U}A_{k}\|_{F}^{2} \le \mu r/n \qquad \max_{k} \|A_{k}P_{V}\|_{F}^{2} \le \mu r/n$$

• At least one of the two conditions

$$\max_{k} ||A_k||^2 \le \mu/n$$
$$\max_{k} |\langle A_k, UV^* \rangle|^2 \le \mu r/n^2$$

General statement

 A_1, \ldots, A_{n^2} (orthonormal) basis of $\mathbb{R}^{n \times n}$ and observe $(L = U\Sigma V^*)$

$$y_k = \langle A_k, L \rangle \quad k \in \Omega$$

 Ω random set of size m

• Coherence assumption

$$\max_{k} \|P_{U}A_{k}\|_{F}^{2} \le \mu r/n \qquad \max_{k} \|A_{k}P_{V}\|_{F}^{2} \le \mu r/n$$

• At least one of the two conditions

$$\max_{k} ||A_k||^2 \le \mu/n$$
$$\max_{k} |\langle A_k, UV^* \rangle|^2 \le \mu r/n^2$$

Theorem (Gross '09)

Min nuclear-norm solution is exact with high prob. provided

 $m\gtrsim \mu\times nr\times \log^2 n$

Robust PCA

Matrix completion from noisy entries

$$Y_{ij} = L_{ij} + Z_{ij}, \quad (i,j) \in \Omega_{obs} \quad Z_{ij} \text{ iid } \mathcal{N}(0,\sigma^2)$$

Recovery by SDP with relaxed constraints

 $\begin{array}{ll} {\sf minimize} & \|\hat{L}\|_* \\ {\sf subject to} & \sum_{ij\in\Omega_{\sf obs}}(\hat{L}_{ij}-Y_{ij})^2 \leq (1+\epsilon)n\sigma^2 \end{array}$

Matrix completion from noisy entries

$$Y_{ij} = L_{ij} + Z_{ij}, \quad (i,j) \in \Omega_{obs} \quad Z_{ij} \text{ iid } \mathcal{N}(0,\sigma^2)$$

Recovery by SDP with relaxed constraints

minimize	$\ \hat{L}\ _*$
subject to	$\sum_{ij\in\Omega_{obs}} (\hat{L}_{ij} - Y_{ij})^2 \le (1+\epsilon)n\sigma^2$

Theorem (C. and Plan, '09)

Same assumptions as before. With very high prob.

$$n^{-2} \|\hat{L} - L\|_F^2 \lesssim n\sigma^2$$

When exact recovery occurs, noisy variant is stable

Matrix completion from noisy entries

$$Y_{ij} = L_{ij} + Z_{ij}, \quad (i,j) \in \Omega_{obs} \quad Z_{ij} \text{ iid } \mathcal{N}(0,\sigma^2)$$

Recovery by SDP with relaxed constraints

minimize	$\ \hat{L}\ _*$
subject to	$\sum_{ij\in\Omega_{obs}} (\hat{L}_{ij} - Y_{ij})^2 \le (1+\epsilon)n\sigma^2$

Theorem (C. and Plan, '09)

Same assumptions as before. With very high prob.

$$n^{-2} \|\hat{L} - L\|_F^2 \lesssim n\sigma^2$$

When exact recovery occurs, noisy variant is stable

Some other works

- Koltchinskii, Lounici & Tsybakov ('10)
- Bunea, She & Wegkamp ('10)

- Negahban & Wainwright ('10)
- Rohde & Tsybakov ('10)

Gross errors

Observe corrupted samples from L + E

- L low-rank matrix
- E entries that have been tampered with impulsive noise

Goal

Recover L: make approach robust vis a vis gross errors

The separation problem

$$M = L + E$$

- M: data matrix (observed)
- L: low-rank (unobserved)
- E: sparse (unobserved)

The separation problem

$$M = L + E$$

- M: data matrix (observed)
- L: low-rank (unobserved)
- E: sparse (unobserved)

Problem: can we recover L and E accurately?

Again, seems impossible

Classical PCA

$$M = L + N$$

- L: low-rank (unobserved)
- N: (small) perturbation

Dimensionality reduction (Schmidt 1907, Hotelling 1933)

 $\begin{array}{ll} \mbox{minimize} & \|M-\hat{L}\| \\ \mbox{subject to} & \mbox{rank}(\hat{L}) \leq k \end{array}$

Solution given by truncated SVD

$$M = U\Sigma V^* = \sum_i \sigma_i u_i v_i^* \quad \Rightarrow \quad \hat{L} = \sum_{i \leq k} \sigma_i u_i v_i^*$$

Classical PCA

$$M = L + N$$

- L: low-rank (unobserved)
- N: (small) perturbation

Dimensionality reduction (Schmidt 1907, Hotelling 1933)

 $\begin{array}{ll} \mbox{minimize} & \|M-\hat{L}\| \\ \mbox{subject to} & \mbox{rank}(\hat{L}) \leq k \end{array}$

Solution given by truncated SVD

$$M = U\Sigma V^* = \sum_i \sigma_i u_i v_i^* \quad \Rightarrow \quad \hat{L} = \sum_{i \leq k} \sigma_i u_i v_i^*$$

Fundamental statistical tool: enormous impact

PCA and corruptions/outliers

PCA: very sensitive to outliers

PCA and corruptions/outliers

PCA: very sensitive to outliers

Breaks down with one (badly) corrupted data point

Robust PCA

Gross errors frequently occur in many applications

- Image processing
- Web data analysis
- Bioinformatics
- ...

Occlusions

...

- Malicious tampering
- Sensor failures

Important to make PCA robust

- Influence function techniques: Huber; De La Torre and Black
- Multivariate trimming: Gnanadesikan and Kettenring
- Alternating minimization: Ke and Kanade
- Random sampling techniques: Fischler and Bolles

• ...

Example: Face recognition under varying illuminations

Images of same face under varying illuminations \sim 9D harmonic plane (Basri and Jacobs, 03)

Occlusions and other corruptions in computer vision

Real data are corrupted, have missing blocks \rightarrow classical methods break down

How do we develop provably correct and efficient algorithms for recovery of low-dimensional linear structure from non-ideal observations?

When does separation make sense?

What if M = L + E is both low-rank and sparse?

$$M = e_1 e_n^* = \begin{bmatrix} 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & 0 \end{bmatrix}$$

When does separation make sense?

What if M = L + E is both low-rank and sparse?

$$M = e_1 e_n^* = \begin{bmatrix} 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & 0 \end{bmatrix}$$

Low-rank component cannot be sparse

Will assume $L \in \mathbb{R}^{n \times n}$ obeys previous incoherence condition "sing. vectors are not sparse"

What if the sparse component has low-rank?

E.g. first column of ${\boldsymbol E}$ is minus that of ${\boldsymbol L}$

$$E = \begin{bmatrix} * & 0 & \cdots & 0 & 0 \\ * & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ * & 0 & \cdots & 0 & 0 \end{bmatrix} \quad \Rightarrow \quad M = L + E = \begin{bmatrix} 0 & * & \cdots & * & * \\ 0 & * & \cdots & * & * \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & * & \cdots & * & * \end{bmatrix}$$

What if the sparse component has low-rank?

E.g. first column of ${\boldsymbol E}$ is minus that of ${\boldsymbol L}$

$$E = \begin{bmatrix} * & 0 & \cdots & 0 & 0 \\ * & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ * & 0 & \cdots & 0 & 0 \end{bmatrix} \implies M = L + E = \begin{bmatrix} 0 & * & \cdots & * & * \\ 0 & * & \cdots & * & * \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & * & \cdots & * & * \end{bmatrix}$$

Sparsity pattern will be assumed (uniform) random

Principal Component Pursuit (PCP)

$$M = L + E$$

- *L* unknown (rank unknown)
- E unknown (# of entries $\neq 0$, locations, magnitudes all unknown)

Principal Component Pursuit (PCP)

$$M = L + E$$

- *L* unknown (rank unknown)
- E unknown (# of entries $\neq 0$, locations, magnitudes all unknown)

- nuclear norm: $||L||_* = \sum_i \sigma_i(L)$ (sum of sing. values)
- ℓ_1 norm: $||S||_1 = \sum_{ij} |S_{ij}|$ (sum of abs. values)

Main result: M = L + E

Theorem (C., Li, Ma and Wright, 09)

- L is $n \times n$ of $\operatorname{rank}(L) \le \rho_r n \, \mu^{-1} (\log n)^{-2}$
- E is $n \times n$, random sparsity pattern of cardinality $m \le \rho_s n^2$

Then with probability $1 - O(n^{-10})$, PCP with $\lambda = 1/\sqrt{n}$ is exact:

$$\hat{L} = L, \quad \hat{E} = E$$

Same conclusion for rectangular matrices with $\lambda = 1/\sqrt{\max\,\dim}$

- Exact
 - whatever the magnitudes of L!
 - whatever the magnitudes of E!
- No tuning parameter!

Connections with matrix completion (MC)

Missing vs. corrupted data

Harder to detect and correct than to fill in

Phase transitions in probability of success

 $L = XY^*$ is a product of independent $n \times r$ i.i.d. $\mathcal{N}(0, 1/n)$ matrices

Other works

Chandrasekaran, Sanghavi, Parrilo and Willsky (09): deterministic results

- Hsu, Kakade and Zhang (10)
- Chen, Jalali, Sanghavi and Caramanis (11)
- Li (11)

Tying it together

PCP
min
$$\|\hat{L}\|_* + \lambda \|\hat{E}\|_1$$

s. t. $\hat{L}_{ij} + \hat{E}_{ij} = L_{ij} + E_{ij} \ (i, j) \in \Omega_{obs}$

$$\begin{bmatrix} \times & \mathbf{2} & ? & ? & \times & ? \\ ? & ? & \times & \mathbf{2} & ? & ? \\ \times & ? & ? & \times & ? & ? \\ ? & ? & \times & ? & ? & \mathbf{2} \\ \times & ? & \mathbf{2} & ? & ? & ? \\ ? & ? & \times & \mathbf{2} & ? & ? \\ ? & ? & \times & \mathbf{2} & ? & ? \end{bmatrix}$$

Tying it together

$$\begin{array}{ll} \min & \|\hat{L}\|_* + \lambda \|\hat{E}\|_1 \\ \text{s. t.} & \hat{L}_{ij} + \hat{E}_{ij} = L_{ij} + E_{ij} \ (i,j) \in \Omega_{\text{obs}} \end{array}$$

Theorem (C., Li, Ma and Wright, 09)

- *L* as before, $rank(L) \le \rho_0 n \mu^{-1} (\log n)^{-2}$
- Ω_{obs} random set of size $m = 0.1n^2$ (missing frac. is arbitrary)
- Each observed entry corrupted with prob. $au \leq au_0$

Then with prob. $1 - O(n^{-10})$, PCP with $\lambda = 1/\sqrt{0.1n}$ is exact:

$$\hat{L} = L$$

 $\begin{bmatrix} \times & 2 & ? & ? & \times & ? \\ ? & ? & \times & 2 & ? & ? \\ \times & ? & ? & \times & ? & ? \\ ? & ? & \times & ? & ? & ? \\ \times & ? & & & ? & ? & ? \\ \times & ? & & & ? & ? & ? \\ ? & ? & \times & & 2 & ? & ? \end{bmatrix}$

Same conclusion for rectangular matrices with $\lambda = 1/\sqrt{0.1 \text{max dim}}$

${\sf Gross\ errors} + {\sf noise}$

Extension (C., Li, Ma, Wright & Zhou '10)

$$Y_{ij} = L_{ij} + E_{ij} + Z_{ij} \quad (i,j) \in \Omega$$

- L low rank
- E sparse (gross errors)
- $\bullet~Z$ stochastic or deterministic perturbation

Gross errors + noise

Extension (C., Li, Ma, Wright & Zhou '10)

$$Y_{ij} = L_{ij} + E_{ij} + Z_{ij} \quad (i,j) \in \Omega$$

- L low rank
- E sparse (gross errors)
- Z stochastic or deterministic perturbation

 $\mathsf{PCP} \text{ with relaxed constraints } \quad \Rightarrow \quad \mathsf{error} \text{ as if no impulsive noise}$

Other models: Xu, Caramanis & Sanghavi '10

Observe all entries of Y

$$Y = L + C \ (+Z)$$

• L low rank

- C column of outliers
- \bullet Z stochastic or deterministic perturbation

Goal

Achieve segmentation (noiseless case):

- Identify columns in low-dim subspace
- Identify outliers

Computational issues

Wish to solve the SDP

minimize
$$||L||_* + \lambda ||E||_1$$

subject to $L + E = M$

• Off-the-shelf algorithms (SDPT3, SeDuMi) need n < 80,100

• Customized IPMs don't do much better

Have developed a simple and scalable algorithm via the Alternating Direction Method of Multipliers (ADMM)

Empirical performance

n	$\operatorname{rank}(L)$	$ E _0$	$\operatorname{rank}(\hat{L})$	$\ \hat{E}\ _0$	$\frac{\ \hat{L}-L\ _F}{\ L\ _F}$	# SVD	Time(s)
500	25	12,500	25	12,500	1.1×10^{-6}	16	2.9
1,000	50	50,000	50	50,000	1.2×10^{-6}	16	12.4
2,000	100	200,000	100	200,000	1.2×10^{-6}	16	61.8
3,000	250	450,000	250	450,000	2.3×10^{-6}	15	185.2

 $\operatorname{rank}(L) = 0.05 \times n, \ \|E\|_0 = 0.05 \times n^2.$

n	$\operatorname{rank}(L)$	$ E _{0}$	$\operatorname{rank}(\hat{L})$	$\ \hat{E}\ _0$	$\frac{\ \hat{L} - L\ _F}{\ L\ _F}$	# SVD	Time(s)
500	25	25,000	25	25,000	1.2×10^{-6}	17	4.0
1,000	50	100,000	50	100,000	2.4×10^{-6}	16	13.7
2,000	100	400,000	100	400,000	2.4×10^{-6}	16	64.5
3,000	150	900,000	150	900,000	2.5×10^{-6}	16	191.0
rank $(L) = 0.05 \times n, E _0 = 0.10 \times n^2.$							

Computational cost higher than classical PCA but not by a large factor!

Implementation status

 $n \times n$ matrices

- $\bullet\,$ Implementation on desktop for $n\sim 10^3, 10^4$
- Distributed implementation for $n \sim 10^6$ on Redmond HPC clusters (MSRA)
- Support applications with real high-dim. data
 - images
 - videos
 - audio
 - text documents
 - ...

Some Applications
Application to video surveillance

Sequence of 200 video frames (144×172 pixels) with a static background

Problem: detect any activity in the foreground

Background modeling from surveillance video, I

Alternating minimization of an M-estimator (De La Torre and Black, '03)

Background modeling from surveillance video, II

Three frames from a 250 frame sequence taken in a lobby, with varying illumination (Li et al., '04).

Corruptions

Corruptions

Corruptions

Corruptions

Corruptions

APPLICATIONS – *Faces under varying illumination*

58 images of one person under varying lighting:

Candes, Li, Ma, and Wright, Journal of the ACM, May 2011.

APPLICATIONS – Faces under varying illumination

58 images of one person under varying lighting:

Candes, Li, Ma, and Wright, Journal of the ACM, May 2011.

Robust batch image alignment (Ma et al.)

Input: M corrupted and misaligned batch of images (data)
Output: L aligned low-rank images; S sparse errors

$$(\mathsf{Model}) \qquad \boldsymbol{M} \circ \boldsymbol{\tau} = \boldsymbol{L}_{\mathbf{0}} + \boldsymbol{S}_{\mathbf{0}}$$

 τ : parametric deformation (rigid, affine, projective)

Robust batch image alignment (Ma et al.)

Input: M corrupted and misaligned batch of images (data)
Output: L aligned low-rank images; S sparse errors

 $(\mathsf{Model}) \qquad \boldsymbol{M} \circ \tau = \boldsymbol{L_0} + \boldsymbol{S_0}$

 τ : parametric deformation (rigid, affine, projective)

Bootstrap: find \boldsymbol{L} and \boldsymbol{S} and τ solution to

 $\begin{array}{ll} \text{minimize} & \|\boldsymbol{L}\|_* + \lambda \|\boldsymbol{S}\|_1 \\ \text{subject to} & \boldsymbol{L} + \boldsymbol{S} = \boldsymbol{M} \circ \tau \end{array}$

APPLICATIONS – 2D image matching and 3D modeling

 $au\in$ 2D homographies

APPLICATIONS – *Batch face alignment: accuracy evaluation*

100 misaligned corrupted images:

Vedaldi CVPR'08 direct/gradient

RASL:

T	Y)		20	C.		<u>J</u>	J.	25
T		S.			(Ne		Y	T.
T T	<u>J</u>	5-	eja E	0	a Van) UI	T	T
TT	T		A.	0 f		Ľ	T	Y
T	Ľ	T.	W.	T.	X	Ľ	Ľ	Ľ
	1000-1000 1000-000 1000-00 1000-00 1000-00		- 19	a r		10 - S M		1995 - 1995 1994 - 1974 1994 - 1974 1995

	Mean error	Error std.	Max error
Initial misalignment	2.5	1.03	4.87
Vedaldi (direct/gradient)	1.97/1.66	1.11/0.85	5.71/4.02
RASL (this work)	0.48	0.23	1.07

APPLICATIONS – *Simultaneous Alignment and Repairing*

APPLICATIONS – *Celebrities from the Internet*

Average face **before** alignment & repairing

Gloria Macapagal Arroyo Jennifer Capriati Laura Bush Serena Williams **Barack Obama Ariel Sharon** Arnold Schwarzenegger Colin Powell **Donald Rumsfeld** George W Bush Gerhard Schroeder Hugo Chavez **Jacques Chirac** Jean Chretien John Ashcroft Junichiro Koizumi Lleyton Hewitt Luiz Inacio Lula da Silva **Tony Blair Vladimir Putin**

APPLICATIONS – *Face recognition with less controlled data?*

Average face after alignment & repairing

Gloria Macapagal Arroyo Jennifer Capriati Laura Bush Serena Williams **Barack Obama Ariel Sharon** Arnold Schwarzenegger Colin Powell **Donald Rumsfeld** George W Bush **Gerhard Schroeder** Hugo Chavez Jacques Chirac Jean Chretien John Ashcroft Junichiro Koizumi Lleyton Hewitt Luiz Inacio Lula da Silva **Tony Blair Vladimir Putin**

APPLICATIONS – *Aligning handwritten digits*

5 5

ъ

З

ß

 $D \circ \tau$

3 3

Learned-Miller PAMI'06

A										
3	3	3	3	3	3	3	3	3	3	
3	3	3	3	3	3	3	3	3	3	
3	3	3	3	3	3	3	3	3	3	
3	3	3	3	3	3	3	3	3	3	
3	3	3	3	3	3	3	3	3	3	
3	3	3	3	3	3	3	3	3	3	
3	3	3	3	3	3	3	3	3	3	
3	3	3	3	3	3	3	3	3	3	
3	3	3	3	3	3	3	3	3	3	
3	3	3	3	3	3	3	3	3	3	

Vedaldi CVPR'08

З Э З з ŝ

E

The world we see (through camera) is tilted!

augmented reality

3D map

Transform Invariant Low-rank Textures (TILT)

Solution: estimate the deformation and low-rank texture simultaneously

Iteratively solving the linearized convex program::

$$\prod_{k=1}^{\infty} \min \|A\|_{*} + \lambda \|E\|_{1} \quad \text{subj} \quad A + E = D \circ \tau_{k} + J\Delta\tau$$

TILT via Iterative RPCA-Like Convex Optimization

Iteration Processes

TILT: Examples of Symmetric Patterns and Textures

Input (red window)

Output (rectified green window)

TILT – Robust to Background, Occlusion, and Corruption

TILT: All Types of Regular Geometric Structures in Images

Rectified Low-rank Textures

TILT: Examples of Characters, Signs, and Texts

Input (red window)

Output (rectified green window)

ed to tailor products to aid Martin Hirt, who Company, the consult- ed companies on tech-	over the last three years. But he said then within five years China could overtake limit ain, Germany and Japan as a base lier corpo- rate research, leaving it second only to the	automati to conduct research loss on pri- ovaly affected later advanced questions where, induct, it may be induced from Mr. Kirt, the McKaney summittee, on
China. "A so-year-old	United States.	without suggesting that at the lower set.
ultiment is not formil to	Allocugh experts say user Chana's growth	frank plates, of weath lines and a second second second
of an 18-year-old Chi-	as an international research base will contin-	Jours die United Station, Japan and ettern
	se, many also said that growth could be	apped countries to Chars.
ned a lab in Beijing to	slowed or ultimately endangered by the grow-	Some Chances officials have a converse
ng software to suit its	ing pains and legal uncertainties.	17 - that the barwage late man became
companies like Mo-	The most immediate threat is China's lastry	ed exclaves, sightening off China's laws
and intel are going	in saleguarding intellectual property rights,	bet creating law inselignt applianers.
li-scale labs that work	which makes it too easy for innovations and	growing number of Chance efficients at
advanced products.	industrial secrets to leak out, only in mappen?	perts ments to believe the the many the
lectric opened a large	in a Chinese competitor's product catalogue	Chang's fathers in assertation does not
ghai, where it plans to	Multinationals' growing resentment of theft of	from foreign aggressen bet from the
rs by next year. And	patents and trade secrets is leading some in	of Chinese industry
tile telephone maker,	threaten to guit China for India, Dr. von Indi-	China has more than dealling when its

TILT: More Examples

Input (red window)

RICH VOLCANIC LATITUDE FOR P 2 MORE HOURS GROWING SEASO WARM DAYS ALL COOL NIGHT CRE

Output (rectified green window)

TILT – 3D Geometry from a Single Image

TILT Applications: Augmented Reality

Other Applications: Web Document Corpus Analysis

Low dimensional topic models with keywords...

Other Applications: Sparse Keywords Extracted

Reuters-21578 dataset: 1,000 longest documents; 3,000 most frequent words

CHRYSLER SETS STOCK SPLIT, HIGHER DIVIDEND

Chrysler Corp said its board declared a three-for-two stock split in the form of a 50 pct stock dividend and raised the quarterly dividend by seven pct.

The company said the dividend was raised to 37.5 cts a share from 35 cts on a pre-split basis, equal to a 25 ct dividend on a post-split basis.

Chrysler said the stock dividend is payable April 13 to holders of record March 23 while the cash dividend is payable April 15 to holders of record March 23. It said cash will be paid in lieu of fractional shares.

With the split, Chrysler said 13.2 mln shares remain to be purchased in its stock repurchase program that began in late 1984. That program now has a target of 56.3 mln shares with the latest stock split.

Chrysler said in a statement the actions "re[°] ect not only our outstanding performance over the past few years but also our optimism about the company's future."

- Lots of exciting work in theory of low-rank models (matrix completion)
- Lots more needs to be done