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A Bayesian motivation

Bayesian model: Prior p (θ) and likelihood f (y |θ)

π ( θ| y) = p (θ) f (y |θ)∫
Θ p (θ) f (y |θ) dθ

.

Except for simple cases -conjugate priors-, there is no closed form
expression for the posterior.

Bayes rule requires one to be able to compute the potentially high
dimensional integral ∫

Θ
p (θ) f (y |θ) dθ .
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Point estimates and expectations

In practice, one is interested in point estimates

E [ θ| y ] =
∫

θπ ( θ| y) dθ

Var [ θ| y ] =
∫

θ2π ( θ| y) dθ −E2 [ θ| y ]

But also marginal distributions; e.g. if θ = (θ1, θ2) and θ2 are
so-called nuisance parameters then

π ( θ1| y) =
∫

π ( θ1, θ2| y) dθ2 .

We might also be interested in

θMMAP1 = argmax π ( θ1| y)
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More expectations

If one is interested in predicting Ỹ ∼ f (ỹ |θ) given y then the
predictive density is

g (ỹ |y) =
∫
f (ỹ |θ)π (θ|y) dθ

and the corresponding expected value is

E
[
Ỹ |y

]
=
∫ ∫

yf (ỹ |θ)π (θ|y) dθ.

For model selection with an infinitely countable number of models

π (k, θk | y) =
π (k)π (θk |k) f (y | k, θk )

∑∞
k=1 π (k)

∫
π (θk |k) f (y | k, θk ) dθk
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Introduction to Monte Carlo
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An “idealised”rain falls uniformly on the square S , i.e. the probability
for a drop to fall in a region A is proportional to the area of A.
Let D be the random variable defined on X = S representing the
location of a drop and A a region of the square, then

P(D ∈ A) =
∫
A dxdy∫
S dxdy

.

where x and y are the Cartesian coordinates.

Assume we observe N such independent drops, say
{D(i ); i = 1, . . . ,N}.
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A heuristic?

Intuitively, imagining that you have never followed any statistics
course, a sensible technique to estimate the probability P(D ∈ A) of
falling in a given region A ⊂ S (and think for example of A = D)
would consist of using

P(D ∈ A) ≈ number of drops that fell in A
N

.

We want a statistical justification to this.

A. Doucet (MLSS Sept. 2011) MCMC Sept. 2011 9 / 91



Probabilities as expectations

Let us denote the indicator function of a set A as follows,

IA(x , y) =
{
1 if point d = (x , y) ∈ A,
0 otherwise.

We have

P(D ∈ A) =
∫
S IA(x , y)dxdy∫

S dxdy
=
∫
S

IA(x , y)
1
4
dxdy .

1/4 is the probability density associated to P, i.e. the density of the
uniform distribution on S denoted US .
Let us define the r.v. V (D) := IA(D) := IA(X ,Y ), where X ,Y are
the rvs representing the Cartesian coordinates of a uniformly
distributed point on S then

P(D ∈ A) =
∫
S

IA(x , y)
1
4
dxdy = EUS (V ).
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Law of large numbers

Introduce {V (i ) := V (D(i )), i = 1, . . . ,N} the r.v.s associated to the
drops {D(i ), i = 1, . . . ,N} and consider the sum

SN =
∑N
i=1 V

(i )

N
=
number of drops that fell in A

N

This expression shows that our suggested approximation of
P(D ∈ A) is the empirical average of i.i.d. r.v.s {V (i ), i = 1, . . . ,N}.
Assuming that the rain lasts forever (i.e. N → +∞) then the law of
large numbers (since EUS (|V |) < +∞ here) yields

lim
N→+∞

SN = EUS (V ), (almost surely),

where we have already proved that P(D ∈ A) = EUS (V ).

When N is suffi ciently large, this mathematically justifies our heuristic
method.
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Approximating pi

As we have
P(D ∈ D) =

∫
D

1
4
dxdy =

π

4
then SN is an (unbiased) estimator of π/4.
To characterise the precision of our estimator, we can use

var(SN ) =
1
N2

N

∑
i=1
var(V (i )) =

1
N
var(V (1))

as the {V (i ), i = 1, . . . ,N} are independent.
One can invoke an asymptotic result, the central limit theorem (which
can be applied here as var(V ) < +∞). As N → +∞,

√
N (SN − π/4)→d N (0, var(V ))

which implies that for N large enough the probability of the error
being larger than 2

√
var(V )/N (here 2

√
var(V ) = 0.8211) is

P

(
|SN − π/4| > 2

√
var(V )/N

)
' 0.05.
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A first generalisation

Consider the case where X = Rnx for any nx , and in particular
nx >> 1. Replace the S and D above with a hypercube Snx and an
inscribed hyperball Dnx in X.
Arguments that lead earlier to the formal validation of the Monte
Carlo approach remain identical here.

In particular the rate of convergence of the estimator in the mean
square sense is again in 1/N and independent of the dimension nx .
This would not be the case using a deterministic method on a grid of
regularly spaced points where the CV rate is typically of the form
1/Nr/nx where r is related to the smoothness of the contours of A.
This is one of the main reasons why Monte Carlo methods are
attractive.
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Sometimes it is claimed that Monte Carlo beat the curse of
dimensionality....

Well sort of...

Example: Assume you are interested in computing the volume of the
hypersphere of radius R = 1 in nx−dimension

vol (Snx ) =
π

nx
2

Γ
( nx
2 + 1

) → 0 as nx → ∞

using samples from the hypercube [−1, 1]nx of volume 2nx .
For N samples, the variance of our MC estimate is indeed in

var(X )
N

=
pnx (1− pnx )

N
≈ pnx
N

for large nx

where X ∼Bernoulli(pnx ) with pnx = 2−nx vol (Snx ) .
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We are interested in calculating 2nxE (X ) = 2nx pnx but

var(X )
E2 (X )

≈ 1
N.pnx

So to get a reasonable relative error, we would need N ≈ 100p−1nx .
For nx = 20, we have N ≈ 4.06× 109 and for nx = 40,
N ≈ 3.02× 1020; i.e. if you look for a needle in a haystack, using a
blind Monte Carlo strategy will not help much.

Always keep in mind that what is often important is the relative error
you commit, not the absolute error. Even if E (X ) = 1, if we have
var(X ) = Cαnx where α > 1 then

var(X )
N

≤ ε⇒ N ≥ Cαnx

ε
;

i.e. an number of samples exponential in the dimension nx is required
to ensure a fixed precision.
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Further generalisations

Now we generalise this idea to tackle the generic problem of
estimating

Eπ(f (X )) ,
∫
X
f (x)π(x)dx ,

where f : X→ Rnf and π is a probability distribution on X ⊂ Rnx .

We will assume that Eπ(|f (X )|) < +∞ but that it is diffi cult to
obtain an analytical expression for Eπ(f (X )).

Here π is any probability density function.
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Empirical Measure

Let us introduce the delta-Dirac function δx0 for x0 ∈ X defined for
any f : X→ Rnf as follows∫

X
f (x)δx0(x)dx = f (x0)

Assume N >> 1 i.i.d. samples X (i ) ∼ π (i = 1, . . . ,N) are available
to us then introduce the following empirical measure

π̂N (x) :=
1
N

N

∑
i=1

δX (i ) (x) .

The concentration of points in a given region of the space
represents π.

This approach is in contrast with what is usually done in parametric
statistics, i.e. start with samples and then introduce a distribution
with an algebraic representation for the underlying population.
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Expectation of a general function

The MC estimate of Eπ(f (X )) is

SN (f ) = Eπ̂N (f (X )) =
1
N

N

∑
i=1
f (X (i )).

From the law of large numbers, we have SN (f )

lim
N→+∞

SN (f ) = Eπ(f (X )) a.s.

A good measure of the approximation quality is the variance of
SN (f ),

var [SN (f )] =
varπ [f (X )]

N
and the CLT tells us that

√
N (SN (f )−Eπ(f (X ))

N→+∞→ d N (0, varπ [f (X )])
We have varπ(f ) = Eπ(f 2)−E2

π(f ) '
1
N ∑N

i=1 f
2(X (i ))−

(
1
N ∑N

i=1 f (X
(i ))
)2
.
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Marginalization and Optimization

Similarly, if we have

π̂N (x1, x2) =
1
N

N

∑
i=1

δ
X (i )1 ,X (i )2

(x1, x2)

so the marginal distribution is simply given by

π̂N (x1) =
1
N

N

∑
i=1

δ
X (i )1
(x1)

If we want to estimate argmax π (x) and π (x) is known up to a
normalizing constant then

argmax
{X (i )}

π
(
x (i )
)

is a reasonable although not very clever estimate.
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Summary

If you could sample easily from an arbitrary probability distribution,

then you could easily estimate all the quantities you are interested in.

Problem: How do you sample from an arbitrary probability
distribution???
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Known general techniques to sample from a general distribution π
rely on the use of samples from an instrumental distribution (or
proposal distribution) q.

For example : if X ∼ q then with f a diffeomorphism,
[Y = f (X )] ∼ g(y) = q(f −1(y))× |Jacobian(f −1)(y)|.
However finding f such that π(y) = g(y) requires strong analytical
tractability; see the wonderful book by Devroye (1986).

The most universal methods only require one to evaluate the densities
π and q pointwise up to some normalizing constants.

Rejection sampling is the standard approach.
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Accept-Reject Method

The rejection method allows one to sample according to a distribution
π defined on X only known up to a proportionality constant, say
π (x) ∝ γ (x).

It relies on samples generated from a proposal distribution q on X. q
might as well be known only up to a normalising constant, say
q (x) ∝ q∗ (x).
We need q∗ (x) to ‘dominate’γ (x); i.e.

C = sup
x∈X

γ (x)
q∗ (x)

< +∞

This implies γ(x) > 0 ⇒ q∗(x) > 0 but also that the tails of q∗(x)
must be thicker than the tails of γ(x).
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Consider C ′ ≥ C . Then the accept/reject procedure proceeds as follows.
1 Sample Y∼q and U ∼ U [0,C ′q∗ (Y )].
2 If U < γ (Y ) then return Y ; otherwise return to step 1.
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We have for any x ∈ X

P (Y ≤ x and Y accepted) =
∫ C ′q∗(y )
0

∫ x
−∞ I (u ≤ γ (y)) q (y) 1

C ′q∗(y )dydu

=
∫ x
−∞

γ(y )
C ′q∗(y )q (y) dy =

∫ x
−∞ γ(y )dy

C ′
∫
X q
∗(y )dy

The probability of being accepted is the marginal of
P (Y ≤ x and Y accepted)

P (Y accepted) =

∫
X γ (y) dy

C ′
∫
X q
∗ (y) dy

.

Thus

Pr (Y ≤ x |Y accepted) = Pr(Y≤x and Y accepted)
Pr(Y accepted)

=
∫ x
−∞ γ(y )dy∫
X γ(y )dy

=
∫ x
−∞ π (y) dy .
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The acceptance probability P (Y accepted) is a measure of effi ciency.

The number of trials before accepting a candidate follows a geometric
distribution

P
(
k th proposal accepted

)
= (1− ρ)k−1 ρ

where ρ =

( ∫
X γ (y) dy

C ′
∫
X q
∗ (y) dy

)

thus its expected value is

∞

∑
k=0

k (1− ρ)k−1 ρ =
1
$
=

1
Pr (Y accepted)

.

This is important to better understand the Metropolis-Hastings
algorithm.
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Limitations of the approach

Consider the case where X= Rnx

π (x) =
1

(2π)nx/2 exp
(
−∑n

i=1 x
2
i

2

)
and

q (x) =
1

(2πσ2)nx/2 exp
(
−∑n

i=1 x
2
i

2σ2

)
.

We have for any σ2 > 1

π (x)
q (x)

= σnx exp

(
−1
2

(
1− 1

σ2

) nx

∑
i=1
x2i

)
≤ σnx for any x ∈ Rnx

(which is reached for x = 0).
Consequently

P (Y accepted) =
1

σnx

i.e. the acceptance probability decreases exponentially fast with nx .
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Rejection Sampling is limited to problems of moderate dimensions.

Problem: We try to sample all the components of a potentially
high-dimensional parameter simultaneously/sequentially and we can
never correct for components already sampled.

An idea might consists of iteratively sampling components of large
vectors.

A powerful class of valid methods is available to deal with such
methods: Markov chain Monte Carlo.
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The nuclear pump data

Multiple failures in a nuclear plant

Pump k 1 2 3 4 5
# Failures pk 5 1 5 14 3
Times tk 94.32 15.72 62.88 125.76 5.24
Pump k 6 7 8 9 10

# Failures pk 19 1 1 4 22
Times tk 31.44 1.05 1.05 2.10 10.48

Model: # of failures of the k−th pump follow a Poisson process with
parameter λk (1 ≤ k ≤ 10). For an observed time tk , the number of
failures pk is thus a Poisson P(λk tk ) random variable.

The unknown parameters consist of x = (λ1, . . . ,λ10, β) with β a
parameter of the law of the {λk}.
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Posterior distribution

Hierarchical model

λk | (α, β)
iid∼ Ga(α, β) and β ∼ Ga(γ, δ)

with α = 1.8 and γ = 0.01 and δ = 1.
With p := (p1, . . . p10) and t := (t1, . . . t10) the posterior distribution
is proportional to

p (λ1, . . . ,λ10, β|p, t)

∝
10

∏
k=1

{λk tk )pk exp(−λk tk )λ
α−1
k exp(−βλk}β10αβγ−1 exp(−δβ)

∝
10

∏
k=1

{λpk+α−1
k exp(−(tk + β)λk )}β10α+γ−1 exp(−δβ) .

This multidimensional distribution is rather complex. It is not obvious
how the rejection method or importance sampling could be used in
this context.
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However

The conditionals have a familiar form

p (λ1, . . . ,λ10|p, t, β) =
10

∏
k=1

p (λk | pk , tk , β)

where

λk | pk , tk , β ∼ Ga(pk + α, tk + β) for 1 ≤ k ≤ 10,

and

β|(λ1, . . . ,λ10) ∼ Ga(γ+ 10α, δ+
10

∑
k=1

λk ) .

Instead of directly sampling the vector x = (λ1, . . . ,λ10, β) at once,
one could suggest sampling it iteratively, starting for example with
the λi’s for a given guess of β, followed by an update of β given the
new samples λ1, . . . ,λ10.
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My first Gibbs sampler

Given a sample, at iteration i , x (i ) := (λ(i )1 , . . . ,λ(i )10 , β
(i )) one could

proceed as follows at iteration i + 1,

1 λ
(i+1)
k |(β(i ), tk , pk ) ∼ Ga(pk + α, tk + β(i )) for 1 ≤ k ≤ 10,

2 β(i+1)|(λ(i+1)1 , . . . ,λ(i+1)10 ) ∼ Ga(γ+ 10α, δ+∑10
k=1 λ

(i+1)
k ).

Instead of directly sampling in a space with 11 dimensions, one
samples in spaces of dimension 1.

One could as well choose randomly at each iteration the parameter
among λ1, . . . ,λ10, β to update.
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Many questions

The structure of the algorithm calls for many questions:

Are we sampling from the desired joint distribution?
If yes, how many times should the iteration above be repeated?

The validity of the approach described here stems from the fact that
the sequence {X (i )} defined above is a Markov chain and some
Markov chains have very nice properties.
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Elements of Markov chains

Markov chain: A sequence of random variables
{
X (n); n ∈N

}
defined on (X,B (X)) which satisfies the property, for any A ∈ B (X)

P
(
X (n) ∈ A

∣∣∣X0, ...,X (n−1)) = P
(
X (n) ∈ A

∣∣∣X (n−1)) .
and we will denote

P (x ,A) =
∫
A
P (x , dy) := P

(
X (n) ∈ A

∣∣∣X (n−1)) .
Note that the marginal joint distribution of (X (n−1),X (n)) for n ≥ 1 is

P
(
X (n−1) ∈ A,X (n) ∈ B

)
=
∫
A P

(
X (n−1) ∈ dx ,X (n) ∈ B

)
=
∫
A P

(
X (n−1) ∈ dx

)
P
(
X (n) ∈ B |X (n−1) = x

)
=
∫
A P

(
X (n−1) ∈ dx

)
P (x ,B) .
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Markov chain Monte Carlo: Given a target π, design a transition
kernel P such that asymptotically as n→ ∞

1
N

N

∑
n=1

ϕ
(
X (n)

)
→
∫
X

ϕ (x)π (x) dx and/or X (n) ∼ π.

It should be easy to simulate the Markov chain even if π is complex.

Intuitively we should require that if X (n−1) ∼ π then also X (n) ∼ π,
that is mathematically

P
(
X (n) ∈ B

)
= π(X (n) ∈ B)

= P
(
X (n−1) ∈ X,X (n) ∈ B

)
=

∫
X

P
(
X (n−1) ∈ dx

)
P (x ,B)

=
∫
X

π(dx)P (x ,B) .
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Normal autoregressive example

Consider the autoregression for |α| < 1

X (n) = αX (n−1) + V (n), where V (n) ∼ N
(
0, σ2

)
then

P (x , dy) = P (x , y) dy =
1√
2πσ

exp

(
− (y − αx)2

2σ2

)
dx .

One can easily check that∫
X

π (x)P (x , y) dx = π (y)

with

π (x) = N
(
x ; 0,

σ2

1− α2

)
.

To sample from π, we could just sample the Markov chain and
asymptotically we would have X (n) ∼ π. [Obviously, in this case this
is useless because we can sample from π directly.]
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Illustration

Graphically, consider 1000 independent Markov chains run in parallel.

We assume that the initial distribution of these Markov chains is
U[0,20]. So initially, the Markov chains samples are not distributed
according to π.
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Figure: From top left to bottom right: histograms of 1000 independent Markov
chains with a normal distribution as target distribution as n increases.
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The target normal distribution seems to “attract” the distribution of
the samples and even to be a fixed point of the algorithm.

Once close to π the histogram never drifts away.

This is is what we wanted to achieve, i.e. it seems that we have
produced 1000 independent samples from the normal distribution.

In fact one can show that it is not necessary to run N Markov chains
in parallel in order to obtain 1000 samples, but that one can consider
a unique Markov chain, and build the histogram from this single
Markov chain by forming histograms from one trajectory.
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Figure: Bimodal target distributions and simulated Markov chain
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Estimate of expectations

The estimate of the target distribution, through the series of
histograms, improves with the number of iterations.

Assume that we have stored {X (n), 1 ≤ n ≤ N} for N large and wish
to estimate

∫
X

ϕ(x)π(x)dx .

In the light of the numerical experiments, one can suggest the
estimator

1
N

N

∑
n=1

ϕ(X (n)) .

which is exactly the estimator that we would use if
{X (n), 1 ≤ n ≤ N} were independent.
In fact, it can be proved, under relatively mild conditions, that such
an estimator is consistent despite the fact that the samples are NOT
independent. Under additional conditions, a CLT also holds with a
rate of CV in 1/

√
N.
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Summary

To summarize, we are interested in Markov chains with transition kernel P
which have the following three important properties observed above:

The desired distribution π is a “fixed point”of the algorithm or, in
more appropriate terms, an invariant distribution of the Markov chain,
i.e.

∫
X π(x)P(x , y)dx = π(y).

The estimator 1
N ∑N

n=1 ϕ(X (n)) converges towards Eπ(ϕ(X ))

The successive distributions of the Markov chains converge towards
π; i.e. asymptotically X (n) ∼ π
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As we shall see

Given π (x), there is an infinite number of kernels P (x , y) which
have π (x) as their invariant distribution.

Convergence is ensured under very weak assumptions; namely
irreducibility and aperiodicity.

The “art”of MCMC consists of constructing “effi cient” transitions.

However it is usually very easy to establish that an MCMC sampler
converges towards π but very diffi cult to obtain rates of convergence.
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Two fundamental properties

Let P1 and P2 be two Markov transition probabilities with common
invariant distribution π i.e. for i = 1, 2∫

X
π(x)Pi (x , y)dx = π(y),

then,
1 if we assume X (n−1) ∼ π and let X̃ (n) ∼ P1(X (n−1), ·) and
X (n) ∼ P2(X̃ (n), ·), then X (n) ∼ π, that is the composition
P := P1P2 leaves π invariant, since∫
X

[∫
X

π(x)P1(x , y)dx
]
P2(y , z)dy =

∫
X

π(y)P2(y , z)dy = π(z)

2 if we assume X (n−1) ∼ π and choose P1 with probability λ ∈ [0, 1]
(resp. P2 with probability 1− λ) and let X (n) ∼ P1(X (n−1), ·) (resp.
X (n) ∼ P1(X (n−1), ·)) then X (n) ∼ π, that is the mixture
P := λP1 + (1− λ)P2 leaves π invariant, since∫

X π(x) [λP1(x , y) + (1− λ)P2(x , y)] dx
= λ

∫
X π(x)P1(x , y) + (1− λ)

∫
X π(x)P2(x , y)dx = π(y)
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Application to the two component Gibbs sampler

Consider the target distribution π (x) such that x = (x1, x2) ∈ X2.
Then the 2-component Gibbs sampler proceeds as follows.

Initialization: Select deterministically or randomly
x (0) =

(
x (0)1 , x (0)2

)
.

Iteration i ; i ≥ 1
Sample X (i )1 ∼ π

(
·| x (i−1)2

)
.

Sample X (i )2 ∼ π
(
·| x (i )1

)
.

Sampling from these conditional is often feasible even when sampling
from the joint is impossible (e.g. nuclear pump data).
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Invariance

The algorithm is the composition of two Markov transition
probabilities

P1(x1, x2; y1, y2) = π(y1|x2)δx2(y2)
P2(x1, x2; y1, y2) = π(y2|x1)δx1(y1)

Then we have∫
X

∫
X

π(x1, x2)P1(x1, x2; y1, y2)dx1dx2

=
∫
X

∫
X

π(x1, x2)π(y1|x2)δx2(y2)dx1

=
∫
X

π(x2)π(y1|x2)δx2(y2)dx2 = π(y1, y2) .

Conclusion the Gibbs sampler leaves π invariant!
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Irreducibility

This does not ensure that the Gibbs sampler does converge towards
the invariant distribution!

Additionally it is required to ensure irreducibility: loosely speaking the
Markov chain can move to any set A such that π (A) > 0 for
(almost) any starting point.

This ensures that

1
N

N

∑
n=1

ϕ
(
X (n)1 ,X (n)2

)
→
∫

ϕ (x1, x2)π (x1, x2) dx1dx2

but NOT that asymptotically
(
X (n)1 ,X (n)2

)
∼ π.
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Figure: A distribution that can lead to a reducible Gibbs sampler.
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Aperiodicity

Consider a simple example where X = {1, 2} and
P (1, 2) = P (2, 1) = 1. Clearly the invariant distribution is given by
π (1) = π (2) = 1

2 .

However, we know that if the chain starts in X (0) = 1, then
X (2n) = 1 and X (2n+1) = 0 for any n.

We have
1
N

N

∑
n=1

ϕ
(
X (n)

)
→
∫

ϕ (x)π (x) dx

but clearly X (n) is NOT distributed according to π.

One needs to make sure that you do NOT explore the space in a
periodic way to ensure that X (n) ∼ π asymptotically.
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Deterministic Scan Gibbs Sampler

If x = (x1, ..., xp) where p ≥ 2, the Gibbs sampling strategy still
applies.

Initialization: Select deterministically or randomly
x (0) =

(
x (0)1 , ..., x (0)p

)
.

Iteration i ; i ≥ 1:
For k = 1 : p

Sample X (i )k ∼ π
(
·| x (i )−k

)
where

x−ki =
(
x (i )1 , ..., x (i )k−1, x

(i−1)
k+1 , ..., x

(i−1)
p

)
.
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Random Scan Gibbs Sampler

Initialization: Select deterministically or randomly
x (0) =

(
x (0)1 , ..., x (0)p

)
.

Iteration i ; i ≥ 1:
Sample K ∼ U{1,...,p}.
Sample X (i )K ∼ π

(
·| x (i )−K

)
where

x (i )−K =
(
x (i−1)1 , ..., x (i−1)K−1 , x

(i−1)
K+1 , ..., x

(i−1)
p

)
.
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Random Scan Gibbs Sampler

Initialization: Select deterministically or randomly
x (0) =

(
x (0)1 , ..., x (0)p

)
.

Iteration i ; i ≥ 1:
Sample K ∼ U{1,...,p}.
Sample X (i )K ∼ π

(
·| x (i )−K

)
where

x (i )−K =
(
x (i−1)1 , ..., x (i−1)K−1 , x

(i−1)
K+1 , ..., x

(i−1)
p

)
.
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Nuclear pumps - again

At iteration i + 1,

1 λ
(i+1)
k |(β(i ), tk , pk ) ∼ Ga(pk + α, tk + β(i )) for 1 ≤ k ≤ 10,

2 β(i+1)|(λ(i+1)1 , . . . ,λ(i+1)10 ) ∼ Ga(γ+ 10α, δ+∑10
k=1 λ

(i+1)
k ).

The conditionals have positive density on [0,+∞) : this implies
irreducibility.

For the same reason no periodic behaviour is possible : aperiodicity.

Conclusion: it is a theoretically valid algorithm!

However conditioning comes at a price.
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Yet another toy example

Target

π(x , y) = N
(
(x , y)T; 0,Σ

)
with Σ =

(
1 ρ
ρ 1

)
,

where ρ ∈ (−1, 1) is the correlation coeffi cient between x and y .
The conditional distributions π(x |y) and π(y |x) are therefore

π(x |y) = N
(
x ; ρy , (1− ρ2)

)
and

π(y |x) = N
(
y ; ρx , (1− ρ2)

)
.

Hence with V (n)1 ,V (n)2 ∼ N (0, I2),

X (n+1) = ρY (n) +
√
1− ρ2V (n+1)1

Y (n+1) = ρX (n+1) +
√
1− ρ2V (n+1)2 .

Observe that when ρ→ 1 then X (n+1) ' Y (n) and Y (n+1) ' X (n+1).
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Figure: Even when irreducibility and aperiodicity are ensured, the Gibbs sampler
can still converge very slowly.
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Discussion

The Gibbs sampler is a rather generic tool to sample approximately
from high-dimensional distributions.

It allows one to break a large and diffi cult sampling problem into
smaller, often more tractable, sampling sub-problems.

However the approach raises new challenges: there exists a tension
between

1 the potentially detrimental effect of not updating dependent
components simultaneously,

2 the fact that it is usually easier to sample from lower dimensional
distribution (e.g. assume that a rejection algorithm is used to sample
from the Ga distribution involved in the Gibbs sampler for the nuclear
pump data)

This is a diffi culty for most Monte Carlo methods.
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Tricks of the trade

Try to have as few “blocks”as possible.

Put the most correlated variables in the same block.

If necessary, reparametrise the model to achieve this.

Integrate analytically as many variables as possible.

However with the Gibbs sampler one is heavily constrained by the
structure of the target and tractability issues,

1 the only degree of freedom is the choice of the partition,
2 the Metropolis-Hastings algorithm allows one to circumvent this lack of
flexibility.
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Diffi culties with the Gibbs sampler

The Gibbs sampler requires sampling from the full conditional
distributions

π (xk |x−k ) .
For many complex models, it is impossible to sample from several of
these “full” conditional distributions.

Even if it is possible to implement the Gibbs sampler, the algorithm
might be very ineffi cient because the variables are very correlated or
sampling from the full conditionals is extremely expensive/ineffi cient.
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Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithm is a general strategy to construct
Markov transition probabilities with a given invariant distribution
π (x).

It is in fact the main building block of MCMC algorithms and
provides extreme flexibility.

The Metropolis algorithm was named the “Top algorithm of the 20th
century”by computer scientists, mathematicians and physicists.
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Ingredients

Introduce a family of proposal distribution {q (x , ·) , x ∈ X}, i.e.∫
q (x , y) dy = 1 for any x ∈ X .

The basic idea of the MH algorithm is,
1 given that the current state of the Markov chain is x ∈ X, to propose a
new candidate y from q (x , ·),

2 to accept the proposed sampled with an appropriate probability α (x , y)
which ensures that the invariant distribution of the transition kernel is
the target distribution π (x).

A. Doucet (MLSS Sept. 2011) MCMC Sept. 2011 62 / 91



The Metropolis-Hastings update

Initialization: Select deterministically or randomly x0.

Iteration i ; i ≥ 1:
Sample y ∼ q

(
x (i−1), ·

)
and compute

α
(
x (i−1), y

)
= min

1, π (y) q
(
y , x (i−1)

)
π
(
x (i−1)

)
q
(
x (i−1), y

)
 .

With probability α
(
x (i−1), y

)
, set x (i ) = y ; otherwise set

x (i ) = x (i−1).
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Reversibility aka Detailed Balance

One can easily show that the M-H kernel is π-reversible

π (x)K (x , y) = π (y)K (y , x)

where

K (x , y) = q (x , y) α (x , y) +
(
1−

∫
q
(
x , y ′

)
α
(
x , y ′

)
dy ′
)

δx (y) .

Indeed we have

π (x) q (x , y) α (x , y) = π (x) q (x , y)min
{
1,

π (y) q (y , x)
π (x) q (x , y)

}
= min {π (x) q (x , y) ,π (y) q (y , x)}
= π (y) q (y , x) α (y , x)

π-reversibily implies straightforwardly π-invariance.
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Irreducibility and Aperiodicity

To ensure irreducibility, a suffi cient but not necessary condition is that

π (y) > 0⇒ q (x , y) > 0.

Aperiodicity is automatically ensured as there is always a strictly
positive probability to reject the candidate.

Theoretically, the MH algorithm converges under very weak
assumptions to the target distribution π. In practice, this
convergence can be so slow that the algorithm is useless.
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Remarks

It is only necessary to know π (x) up to a normalizing constant to
implement the algorithm.

This algorithm is extremely general: q (x , ·) can be any proposal
distribution. So in practice, we can select it so that it is easy to
sample from.

There is (potentially) much more freedom than with the Gibbs
sampler where

1 the proposal distributions are constrained by the structure of π
2 the tractability of some of the conditional distributions.
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Independent Metropolis-Hastings

Consider the simple choice

q (x , y) = q (y) ;

i.e. this is a so-called independent proposal.

In this case, the acceptance probability is given by

α (x , y) = min
{
1,

π (y) q (x)
π (x) q (y)

}
= min

{
1,

γ (y)
q∗ (y)

q∗ (x)
γ (x)

}
where γ and q∗ are unnormalised versions of π and q.

The ratio γ (x) /q∗ (x) appearing in the Accept/Reject also
reappears here.

Given this resemblance, one might wonder if this is likely to be a good
approach?
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Example

Example: Consider the case where

π (x) ∝ exp
(
−x

2

2

)
.

We implement the MH algorithm for

q1 (x) ∝ exp

(
− x2

2 (0.2)2

)

so π (x) /q1 (x)→ ∞ as x → ∞ and for

q2 (x) ∝ exp

(
− x2

2 (5)2

)

so π (x) /q2 (x) ≤ C < ∞ for all x .

A. Doucet (MLSS Sept. 2011) MCMC Sept. 2011 68 / 91



0 2000 4000 6000 8000 100002

1.5

1

0.5

0

0.5

1

1.5

2

2 1 0 1 20

50

100

150

200

250

300

350

Figure: MCMC output for q1, we estimate E (X ) = 0.0206 and V (X ) = 0.83.
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Figure: MCMC output for q2, we estimate E (X ) = −0.004 and V (X ) = 1.00.
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Problem exacerbated by high-dimension

Again consider the example from the IS introduction:

π(x) = N (x ; 0, I ) with x ∈ Rnx .
q(x) = N (x ; ε× e, I ) with e = (1, 1, 1 . . .)T.

We have

π(x)
q(x)

= exp
(
1
2
nx − εeTx

)
= exp

(
1
2

ε2nx − ε
√
nx

1√
nx

∑nx
i=1 x(i)

)
which suggests a high variability of the weights as nx increases.

For ε = 1, nx = 10 and N = 10, 000 we observe and acceptance rate
of ' 0.3% and | 1Nnx ∑N

i=1 ∑nx
k=1 x

(i )
k | = 5.43.
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Divide and conquer...

This time,

π(x) = N (x ; 0, I ) with x ∈ Rnx .
q(x) = N (x ; ε× e, I ) with e = (1, 1, 1 . . .)T and Σ a nx × nx
covariance matrix.

One can suggest the following algorithm, at iteration i + 1,
1 Choose a coordinate k ∼ U{1, 2, . . . , nx }
2 Propose yk ∼ N (ε, 1) =: qk (the marginal of q above).
3 Set x (i+1)−k = x (i )−k and x

(i+1)
k = yk with probability

min

{
1,

π(y)qk (x
(i )
k )

π(x (i ))qk (yk )

}
= min

1, π(yk |x
(i )
−k )π(x

(i )
−k )qk (x

(i )
k )

π(x (i )k |x
(i )
−k )π(x

(i )
−k )qk (yk )


For ε = 1, nx = 10 and N = 10, 000 we obtain an acceptance rate of
' 50% and | 1Nnx ∑N

i=1 ∑nx
k=1 x

(i )
k | ' 1.60.
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However with Σ 6= I (Σ = CC T with Cij ∼ N (0, 1) and iid)

Full update: acceptance rate ' 0.6% and | 1Nnx ∑Ni=1 ∑nxk=1 x
(i )
k | ' 28.0

One at time update: acceptance rate ' 40%
| 1Nnx ∑Ni=1 ∑nxk=1 x

(i )
k | ' 29.0.
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Discussion

When using independent proposals then the right criterion is
q (x) ≈ π (x) - a high acceptance rate is desirable.

As for Rejection sampling or Importance Sampling, it is a good idea
to have

π (x)
q (x)

≤ C

to obtain good performance.

These two conditions are usually diffi cult to ensure in practice,
especially for nx large.

The MC malediction strikes again:

bold moves are desirable, but diffi cult to achieve
while timid moves are possible, but somehow ineffi cient.
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Random Walk Metropolis

The original Metropolis algorithm (1953) corresponds to the following
choice for q (x , y)

y = x + Z where Z ∼ f ;

i.e. this is a so-called random walk proposal.

The distribution f (z) is the distribution of the random walk
increments Z and

q (x , y) = f (y − x) ⇒ α (x , y) = min
{
1,

π (y) f (x − y)
π (x) f (y − x)

}
.

If f (y − x) = f (x − y) - e.g. Z ∼ N (0,Σ)- then

α (x , y) = min
{
1,

π (y)
π (x)

}
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Example: Consider the case where

π (x) ∝ exp
(
−x

2

2

)
.

We implement the MH algorithm for

q1 (x , y) ∝ exp

(
− (y − x)

2

2 (0.2)2

)
,

q2 (x , y) ∝ exp

(
− (y − x)

2

2 (5)2

)
,

q3 (x , y) ∝ exp

(
− (y − x)

2

2 (0.02)2

)
.
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Figure: MCMC output for q1, we estimate E (X ) = −0.02 and V (X ) = 0.99
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Figure: MCMC output for q2, we estimate E (X ) = 0.00 and V (X ) = 1.02.
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Figure: MCMC output for q3, we estimate E (X ) = 0.10 and V (X ) = 0.92.
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A large acceptance probability is not necessarily a good criterion.

When the variance of the random walk increments (if it exists) is very
small then the acceptance rate can be expected to be around 0.5.

One would like to scale the random walk moves such that it is
possible to move reasonably fast in regions of positive probability
masses under π.

The multivariate case is even more complex since the correlation
structure of the proposal and target distribution should be similar.
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Limitations of the MH algorithm

The MH algorithm is a simple and very general algorithm to sample
from a target distribution π (x).

In practice, the choice of the proposal distribution is paramount to
obtain an effi cient algorithm.

Whereas timid moves are easily designed, bold and effi cient moves are
very diffi cult to design in practice.

A way to learn from the past is to build adaptive MCMC samplers.
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Advanced MCMC Methods

Active area for 50 years...

Most methods relie on the introduction of auxiliary variables and
associated target distributions to ease the sampling task.

Parallel tempering, slice sampling, Hamiltonian Monte Carlo,
Wang-Landau.

Normalizing constant estimates estimation: Bridge sampling, Path
sampling, AIS etc.
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Slice Sampling

Consider an initial target distribution π (x) = γ (x) /Z and the
extended target

π̃ (x , u) ∝ I(0,γ(x )) (u)

We have
π̃ (x) ∝

∫
I(0,γ(x )) (u) du = γ (x)

so π̃ (x) = π (x) .

Moreover we have

π̃ (u| x) =
I(0,γ(x )) (u)

γ (x)

and

π̃ (x | u) ∝
{
1 if γ (x) ≥ u
0 otherwise.
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Hamiltonian Monte Carlo

Assume you want to sample from π (x) where x ∈ Rn.

Consider the extended target distribution where v is the ‘velocity’

π̃ (x , v) ∝ γ (x)N (v ; 0, I)

The Hamiltonian is defined as

H (x , v) = − log γ (x)︸ ︷︷ ︸
E (x )

+ vTv/2.

Hamiltonian dynamics are deterministic dynamics such that
(x , v)→ (x ′, v ′) with H (x , v) = H (x ′, v ′) .

Hamiltonian dynamics are time reversible (x ′,−v ′)→ (x ,−v).
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Hamiltonian Monte Carlo

Ideal MCMC: Sample v ∼ N (v ; 0, I) then simulate Hamiltonian
dynamics.

Problem: Hamiltonian dynamics cannot be simulated exactly. on a
computer.

Many numerical schemes - e.g. Leap Frog - have been proposed which
do not conserve Hamiltonian but are still deterministic and reversible.

They require M-H acceptance rates; i.e. min (1, π̃ (x ′, v ′) /π̃ (x , v)) .

Recent development include Riemman Manifold MCMC (Girolami et
al., JRSS B, 2010); see also survey by Neal (2010).
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Hamiltonian Monte Carlo
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Parallel Tempering

Parallel tempering uses parallel chains to ease sampling (Geyer &
Thompson, 1990).

Sequence of targets {πk (x)}k=1,...,P such that πk (x) ∝ [π (x)]φk
where φ1 ≥ · · · ≥ φP = 1.

We build a Markov chain
{
X (n)1 , ...,X (n)P

}
n≥1

of invariant distribution

P

∏
k=1

πk (xk ) using with-in chain standard πk−invariant MCMC kernel

Kk and swap moves; e.g. swap xk and xl with proba.

min
{
1,

πk (xl )πl (xk )
πk (xk )πl (xl )

}
.
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Bayesian Inference for Mixture Models

Model

Yi
i.i.d.∼

4

∑
k=1

ωkN (µk ,λk ) .

Standard conditionally conjugate priors on θ = (ω1:4, µ1:4,λ1:4), no
identifiability constraint

µk ∼ N (ξ, κ−1),λk ∼ Ga(ν,χ), ω1:4 ∼ D(ρ).

The posterior is a mixture of 4! = 24 similar components.
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Experimental Setup

T =100 data with µ = (−3, 0, 3, 6) , λ = (0.55, 0.55, 0.55, 0.55);
components “far” from each other.

We build the sequence of P distributions

πn(θ) ∝ l(y1:T ; θ)
φn f (θ)

where φ1 = 0 < φ2 < ... < φP = 1.

MCMC sampler to sample from πn : update µ1:4 via a MH kernel
with additive normal random walk, update λ1:4 via a MH kernel with
multiplicative log-normal random walk, update ω1:4 via a MH kernel
with additive normal random walk on the logit scale.

KP admits as invariant distribution πP = π. Very long runs of
MCMC get trapped in one of the 4!=24 modes of the distributions.
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Posterior Distribution Estimates

Marginal posterior estimated using parallel tempering with
P = 32768 and N = 1048576.
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Running Times: Serial vs GPU

P CPU Serial (min) GPU GTX280 (secs) Speedup
8192 16.6 2 430
32768 66.7 8 527
131072 270.4 28 572

Running times for Parallel Tempering

GPU allow huge computational savings for this highly parallelizable
method (Lee et al., JCGS 2010).
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Generic Problem

Consider a sequence of probability distributions {πn}n≥1 defined on a
sequence of measurable spaces {(En,Fn)}n≥1 where E1 = E ,
F1 = F and En = En−1 × E , Fn = Fn−1 ×F .
Each distribution πn (dx1:n) = πn (x1:n) dx1:n is assumed known up to
a normalizing constant, i.e.

πn (x1:n) =
γn (x1:n)

Zn

where γn : En → R+ can be computed pointwise but Zn cannot.
We want to estimate expectations of test functions ϕn : En → R

Eπn (ϕn) =
∫

ϕn (x1:n)πn (dx1:n)

and the normalizing constants Zn.
We want to do this sequentially; i.e. first π1 and/or Z1 at time 1
then π2 and/or Z2 at time 2 and so on.
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Interacting Particle Methods

Numerical methods are required.

We could use Markov chain Monte Carlo (MCMC) to sample from
{πn}n≥1 but it is slow & it does not provide directly estimates of
{Zn}n≥1.
Interacting particle methods aka Sequential Monte Carlo (SMC) are a
non-iterative alternative class of methods.

Key idea: if πn−1 does not differ too much from πn then we should
be able to reuse our estimate of πn−1 to approximate πn.
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Applications

Inference in non-linear non-Gaussian dynamic models.

Bayesian inference for complex statistical models.

Counting problems.

Rare event simulation.

Eigenvalue computation.
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State-Space Models

{Xn}n≥1 latent/hidden Markov process with

X1 ∼ µ (·) and Xn | (Xn−1 = x) ∼ f ( ·| x) .

{Yn}n≥1 observation process such that observations are conditionally
independent given {Xn}n≥1 and

Yn | (Xn = x) ∼ g ( ·| x) .

Very popular class of time series models also known as hidden Markov
models.

Objective: Infer the latent process given the observation process.
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Examples

Linear Gaussian state-space model

X1 ∼ N (m1,Σ1) , Xn = AXn−1 + BVn,
Yn = CXn +DWn

where Vn
i.i.d.∼ N (0,Σv ) , Wn

i.i.d.∼ N (0,Σw ) .
Stochastic volatility model

X1 ∼ N
(
0,

σ2

1− α2

)
, Xn = αXn−1 + Vn,

Yn = β exp (Xn/2)Wn

where |α| < 1, Vn i.i.d.∼ N
(
0, σ2

)
, Wn

i.i.d.∼ N (0, 1) .
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Inference in State-Space Models

At time n, we have access to the observations y1:n and are interested
in computing

p (x1:n | y1:n) =
p (x1:n, y1:n)

p (y1:n)

and the (marginal) likelihood p (y1:n) where

p (x1:n, y1:n) = µ (x1)
n

∏
k=2

f (xk | xk−1)
n

∏
k=1

g (yk | xk ) ,

p (y1:n) =
∫
· · ·

∫
p (x1:n, y1:n) dx1:n.

In our framework,

πn (x1:n) = p (x1:n | y1:n) , γn (x1:n) = p (x1:n, y1:n) , Zn = p (y1:n) .
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Generic Sequence of Target Distributions

Consider the case where all the target distributions {πn}n≥1 are
defined on the same space En = E .

Examples

πn (x) ∝ p (x) [p (y | x)]φn where φ1 = 0 ≤ φ2 ≤ · · · ≤ φP = 1 (e.g.
annealing)
πn (x) = p (x | y1:n) (sequential Bayesian estimation)

In these scenarios, MCMC are the standard tools and standard SMC
do not apply as they require En = E n.
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Enlarging Artificially the State-Space

Consider a new sequence of artificial distributions {π̃n}n≥1 defined on
En = E n such that∫

π̃n (x1:n−1, xn) dx1:n−1 = πn (xn) .

It is easy to build distribution satisfying this requirement;

π̃n (x1:n−1, xn) = πn (xn) π̃n (x1:n−1| xn)

where π̃n (x1:n−1| xn) is any conditional distribution on En−1. How to
select π̃n will be discussed later.

This allows us to use “standard”SMC and has become an
increasingly popular alternative to MCMC.
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Using Monte Carlo Methods

Problem 1: {πn (x1:n)}n≥1 are typically high dimensional
non-standard distributions and we cannot sample from them exactly.

A standard approach to sample from high dimensional distributions
consists of using MCMC but this is not quite appropriate in our
context.

Problem 2: Even if we could sample exactly from {πn (x1:n)}n≥1,
then the computational complexity of the algorithm would most likely
increase with n but we favour algorithms of fixed computational
complexity at each time step.

Importance sampling will allow us to bypass partially these problems.
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Importance Sampling

Importance Sampling (IS). For any pdf q (x) such that
π (x) > 0⇒ q (x) > 0

π (x) =
w (x) q (x)∫
w (x ′) q (x ′) dx ′

where w (x) =
γ (x)
q (x)

where q is called importance density and w importance weight.

q can be chosen arbitrarily, in particular easy to sample from

X (i )
i.i.d.∼ q (·)⇒ q̂ (dx) =

1
N

N

∑
i=1

δX (i ) (dx)
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Plugging this expression in IS identity

π̂ (dx) =
w (x) q̂ (dx)∫
w (x ′) q̂ (dx ′)

=
N−1 ∑N

i=1 w
(
X (i )

)
δX (i ) (dx)

N−1 ∑N
i=1 w

(
X (i )

)
=

N

∑
i=1
W (i )δX (i ) (dx)

where

W (i ) ∝ w
(
X (i )

)
and

N

∑
i=1
W (i ) = 1.

π (x) now approximated by weighted sum of delta-masses ⇒ Weights
compensate for discrepancy between π and q.
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Now we can approximate Eπ [ϕ] by

Eπ̂ [ϕ] =
∫

ϕ (x) π̂ (dx) =
N

∑
i=1
W (i )ϕ

(
X (i )

)
.

We have for N � 1

E [Eπ̂ [ϕ]] ≈ Eπ [ϕ]−N−1Eπ [W (X ) (ϕ (X )−Eπ [ϕ])] ,

V [Eπ̂ [ϕ]] ≈ N−1Eπ

[
W (X ) (ϕ (X )−Eπ [ϕ])

2
]
.

Estimate of normalizing constant

Ẑ =
∫

γ (x)
q (x)

q̂ (dx) =
1
N

N

∑
i=1

γ
(
X (i )

)
q
(
X (i )

)
and Eq

[
Ẑ
]
= Z , Vq

[
Ẑ
]

/Z 2 = N−1
(

Eq

[(
π(X )
q(X ) − 1

)2])
.
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Practical recommendations

Select q as close to π as possible.

The variance of the weights is bounded if and only if∫
γ2 (x)
q (x)

dx < ∞.

In practice, try to ensure

w (x) =
γ (x)
q (x)

< ∞.

Note that in this case, rejection sampling could be used to sample
from π (x) .
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Example
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Figure: Target double exponential distributions and two IS distributions
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Limitations of Importance Sampling

MCMC have become prominent in computational statistics as IS is
known to scale poorly.
Consider the case where the target is defined on Rn and

π (x1:n) =
n

∏
n=1
N (xk ; 0, 1) ,

γ (x1:n) =
n

∏
k=1

exp
(
−x

2
k

2

)
, Z = (2π)n/2 .

We select an importance distribution

q (x1:n) =
n

∏
k=1

N
(
xk ; 0, σ

2) .
In this case, we have V

[
Ẑ
]
< ∞ only for σ2 > 1

2 and

VIS

[
Ẑ
]

Z 2
=
1
N

[(
σ4

2σ2 − 1

)n/2

− 1
]
.
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Curse of Dimensionality

The variance increases exponentially with n for any 1
2 < σ2 6= 1.

For example, if we select σ2 = 1.2 then we have a reasonably good

importance distribution as q (xk ) ≈ π (xk ) but N
VIS[Ẑ ]
Z 2 ≈ (1.103)n/2

which is approximately equal to 1.9× 1021 for n = 1000.
We would need to use N ≈ 2× 1023 particles to obtain a relative
variance

VIS[Ẑ ]
Z 2 = 0.01.

Despite this obvious limitations, we will keep on using IS for the time
being.
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Sequential Importance Sampling (SIS)

Aim: Design an IS method to approximate sequentially {πn}n≥1 and
to compute {Zn}n≥1.
At time 1, assume we approximate π1 (x1) and Z1 using an
importance density q1 (x1); that is

π̂1 (dx1) =
N

∑
i=1
W (i )
1 δ

X (i )1
(dx) where W (i )

1 ∝ w1
(
X (i )1

)
,

Ẑ1 =
1
N

N

∑
i=1
w1
(
X (i )1

)
with

w1 (x1) =
γ1 (x1)
q1 (x1)

.
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Building Up the IS Approximation

At time 2, we want to approximate π2 (x1:2) and Z2 using an
importance density q2 (x1:2) .

We want to reuse the samples
{
X (i )1

}
from q1 (x1) use to build the IS

approximation of π1 (x1) . This only makes sense if π2 (x1) ≈ π1 (x1).

We select
q2 (x1:2) = q1 (x1) q2 (x2| x1)

so that to obtain X (i )1:2 ∼ q2 (·) we only need to sample
X (i )2 ∼ q2

(
·|X (i )1

)
.
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Updating the IS approximation

We have to compute the weights

w2 (x1:2) =
γ2 (x1:2)

q2 (x1:2)
=

γ2 (x1:2)

q1 (x1) q2 (x2| x1)

=
γ1 (x1)
q1 (x1)

γ2 (x1:2)

γ1 (x1) q2 (x2| x1)

= w1 (x1)︸ ︷︷ ︸
previous weight

γ2 (x1:2)

γ1 (x1) q2 (x2| x1)︸ ︷︷ ︸
incremental weight

For the normalized weights

W (i )
2 ∝ W (i )

1

γ2

(
X (i )1:2

)
γ1

(
X (i )1

)
q2
(
X (i )2

∣∣∣X (i )1 )
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Sequential Importance Sampling

Generally speaking, we use at time n

qn (x1:n) = qn−1 (x1:n−1) qn (xn | x1:n−1)

= q1 (x1) q2 (x2| x1) · · · qn (xn | x1:n−1)

so if X (i )1:n−1 ∼ qn−1 (·) then we only need to sample
X (i )n ∼ qn

(
·|X (i )1:n−1

)
.

The importance weights are updated according to

wn (x1:n) =
γn (x1:n)

qn (x1:n)
= wn−1 (x1:n−1)

γn (x1:n)

γn−1 (x1:n−1) qn (xn | x1:n−1)
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Sequential Importance Sampling

At time n = 1, sample X (i )1 ∼ q1 (·) and set w1
(
X (i )1

)
=

γ1

(
X (i )1

)
q1
(
X (i )1

) .
At time n ≥ 2

sample X (i )n ∼ qn
(
·|X (i )1:n−1

)
compute wn

(
X (i )1:n

)
= wn−1

(
X (i )1:n−1

) γn

(
X (i )1:n

)
γn−1

(
X (i )1:n−1

)
qn
(
X (i )n

∣∣∣X (i )1:n−1
) .

At any time n, we have

X (i )1:n ∼ qn (·) , wn
(
X (i )1:n

)
=

γn

(
X (i )1:n

)
qn
(
X (i )1:n

)
thus we can obtain easily an IS approximation of πn (x1:n) and of Zn.
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Application to Stochastic Volatility Model
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Figure: Histograms of log10
(
W (i )
n

)
for n = 1 (top), n = 50 (middle) and

n = 100 (bottom).

The algorithm performance collapse as n increases as expected.
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Locally Optimal Importance Density

One sensible strategy consists of selecting qn (xn | x1:n−1) at time n so
as to minimize the variance of the importance weights.
We have for the importance weight

wn (x1:n) =
γn (x1:n)

qn−1 (x1:n−1) qn (xn | x1:n−1)

=
Znπn (x1:n−1)

qn−1 (x1:n−1)

πn (xn | x1:n−1)

qn (xn | x1:n−1)

It follows directly that we have

qoptn (xn | x1:n−1) = πn (xn | x1:n−1)

and

wn (x1:n) = wn−1 (x1:n−1)
γn (x1:n)

γn−1 (x1:n−1)πn (xn | x1:n−1)

= wn−1 (x1:n−1)
γn (x1:n−1)

γn−1 (x1:n−1)
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Application to State-Space Models

In the case of state-space models, we have

qoptn (xn | x1:n−1) = p (xn | yn, xn−1) =
g (yn | xn) f (xn | xn−1)

p (yn | xn−1)

In this case,

wn (x1:n) = wn−1 (x1:n−1)
p (x1:n, y1:n)

p (x1:n−1, y1:n−1) p (xn | yn, xn−1)
= wn−1 (x1:n−1) p (yn | xn−1) .

Whenever p (xn | yn, xn−1) is not easy to sample and/or p (yn | xn−1)
cannot be computed, you can use sthe EKF, UKF or any standard
deterministic approximation to approximate p (xn | yn, xn−1).
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Resampling

Intuitive KEY idea: As the time index n increases, the variance of the
unnormalized weights

{
wn
(
X (i )1:n

)}
tends to increase and all the

mass is concentrated on a few random samples/particles. We propose
to reset the approximation by getting rid in a principled way of the
particles with low weights W (i )

n (relative to 1/N) and multiply the
particles with high weights W (i )

n (relative to 1/N).
The main reason is that if a particle at time n has a low weight then
typically it will still have a low weight at time n+ 1 (though it is easy
to come up with counterexamples).

You want to focus your computational efforts on the “promising”
parts of the space.
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Multinomial Resampling

At time n, SIS provides the following approximation of the target
πn (dx1:n)

π̂n (dx1:n) =
N

∑
i=1
W (i )
n δ

X (i )1:n
(dx1:n) .

The simplest resampling scheme consists of sampling N times
X̃ (i )1:n ∼ π̂n (·) to build the new approximation

π̃n (dx1:n) =
1
N

N

∑
i=1

δ
X̃ (i )1:n
(dx1:n) .

The new resampled particles
{
X̃ (i )1:n

}
are approximately distributed

according to πn but now statistically dependent.
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Note that we can rewrite

π̃n (dx1:n) =
N

∑
i=1

N (i )n
N

δ
X (i )1:n
(dx1:n)

where
(
N (1)n , ...,N (N )n

)
∼M

(
N;W (1)

n , ...,W (N )
n

)
thus

E
[
N (i )n

]
= NW (i )

n , V
[
N (1)n

]
= NW (i )

n

(
1−W (i )

n

)
.

The resampling step is an unbiased operation

E [ π̃n (dx1:n)| π̂n (dx1:n)] = π̂n (dx1:n)

but clearly it introduces some errors “locally” in time. That is for any
test function, we have

Vπ̃n [ϕ (X1:n)] ≥ Vπ̂n [ϕ (X1:n)]

Resampling can be beneficial for future time steps (sometimes).

Better resampling steps can be designed such that E
[
N (i )n

]
= NW (i )

n

but V
[
N (i )n

]
< NW (i )

n

(
1−W (i )

n

)
; residual resampling, minimal

entropy resampling etc. (Cappé et al., 2005).
A. Doucet (MLSS Sept. 2011) Sequential Monte Carlo Sept. 2011 30 / 85



Sequential Importance Sampling Resampling

At time n = 1, sample X (i )1 ∼ q1 (·) and set w1
(
X (i )1

)
=

γ1

(
X (i )1

)
q1
(
X (i )1

) .
Resample

{
X (i )1 ,W

(i )
1

}
to obtain new particles also denoted

{
X (i )1

}
At time n ≥ 2

sample X (i )n ∼ qn
(
·|X (i )1:n−1

)
compute wn

(
X (i )1:n

)
=

γn

(
X (i )1:n

)
γn−1

(
X (i )1:n−1

)
qn
(
X (i )n

∣∣∣X (i )1:n−1
) .

Resample
{
X (i )1:n ,W

(i )
n

}
to obtain new particles also denoted

{
X (i )1:n

}
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SMC Estimates

At any time n, we have two approximations of πn (dx1:n)

π̂n (dx1:n) =
N

∑
i=1
W (i )
n δ

X (i )1:n
(dx1:n) (before resampling)

π̃n (dx1:n) =
1
N

N

∑
i=1

δ
X (i )1:n
(dx1:n) (after resampling).

We also have

Zn
Zn−1

=
∫
wn (x1:n)πn−1 (x1:n−1) qn (xn | x1:n−1) dx1:n

so an estimate is given by

Ẑn
Zn−1

=
1
N

N

∑
i=1
wn
(
X (i )1:n

)
.
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Unbiasedness of the Normalizing Constant Estimate

Let

Ẑn = Ẑ1
n

∏
k=2

Ẑk
Zk−1

=
n

∏
k=1

(
1
N

N

∑
i=1
wk
(
X (i )1:k

))
As long as the resampling scheme used in unbiased; i.e.
E
[
N (i )n

]
= NW (i )

n then

E
(
Ẑn
)
= Zn

as in the standard SIS case.

This remarkable properties will be exploited later on in the context of
particle MCMC algorithms.
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Sequential Monte Carlo for Hidden Markov Models

At time n = 1, sample X (i )1 ∼ q1 (·) and set

w1
(
X (i )1

)
=

µ
(
X (i )1

)
g
(
y1 |X (i )1

)
q
(
X (i )1

∣∣∣y1) .

Resample
{
X (i )1 ,W

(i )
1

}
to obtain new particles also denoted

{
X (i )1

}
At time n ≥ 2

sample X (i )n ∼ q
(
·| yn ,X (i )n−1

)
compute wn

(
X (i )1:n

)
=

f
(
X (i )n

∣∣∣X (i )n−1)g( yn |X (i )n )
q
(
X (i )n

∣∣∣yn ,X (i )n−1) .

Resample
{
X (i )1:n ,W

(i )
n

}
to obtain new particles also denoted

{
X (i )1:n

}
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Example: Linear Gaussian model

X1 ∼ N (0, 1) , Xn = αXn−1 + σvVn,

Yn = Xn + σwWn

where Vn ∼ N (0, 1) and Wn ∼ N (0, 1).
We know that p (x1:n | y1:n) is Gaussian and its parameters can be
computed using Kalman techniques. In particular p (xn | y1:n) is also a
Gaussian whose parameters can be computed using the Kalman filter.

We apply the SMC method with
q (xn | yn, xn−1) = f (xn | xn−1) = N

(
xn; αxn−1, σ2v

)
.
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Illustration of the Degeneracy Problem (Figures by Olivier
Cappé)
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Figure: p (x1 | y1) and Ê [X1 | y1 ] (top) and its particle approximation (bottom)
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Figure: p (x1 | y1) , p (x2 | y1:2)and Ê [X1 | y1 ] , Ê [X2 | y1:2 ] (top) and particle
approximation of p (x1:2 | y1:2) (bottom)
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Figure: p (xk | y1:k ) and Ê [Xk | y1:k ] for k = 1, 2, 3 (top) and particle
approximation of p (x1:3 | y1:3) (bottom)
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Figure: p (xk | y1:k ) and Ê [Xk | y1:k ] for k = 1, .., 4 (top) and particle
approximation of p (x1:4 | y1:4) (bottom)
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Figure: p (xk | y1:k ) and Ê [Xk | y1:k ] for k = 1, ..., 5 (top) and particle
approximation of p (x1:5 | y1:5) (bottom)
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Figure: p (xk | y1:k ) and Ê [Xk | y1:k ] for k = 1, ..., 10 (top) and particle
approximation of p (x1:10 | y1:10) (bottom)
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Figure: p (xk | y1:k ) and Ê [Xk | y1:k ] for k = 1, ..., 15 (top) and particle
approximation of p (x1:15 | y1:15) (bottom)
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Figure: p (xk | y1:k ) and Ê [Xk | y1:k ] for k = 1, ..., 20 (top) and particle
approximation of p (x1:20 | y1:20) (bottom)

A. Doucet (MLSS Sept. 2011) Sequential Monte Carlo Sept. 2011 43 / 85



5 10 15 20 25
0.4

0.6

0.8

1

1.2

1.4

1.6

time index

st
at

e

5 10 15 20 25
0.4

0.6

0.8

1

1.2

1.4

1.6

time index

st
at

e

Figure: p (xk | y1:k ) and Ê [Xk | y1:k ] for k = 1, ..., 24 (top) and particle
approximation of p (x1:24 | y1:24) (bottom)
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Remarks

Empirically this SMC strategy performs well in terms of estimation of
the marginals {p (xn | y1:n)}n≥1 . This is what is only necessary in
many applications thankfully.

However, the joint distribution p (x1:k | y1:k ) is poorly estimated when
k is large; i.e. we have in the previous example

p̂ (x1:11| y1:24) = δX ∗1:11
(x1:11) .

Degeneracy problem. For any N and any k, there exists n (k,N)
such that for any n ≥ n (k,N)

p̂ (dx1:k | y1:n) = δX ∗1:k
(dx1:k ) ;

p̂ (dx1:n | y1:n) is an unreliable approximation of p (dx1:n | y1:n) as n↗.
Resampling only partially solves our problem.
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Another Illustration of the Degeneracy Phenomenon

For the linear Gaussian state-space model described before, we can
compute exactly Sn/n where

Sn =
∫ ( n

∑
k=1

x2k

)
p (dx1:n | y1:n)

using Kalman techniques.

We compute the SMC estimate of this quantity using Ŝn/n where

Ŝn =
∫ ( n

∑
k=1

x2k

)
p̂ (dx1:n | y1:n)

This estimate can be computed sequentially.
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Figure: Suffi cient statistics computed exactly through the Kalman smoother
(blue) and the SMC method (red).
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Some Convergence Results for SMC

Numerous convergence results for SMC are available; see (Del Moral,
2004): Lp bounds, CLT, concentration inequalities, large deviations.

In particular we can prove rather easily that for any bounded function
ϕ and any p ≥ 1 (Del Moral, Crisan & Lyons, 1997)

E

[∣∣∣∣∫ ϕn (x1:n) (π̂n (dx1:n)− πn (dx1:n))

∣∣∣∣p]1/p

≤ c (n) b (p) ‖ϕ‖∞√
N

.

It is not a very informative result as c (n) increases
polynomially/exponentially with time.

To achieve a fixed precision, this would require to use a
time-increasing number of particles N. Without any additional
assumption, we cannot expect to get better results.
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Uniform In Time Convergence Results for SMC

Under strong mixing assumptions, you can obtain much stronger
results

E

[∣∣∣∣∫ ϕn (xn) (π̂n (dxn)− πn (dxn))

∣∣∣∣p]1/p

≤ c1 b (p) ‖ϕ‖∞√
N

i.e. there is no accumulation of numerical errors over time for the
marginals (Del Moral, 2004).
Under mixing assumptions, we have (Cérou et al., 2011, Whiteley et
al., 2011)

E

( Ẑn
Zn
− 1
)2 ≤ c2 n

N

Under mixing assumptions, if πn (dx1:n) = E (π̂n (dx1:n)) then (Del
Moral et al., 2010)

‖πn − πn‖tv ≤
c3 n
N
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Back to our toy example

Consider the case where the target is defined on Rn and

π (x1:n) =
n

∏
n=1
N (xk ; 0, 1) ,

γ (x1:n) =
n

∏
k=1

exp
(
−x

2
k

2

)
, Z = (2π)n/2 .

We select an importance distribution

q (x1:n) =
n

∏
k=1

N
(
xk ; 0, σ

2) .
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For SMC, the asymptotic variance is finite only when σ2 > 1
2 and

VSMC

[
Ẑn
]

Z 2n
≈ 1
N

[∫
π2n (x1)
q1 (x1)

dx1 − 1+
n

∑
k=2

∫
π2n (xk )
qk (xk )

dxk − 1
]

=
n
N

[(
σ4

2σ2 − 1

)1/2

− 1
]

compared to

VIS

[
Ẑn
]

Z 2n
=
1
N

[(
σ4

2σ2 − 1

)n/2

− 1
]

for SIS.
If select σ2 = 1.2 then it is necessary to use N ≈ 2× 1023 particles to
obtain

VIS[Ẑn]
Z 2n

= 10−2 for n = 1000.

To obtain
VSMC[Ẑn]

Z 2n
= 10−2, SMC requires only N ≈ 104 particles: an

improvement by 19 orders of magnitude.
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Fighting Degeneracy Using MCMC Steps

A standard way to limit degeneracy is known as the Resample-Move
algorithm (Gilks & Berzuini, 2001). It relies upon MCMC kernels as a
principled way to “jitter” the particle locations.
A Markov kernel Kn (x ′1:n | x1:n) of invariant distribution πn (x1:n) is a
Markov transition kernel with the property that∫

πn (x1:n)Kn
(
x ′1:n
∣∣ x1:n

)
dx1:n = πn

(
x ′1:n
)
.

Example. Set X ′1:n−L = X1:n−L then sample X ′n−L+1 from
πn
(
xn−L+1| x ′1:n−L, xn−L+2:n

)
, sample X ′n−L+2 from

πn
(
xn−L+2| x ′1:n−L+1, xn−L+3:n

)
and so on until we sample X ′n from

πn
(
xn | x ′1:n−1

)
; that is

Kn
(
x ′1:n
∣∣ x1:n

)
= δx1:n−L

(
x ′1:n−L

) n

∏
k=n−L+1

πn
(
x ′k
∣∣ x ′1:k−1, xk+1:n

)
.

In the SMC context, we typically do not use ergodic kernels as this
would require sampling an increasing number of variables at each
time step; i.e. we restrict ourselves to updating the variables Xn−L+1:n
for some fixed or bounded L.
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Summary

Resampling can drastically improve the performance of SIS in models
having ‘good’mixing properties; e.g. state-space models: this can be
verified experimentally and theoretically.

Resampling does not solve all our problems; at best only the SMC
approximations of the most recent marginals πn (xn−L+1:n) are
reliable; i.e. we can have uniform (in time) convergence bounds.
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Online Bayesian Parameter Estimation

Assume we have

Xn | (Xn−1 = xn−1) ∼ fθ (xn | xn−1) ,
Yn | (Xn = xn) ∼ gθ (yn | xn) ,

where θ is an unknown static parameter with prior p (θ).
Given data y1:n, inference relies on

p ( θ, x1:n | y1:n) = p ( θ| y1:n) pθ (x1:n | y1:n)

where
p ( θ| y1:n) ∝ pθ (y1:n) p (θ) .

SMC methods apply as it is a standard model with extended state
Zn = (Xn, θn) where

f (zn | zn−1) = δθn−1 (θn)︸ ︷︷ ︸
practical problems

fθn (xn | xn−1) , g (yn | zn) = gθ (yn | xn) .
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Cautionary Warning

For fixed θ, V [p̂θ (y1:n)] /p2θ (y1:n) is in Cn/N.
In a Bayesian context, the problem is even more complex as
p ( θ| y1:n) ∝ pθ (y1:n) p (θ) and we have θn = θ for all n so the latent
process does not enjoy mixing properties.

An attractive idea consists of using MCMC steps on θ; e.g. (Andrieu,
De Freitas & D.,1999; Fearnhead, 2002; Gilks & Berzuini 2001;
Storvik, 2002; Polson et al., 2010) so as to introduce some “noise”on
the θ component of the state.

When p ( θ| y1:n, x1:n) = p ( θ| sn (x1:n, y1:n)) where sn (x1:n, y1:n) is a
fixed-dimensional of suffi cient statistics, the algorithm is particularly
elegant but still implicitly relies on SMC approximation of
p (x1:n | y1:n) so degeneracy will creep in.
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Example

Linear Gaussian state-space model

X1 ∼ N
(
0, σ20

)
and Xk = θXk−1 + σVVk , Vk

i.i.d.∼ N (0, 1)

Yk = Xk + σWWk , Wk
i.i.d.∼ N (0, 1) .

We set p (θ) ∝ 1(−1,1) (θ) so

p ( θ| y1:n, x1:n) ∝ N
(
θ;mn, σ2n

)
1(−1,1) (θ)

where
σ2n = S

−1
2,n , mn = S

−1
2,nS1,n

with

S1,n =
n

∑
k=2

xk−1xk , S2,n =
n

∑
k=2

x2k−1
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SMC with MCMC Step for Parameter Estimation

At time n− 1,
(

θ
(i )
n−1,X

(i )
n−1,S

(i )
n−1

)
we have

p̂ (dθ, dxn−1, dsn−1| y1:n−1) =
1
N

N

∑
i=1

δ(
θ
(i )
n−1,X

(i )
n−1,S

(i )
n−1

) (dθ, dxn−1, dsn−1) .

Sample X (i )n ∼ fθ(i )n−1
(
·|X (i )n−1

)
, set S (i )1,n = S

(i )
1,n−1 + X

(i )
n−1X

(i )
n ,

S (i )2,n = S
(i )
2,n−1 +

(
X (i )n−1

)2
, W (i )

n ∝ g
θ
(i )
n−1

(
yn |X (i )n

)
and

p̃ (dθ, dxn, dsn | y1:n) =
N

∑
i=1
W (i )
n δ(

θ
(i )
n−1,X̃

(i )
n ,S (i )n

) (dθ, dxn, dsn) ,

Resample
(
X (i )n ,S

(i )
n

)
∼ p̃ (dxn, dsn | y1:n) then sample

θ
(i )
n ∼ N

(
θ;
(
S (i )2,n

)−1
S (i )1,n,

(
S (i )2,n

)−1)
1(−1,1) (θ) to obtain

p̂ (dθ, dxn, dsn | y1:n) =
1
N ∑N

i=1 δ(
θ
(i )
n ,X

(i )
n ,S (i )n

) (dθ, dxn, dsn).

A. Doucet (MLSS Sept. 2011) Sequential Monte Carlo Sept. 2011 57 / 85



Illustration of the Degeneracy Problem
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SMC estimate of E [ θ| y1:n ], as n increases the degeneracy creeps in.
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Online Bayesian Parameter Estimation

All proposed procedures for online Bayesian parameter estimation are
deficient.

Either some artificial dynamics is introduced but then we cannot
expect to approximate {p ( θ, x1:n | y1:n)}n≥1; e.g. (Liu & West, 2001;
Flury & Shephard, 2010);

Methods based on MCMC steps are elegant but do suffer from the
degeneracy problem and provide unreliable approximations.
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Offl ine Bayesian Parameter Estimation

Given a collection of observations y1:T := (y1, ..., yT ), T being now
fixed, we are interested in carrying out inference about θ and X1:T .

Inference relies on the posterior density

p ( θ, x1:T | y1:T ) = p ( θ| y1:T ) pθ (x1:T | y1:T )

∝ p (θ, x1:T , y1:T )

where

p (θ, x1:T , y1:T ) ∝ p (θ) µθ (x1)
T

∏
n=2

fθ (xn | xn−1)
T

∏
n=1

gθ (yn | xn) .

We show how to address this problem using particle MCMC (Andrieu,
D. & Holenstein, JRSS B, 2010).
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Common MCMC Approaches and Limitations

MCMC Idea: Simulate an ergodic Markov chain {θ (i) ,X1:T (i)}i≥0
of invariant distribution p ( θ, x1:T | y1:T )... infinite number of
possibilities.

Typical strategies consists of updating iteratively X1:T conditional
upon θ then θ conditional upon X1:T .

To update X1:T conditional upon θ, use MCMC kernels updating
subblocks according to pθ (xn:n+K−1| yn:n+K−1, xn−1, xn+K ).

Standard MCMC algorithms are ineffi cient if θ and X1:T are strongly
correlated.

Strategy impossible to implement when it is only possible to sample
from the prior but impossible to evaluate it pointwise.
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Metropolis-Hastings (MH) Sampling

To bypass these problems, we want to update jointly θ and X1:T .

Assume that the current state of our Markov chain is (θ, x1:T ), we
propose to update simultaneously the parameter and the states using
a proposal

q ( (θ∗, x∗1:T )| (θ, x1:T )) = q ( θ∗| θ) qθ∗ (x
∗
1:T | y1:T ) .

The proposal (θ∗, x∗1:T ) is accepted with MH acceptance probability

1∧ p ( θ∗, x∗1:T | y1:T )

p ( θ, x1:T | y1:T )

q ( (x1:T , θ)| (x∗1:T , θ
∗))

q
(
(x∗1:T , θ

∗)
∣∣ (x1:T , θ)

)
Problem: Designing a proposal qθ∗ (x

∗
1:T | y1:T ) such that the

acceptance probability is not extremely small is very diffi cult.
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“Idealized”Marginal MH Sampler

Consider the following so-called marginal Metropolis-Hastings (MH)
algorithm which uses as a proposal

q ( (x∗1:T , θ
∗)| (x1:T , θ)) = q ( θ∗| θ) pθ∗ (x

∗
1:T | y1:T ) .

The MH acceptance probability is

1∧ p ( θ∗, x∗1:T | y1:T )

p ( θ, x1:T | y1:T )

q ( (x1:T , θ)| (x∗1:T , θ
∗))

q
(
(x∗1:T , θ

∗)
∣∣ (x1:T , θ)

)
= 1∧ pθ∗ (y1:T ) p (θ

∗)

pθ (y1:T ) p (θ)
q ( θ| θ∗)
q ( θ∗| θ)

In this MH algorithm, X1:T has been essentially integrated out.
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Implementation Issues

Problem 1: We do not know pθ (y1:T ) =
∫
pθ (x1:T , y1:T ) dx1:T

analytically.

Problem 2: We do not know how to sample from pθ (x1:T | y1:T ) .

“Idea”: Use SMC approximations of pθ (x1:T | y1:T ) and pθ (y1:T ).
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Sequential Monte Carlo Approximation

Given θ, SMC methods provide approximations p̂θ (dx1:T | y1:T ) of
pθ (x1:T | y1:T ) and p̂θ (y1:T ) of pθ (y1:T ).

These approximations degrade linearly with T instead of exponentially
under some regularity assumptions.

Problem: We cannot compute analytically the particle filter proposal
qθ (dx1:T | y1:T ) = E [p̂θ (dx1:T | y1:T )] as it involves an expectation
w.r.t all the variables appearing in the particle algorithm...
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“Idealized”Marginal MH Sampler

At iteration i

Sample θ∗ ∼ q ( ·| θ (i − 1)).
Sample X ∗1:T ∼ pθ∗ ( ·| y1:T ) .

With probability

1∧ pθ∗ (y1:T ) p (θ
∗)

pθ(i−1) (y1:T ) p (θ (i − 1))
q ( θ (i − 1)| θ∗)
q ( θ∗| θ (i − 1))

set θ (i) = θ∗, X1:T (i) = X ∗1:T otherwise set θ (i) = θ (i − 1),
X1:T (i) = X1:T (i − 1) .
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Particle Marginal MH Sampler

At iteration i

Sample θ∗ ∼ q ( ·| θ (i − 1)) and run an SMC algorithm to obtain
p̂θ∗ (dx1:T | y1:T ) and p̂θ∗ (y1:T ).

Sample X ∗1:T ∼ p̂θ∗ ( ·| y1:T ) .

With probability

1∧ p̂θ∗ (y1:T ) p (θ
∗)

p̂θ(i−1) (y1:T ) p (θ (i − 1))
q ( θ (i − 1)| θ∗)
q ( θ∗| θ (i − 1))

set θ (i) = θ∗, X1:T (i) = X ∗1:T otherwise set θ (i) = θ (i − 1),
X1:T (i) = X1:T (i − 1) .
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Validity of the Particle Marginal MH Sampler

Assume that the ‘idealized’marginal MH sampler is irreducible and
aperiodic then, under very weak assumptions, the PMMH sampler
generates a sequence {θ (i) ,X1:T (i)} whose marginal distributions{
LN (θ (i) ,X1:T (i) ∈ ·)

}
satisfy for any N ≥ 1∥∥∥LN (θ (i) ,X1:T (i) ∈ ·)− p( ·| y1:T )

∥∥∥
TV
→ 0 as i → ∞ .

Corollary of a more general result: the PMMH sampler is a standard
MH sampler of target distribution π̃N and proposal q̃N defined on an
extended space associated to all the variables used to generate the
proposal.
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Explicit Structure of the Target Distribution

Let first consider the case where T = 1.
Proposal distribution

q̃N
((

θ∗, k , x1:N
1

)∣∣∣ θ
)
= q ( θ∗| θ)

N

∏
m=1

µθ∗ (x
m
1 ) w

k
1

Target distribution

π̃N
(

θ, k, x1:N
1

)
∝
1
N

N

∑
m=1

gθ (y1| xm1 )︸ ︷︷ ︸
p̂θ(y1)

p (θ)
N

∏
m=1

µθ (x
m
1 ) w

k
1

We have indeed

π̃
(
θ∗, k , x1:N

1

)
q̃N
((

θ∗, k, x1:N
1

)∣∣ θ
) = p (θ∗)

q ( θ∗| θ)
p̂θ∗ (y1)
pθ∗ (y1)
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Explicit Structure of the Target Distribution

As we have
E (p̂θ (y1)) = pθ (y1)

then it follows that
π̃N (θ) = p ( θ| y1) .

However, we can actually rewrite the target as

π̃N
(

θ, k, x1:N
1

)
=
p
(

θ, xk1
∣∣ y1)

N

N

∏
m=1;m 6=k

µθ (x1) .

This shows that we are able to sample from p ( θ, x1| y1) and not only
its marginal p ( θ| y1) .
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Sampling from the Target Distribution

To sample from this target distribution

Sample K from a uniform distribution on {1, ...,N}.
Sample

(
θ,XK1

)
from p ( θ, x1 | y1). (We do not know how to do this,

this is why we use MCMC).

Sample Xm1 ∼ µθ (·) for m 6= K .
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Ancestral Lines Generated by SMC

Figure: Ancestral lineages for N = 5 and T = 3. The lighter path is
X 21:3 =

(
X 31 ,X

4
2 ,X

2
3
)
and its ancestral lineage B21:3 = (3, 4, 2)
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Structure of the Proposal and Target Distributions

Proposal distribution

qN ( θ∗, k, x1, . . . , xT , a1, . . . , aT−1| θ)
= q ( θ∗| θ) ψθ∗ (x1, ..., xT , a1, . . . , aT−1) w kT

where

ψθ (x1, . . . , xT , a1, . . . , aT−1)

=

(
N

∏
m=1

µθ (x
m
1 )

)
T

∏
n=2

(
r (an−1|wn−1)

N

∏
m=1

fθ(x
m
n |x

amn−1
n−1 )

)
Target distribution

π̃N (θ, k, x1, . . . , xT , a1, . . . , aT−1)

∝ p̂θ (y1:T ) p (θ) ψθ (x1, . . . , xT , a1, . . . , aT−1) w kT
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Explicit Structure of the Target Distribution

The target can be rewritten as

π̃N (θ, k, x1, . . . , xT , a1, . . . , aT−1)

=
p
(

θ, xk1:T

∣∣ y1:T
)

NT
ψθ (x1, . . . , xT , a1, ..., aT−1)

µθ(x
bk1
1 )∏T

n=2

(
r(bkn−1|wn−1)fθ(x

bkn
n

∣∣∣ xbkn−1n−1 )
) ,

To sample from this target distribution

Sample
(
BK1 ,B

K
2 , ...,B

K
T−1,K

)
from a uniform distribution on

{1, ...,N}T .
Sample θ and XK1:T = (X

BK1
1 ,X

BK2
2 , . . . ,X

BKT−1
T−1 ,X

K
T ) from

p ( θ, x1:T | y1:T ). (We do not know how to do this, this is why we use
MCMC).

Run a conditional SMC algorithm compatible with XK1:T and its
ancestral lineage

(
BK1 ,B

K
2 , ...,B

K
T−1,K

)
.
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Conditional SMC

Figure: Example of N − 1 = 4 ancestral lineages generated by a conditional SMC
algorithm for N = 5,T = 3 conditional upon X 21:3 and B

2
1:3
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Conditional SMC Algorithm

At time 1

For m 6= bk1 , sample Xm1 ∼ µθ (·) and set Wm
1 ∝ gθ (y1|Xm1 ) ,

∑N
m=1W

m
1 = 1.

Resample N − 1 times from p̂θ (dx1| y1) = ∑N
m=1W

m
1 δXm1 (dx1) to

obtain
{
X
−bk1
1

}
and set X

bk1
1 = X b

k
1
1 .

At time n = 2, ...,T

For m 6= bkn , sample Xmn ∼ fθ
(
·|Xmn−1

)
, set Xm1:n =

(
X
m
1:n−1,X

m
n

)
and Wm

n ∝ gθ (yn |Xmn ) , ∑N
m=1W

m
n = 1.

Resample N − 1 times from p̂θ (dx1:n | y1:n) = ∑N
m=1W

m
n δXm1:n

(dx1:n)

to obtain
{
X
−bkn
1:n

}
and set X

bkn
1:n = X

bkn
1:n.

At time n = T

Sample X1:T ∼ p̂θ (dx1:T | y1:T ) .
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“Idealized”Gibbs Sampler

To sample from p ( θ, x1:T | y1:T ), an MCMC strategy consists of using
the following block Gibbs sampler.

At iteration i

Sample X1:T (i) ∼ pθ(i−1) ( ·| y1:T ).

Sample θ (i) ∼ p ( ·| y1:T ,X1:T (i)) .

Problem: We do not know how to sample from pθ (x1:T | y1:T ).

Naive particle approximation where X1:T (i) ∼ p̂ (·|y1:T , θ (i)) is
substituted to X1:T (i) ∼ p (·|y1:T , θ (i)) is obviously incorrect.
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Particle Gibbs Sampler

At iteration i

Sample θ (i) ∼ p (·|y1:T ,X1:T (i − 1)).
Run a conditional SMC algorithm for θ (i) consistent with
X1:T (i − 1) and its ancestral lineage.
Sample X1:T (i) ∼ p̂ (·|y1:T , θ (i)) from the resulting approximation
(hence its ancestral lineage too).

Proposition. Assume that the ‘ideal’Gibbs sampler is irreducible and
aperiodic then under very weak assumptions the particle Gibbs
sampler generates a sequence {θ (i) ,X1:T (i)} such that for any
N ≥ 2

‖L ((θ (i) ,X1:T (i)) ∈ ·)− p( ·| y1:T )‖ → 0 as i → ∞.

A. Doucet (MLSS Sept. 2011) Sequential Monte Carlo Sept. 2011 78 / 85



Nonlinear State-Space Model

Consider the following model

Xn =
1
2
Xn−1 + 25

Xn−1
1+ X 2n−1

+ 8 cos 1.2n+ Vn,

Yn =
X 2n
20
+Wn

where Vn ∼ N
(
0, σ2v

)
, Wn ∼ N

(
0, σ2w

)
and X1 ∼ N

(
0, 52

)
.

Use the prior for {Xn} as proposal distribution.
For a fixed θ, we evaluate the expected acceptance probability as a
function of N.
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Average Acceptance Probability

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  200  400  600  800  1000  1200  1400  1600  1800  2000

Ac
ce

pt
an

ce
 R

at
e

Number of  Particles

T= 10
T= 25
T= 50
T=100

Average acceptance probability when σ2v = σ2w = 10
A. Doucet (MLSS Sept. 2011) Sequential Monte Carlo Sept. 2011 80 / 85



Average Acceptance Probability
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Inference for Stochastic Kinetic Models

Two species X 1t (prey) and X
2
t (predator)

Pr
(
X 1t+dt=x

1
t+1,X

2
t+dt=x

2
t

∣∣ x1t , x2t ) = α x1t dt + o (dt) ,
Pr
(
X 1t+dt=x

1
t−1,X 2t+dt=x2t+1

∣∣ x1t , x2t ) = β x1t x
2
t dt + o (dt) ,

Pr
(
X 1t+dt=x

1
t ,X

2
t+dt=x

2
t−1

∣∣ x1t , x2t ) = γ x2t dt + o (dt) ,

observed at discrete times

Yn = X 1n∆ +Wn with Wn
i.i.d.∼ N

(
0, σ2

)
.

We are interested in the kinetic rate constants θ = (α, β,γ) a priori
distributed as (Boys et al., 2008; Kunsch, 2011)

α ∼ G(1, 10), β ∼ G(1, 0.25), γ ∼ G(1, 7.5).

MCMC methods require reversible jumps, Particle MCMC requires
only forward simulation.

A. Doucet (MLSS Sept. 2011) Sequential Monte Carlo Sept. 2011 82 / 85



Experimental Results
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Autocorrelation Functions
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Discussion

PMCMC methods allow us to design ‘good’high dimensional
proposals based only on low dimensional (and potentially
unsophisticated) proposals.

PMCMC allow us to perform Bayesian inference for dynamic models
for which only forward simulation is possible.

“Computationally brutal”but several implementations on GPU
already available and applications in ecology, econometrics (Flury &
Shephard, Econometrics Review, 2011), biochemical systems,
epidemiology etc.

More precise quantitative convergence results need to be established.
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