
Convex Optimization

Lieven Vandenberghe

Electrical Engineering Department, UC Los Angeles

Tutorial lectures, 18th Machine Learning Summer School

September 13-14, 2011



Convex optimization — MLSS 2011

Introduction

• mathematical optimization

• linear and convex optimization

• recent history
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Mathematical optimization

minimize f0(x1, . . . , xn)

subject to f1(x1, . . . , xn) ≤ 0
. . .
fm(x1, . . . , xn) ≤ 0

• a mathematical model of a decision, design, or estimation problem

• generally intractable

• even simple looking nonlinear optimization problems can be very hard
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The famous exception: linear programming

minimize cTx
subject to aTi x ≤ bi, i = 1, . . . ,m

• widely used since Dantzig introduced the simplex algorithm in 1948

• since 1950s, many applications in operations research, network
optimization, finance, engineering, combinatorial optimization, . . .

• extensive theory (optimality conditions, sensitivity, . . . )

• there exist very efficient algorithms for solving linear programs
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Convex optimization problem

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

• objective and constraint functions are convex: for 0 ≤ θ ≤ 1

fi(θx+ (1− θ)y) ≤ θfi(x) + (1− θ)fi(y)

• can be solved globally, with similar (polynomial-time) complexity as LPs

• surprisingly many problems can be solved via convex optimization

• provides tractable heuristics and relaxations for non-convex problems
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History

• 1940s: linear programming

minimize cTx
subject to aTi x ≤ bi, i = 1, . . . ,m

• 1950s: quadratic programming

• 1960s: geometric programming

• 1990s: semidefinite programming, second-order cone programming,
quadratically constrained quadratic programming, robust optimization,
sum-of-squares programming, . . .
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New applications since 1990

• linear matrix inequality techniques in control

• support vector machine training via quadratic programming

• semidefinite programming relaxations in combinatorial optimization

• circuit design via geometric programming

• ℓ1-norm optimization for sparse signal reconstruction

• applications in structural optimization, statistics, signal processing,
communications, image processing, computer vision, quantum
information theory, finance, power distribution, . . .
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Advances in convex optimization algorithms

interior-point methods

• 1984 (Karmarkar): first practical polynomial-time algorithm for LP

• 1984-1990: efficient implementations for large-scale LPs

• around 1990 (Nesterov & Nemirovski): polynomial-time interior-point
methods for nonlinear convex programming

• since 1990: extensions and high-quality software packages

fast first-order algorithms

• similar to gradient descent, but with better convergence properties

• based on Nesterov’s optimal-rate gradient methods from 1980s

• extend to certain nondifferentiable or constrained problems
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Overview

1. Basic theory and convex modeling

• convex sets and functions
• common problem classes and applications

2. Interior-point methods for conic optimization

• conic optimization
• barrier methods
• symmetric primal-dual methods

3. First-order methods

• gradient algorithms
• dual techniques
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Convex sets and functions

• convex sets

• convex functions

• operations that preserve convexity



Convex set

contains the line segment between any two points in the set

x1, x2 ∈ C, 0 ≤ θ ≤ 1 =⇒ θx1 + (1− θ)x2 ∈ C

convex not convex not convex

Convex sets and functions 8



Basic examples

affine set: solution set of linear equations Ax = b

halfspace: solution of one linear inequality aTx ≤ b (a 6= 0)

polyhedron: solution of finitely many linear inequalities Ax ≤ b

ellipsoid: solution of quadratic inquality

(x− xc)
TA(x− xc) ≤ 1 (A positive definite)

norm ball: solution of ‖x‖ ≤ R (for any norm)

positive semidefinite cone: Sn
+ = {X ∈ Sn | X � 0}

the intersection of any number of convex sets is convex
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Example of intersection property

C = {x ∈ Rn | |p(t)| ≤ 1 for |t| ≤ π/3}

where p(t) = x1 cos t+ x2 cos 2t+ · · ·+ xn cosnt
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C is intersection of infinitely many halfspaces, hence convex
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Convex function

domain dom f is a convex set and Jensen’s inequality holds:

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)

for all x, y ∈ dom f , 0 ≤ θ ≤ 1

(x, f(x))

(y, f(y))

f is concave if −f is convex
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Examples

• linear and affine functions are convex and concave

• expx, − log x, x log x are convex

• xα is convex for x > 0 and α ≥ 1 or α ≤ 0; |x|α is convex for α ≥ 1

• norms are convex

• quadratic-over-linear function xTx/t is convex in x, t for t > 0

• geometric mean (x1x2 · · ·xn)1/n is concave for x ≥ 0

• log detX is concave on set of positive definite matrices

• log(ex1 + · · · exn) is convex
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Epigraph and sublevel set

epigraph: epi f = {(x, t) | x ∈ dom f, f(x) ≤ t}

a function is convex if and only its
epigraph is a convex set

epi f

f

sublevel sets: Cα = {x ∈ dom f | f(x) ≤ α}

the sublevel sets of a convex function are convex (converse is false)
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Differentiable convex functions

differentiable f is convex if and only if dom f is convex and

f(y) ≥ f(x) +∇f(x)T (y − x) for all x, y ∈ dom f

(x, f(x))

f(y)

f(x) + ∇f(x)T (y − x)

twice differentiable f is convex if and only if dom f is convex and

∇2f(x) � 0 for all x ∈ dom f
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Methods for establishing convexity of a function

1. verify definition

2. for twice differentiable functions, show ∇2f(x) � 0

3. show that f is obtained from simple convex functions by operations
that preserve convexity

• nonnegative weighted sum
• composition with affine function
• pointwise maximum and supremum
• minimization
• composition
• perspective
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Positive weighted sum & composition with affine function

nonnegative multiple: αf is convex if f is convex, α ≥ 0

sum: f1 + f2 convex if f1, f2 convex (extends to infinite sums, integrals)

composition with affine function: f(Ax+ b) is convex if f is convex

examples

• logarithmic barrier for linear inequalities

f(x) = −
m
∑

i=1

log(bi − aTi x)

• (any) norm of affine function: f(x) = ‖Ax+ b‖
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Pointwise maximum

f(x) = max{f1(x), . . . , fm(x)}

is convex if f1, . . . , fm are convex

example: sum of r largest components of x ∈ Rn

f(x) = x[1] + x[2] + · · ·+ x[r]

is convex (x[i] is ith largest component of x)

proof:

f(x) = max{xi1 + xi2 + · · ·+ xir | 1 ≤ i1 < i2 < · · · < ir ≤ n}
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Pointwise supremum

g(x) = sup
y∈A

f(x, y)

is convex if f(x, y) is convex in x for each y ∈ A

example: maximum eigenvalue of symmetric matrix

λmax(X) = sup
‖y‖2=1

yTXy
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Minimization

h(x) = inf
y∈C

f(x, y)

is convex if f(x, y) is convex in (x, y) and C is a convex set

examples

• distance to a convex set C: h(x) = infy∈C ‖x− y‖
• optimal value of linear program as function of righthand side

h(x) = inf
y:Ay≤x

cTy

follows by taking

f(x, y) = cTy, dom f = {(x, y) | Ay ≤ x}
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Composition

composition of g : Rn → R and h : R → R:

f(x) = h(g(x))

f is convex if

g convex, h convex and nondecreasing
g concave, h convex and nonincreasing

(if we assign h(x) = ∞ for x ∈ domh)

examples

• exp g(x) is convex if g is convex

• 1/g(x) is convex if g is concave and positive
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Vector composition

composition of g : Rn → Rk and h : Rk → R:

f(x) = h(g(x)) = h (g1(x), g2(x), . . . , gk(x))

f is convex if

gi convex, h convex and nondecreasing in each argument
gi concave, h convex and nonincreasing in each argument

(if we assign h(x) = ∞ for x ∈ domh)

example

log
m
∑

i=1

exp gi(x) is convex if gi are convex
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Perspective

the perspective of a function f : Rn → R is the function g : Rn ×R → R,

g(x, t) = tf(x/t)

g is convex if f is convex on dom g = {(x, t) | x/t ∈ dom f, t > 0}

examples

• perspective of f(x) = xTx is quadratic-over-linear function

g(x, t) =
xTx

t

• perspective of negative logarithm f(x) = − log x is relative entropy

g(x, t) = t log t− t log x
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Conjugate function

the conjugate of a function f is

f∗(y) = sup
x∈dom f

(yTx− f(x))

f(x)

(0,−f∗(y))

xy

x

f∗ is convex (even if f is not)
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Examples

convex quadratic function (Q ≻ 0)

f(x) =
1

2
xTQx f∗(y) =

1

2
yTQ−1y

negative entropy

f(x) =

n
∑

i=1

xi log xi f∗(y) =

n
∑

i=1

eyi − 1

norm

f(x) = ‖x‖ f∗(y) =

{

0 ‖y‖∗ ≤ 1
+∞ otherwise

indicator function (C convex)

f(x) = IC(x) =

{

0 x ∈ C
+∞ otherwise

f∗(y) = sup
x∈C

yTx
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Convex optimization problems

• linear programming

• quadratic programming

• geometric programming

• second-order cone programming

• semidefinite programming



Convex optimization problem

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b

f0, f1, . . . , fm are convex functions

• feasible set is convex

• locally optimal points are globally optimal

• tractable, in theory and practice
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Linear program (LP)

minimize cTx+ d
subject to Gx ≤ h

Ax = b

• inequality is componentwise vector inequality

• convex problem with affine objective and constraint functions

• feasible set is a polyhedron

P x⋆

−c
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Piecewise-linear minimization

minimize f(x) = max
i=1,...,m

(aTi x+ bi)

x

aT
i x + bi

f(x)

equivalent linear program

minimize t
subject to aTi x+ bi ≤ t, i = 1, . . . ,m

an LP with variables x, t ∈ R
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ℓ1-Norm and ℓ∞-norm minimization

ℓ1-norm approximation and equivalent LP (‖y‖1 =
∑

k |yk|)

minimize ‖Ax− b‖1 minimize

n
∑

i=1

yi

subject to −y ≤ Ax− b ≤ y

ℓ∞-norm approximation (‖y‖∞ = maxk |yk|)

minimize ‖Ax− b‖∞ minimize y
subject to −y1 ≤ Ax− b ≤ y1

(1 is vector of ones)
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example: histograms of residuals Ax− b (with A is 200× 80) for

xls = argmin ‖Ax− b‖2, xℓ1 = argmin ‖Ax− b‖1

� 1.5 � 1.0 � 0.5 0.0 0.5 1.0 1.50
2
4
6
8
10

(Axls − b)k

� 1.5 � 1.0 � 0.5 0.0 0.5 1.0 1.50
20
40
60
80
100

(Axℓ1 − b)k

1-norm distribution is wider with a high peak at zero
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Robust regression
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• 42 points ti, yi (circles), including two outliers

• function f(t) = α+ βt fitted using 2-norm (dashed) and 1-norm
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Linear discrimination

separate two sets of points {x1, . . . , xN}, {y1, . . . , yM} by a hyperplane

aTxi + b > 0, i = 1, . . . , N

aTyi + b < 0, i = 1, . . . ,M

homogeneous in a, b, hence equivalent to the linear inequalities (in a, b)

aTxi + b ≥ 1, i = 1, . . . , N, aTyi + b ≤ −1, i = 1, . . . ,M
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Approximate linear separation of non-separable sets

minimize

N
∑

i=1

max{0, 1− aTxi − b}+
M
∑

i=1

max{0, 1 + aTyi + b}

• a piecewise-linear minimization problem in a, b; equivalent to an LP

• can be interpreted as a heuristic for minimizing #misclassified points
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Quadratic program (QP)

minimize (1/2)xTPx+ qTx+ r
subject to Gx ≤ h

• P ∈ Sn
+, so objective is convex quadratic

• minimize a convex quadratic function over a polyhedron

P

x⋆

−∇f0(x
⋆)
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Linear program with random cost

minimize cTx
subject to Gx ≤ h

• c is random vector with mean c̄ and covariance Σ

• hence, cTx is random variable with mean c̄Tx and variance xTΣx

expected cost-variance trade-off

minimize E cTx+ γ var(cTx) = c̄Tx+ γxTΣx
subject to Gx ≤ h

γ > 0 is risk aversion parameter
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Robust linear discrimination

H1 = {z | aTz + b = 1}
H2 = {z | aTz + b = −1}

distance between hyperplanes is 2/‖a‖2

to separate two sets of points by maximum margin,

minimize ‖a‖22 = aTa
subject to aTxi + b ≥ 1, i = 1, . . . , N

aTyi + b ≤ −1, i = 1, . . . ,M

a quadratic program in a, b
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Support vector classifier

min. γ‖a‖22 +
N
∑

i=1

max{0, 1− aTxi − b}+
M
∑

i=1

max{0, 1 + aTyi + b}

γ = 0 γ = 10

equivalent to a QP
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Total variation signal reconstruction

minimize ‖x̂− xcor‖22 + γφ(x̂)

• xcor = x+ v is corrupted version of unknown signal x, with noise v

• variable x̂ (reconstructed signal) is estimate of x

• φ : Rn → R is quadratic or total variation smoothing penalty

φquad(x̂) =

n−1
∑

i=1

(x̂i+1 − x̂i)
2, φtv(x̂) =

n−1
∑

i=1

|x̂i+1 − x̂i|
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example: xcor, and reconstruction with quadratic and t.v. smoothing
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• quadratic smoothing smooths out noise and sharp transitions in signal

• total variation smoothing preserves sharp transitions in signal
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Geometric programming

posynomial function

f(x) =
K
∑

k=1

ckx
a1k
1 x

a2k
2 · · ·xankn , dom f = Rn

++

with ck > 0

geometric program (GP)

minimize f0(x)
subject to fi(x) ≤ 1, i = 1, . . . ,m

with fi posynomial
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Geometric program in convex form

change variables to
yi = log xi,

and take logarithm of cost, constraints

geometric program in convex form:

minimize log

(

K
∑

k=1

exp(aT0ky + b0k)

)

subject to log

(

K
∑

k=1

exp(aTiky + bik)

)

≤ 0, i = 1, . . . ,m

bik = log cik
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Second-order cone program (SOCP)

minimize fTx
subject to ‖Aix+ bi‖2 ≤ cTi x+ di, i = 1, . . . ,m

• ‖ · ‖2 is Euclidean norm ‖y‖2 =
√

y21 + · · ·+ y2n

• constraints are nonlinear, nondifferentiable, convex

constraints are inequalities
w.r.t. second-order cone:

{

y
∣

∣

∣

√

y21 + · · ·+ y2p−1 ≤ yp

}

y1
y2

y
3

−1

0

1

−1

0

1
0

0.5

1
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Robust linear program (stochastic)

minimize cTx
subject to prob(aTi x ≤ bi) ≥ η, i = 1, . . . ,m

• ai random and normally distributed with mean āi, covariance Σi

• we require that x satisfies each constraint with probability exceeding η

η = 10% η = 50% η = 90%
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SOCP formulation

the ‘chance constraint’ prob(aTi x ≤ bi) ≥ η is equivalent to the constraint

āTi x+Φ−1(η)‖Σ1/2
i x‖2 ≤ bi

Φ is the (unit) normal cumulative density function

0
0

0.5

1

t

Φ
(t
)

η

Φ−1(η)

robust LP is a second-order cone program for η ≥ 0.5
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Robust linear program (deterministic)

minimize cTx
subject to aTi x ≤ bi for all ai ∈ Ei, i = 1, . . . ,m

• ai uncertain but bounded by ellipsoid Ei = {āi + Piu | ‖u‖2 ≤ 1}
• we require that x satisfies each constraint for all possible ai

SOCP formulation

minimize cTx
subject to āTi x+ ‖PT

i x‖2 ≤ bi, i = 1, . . . ,m

follows from
sup

‖u‖2≤1

(āi + Piu)
Tx = āTi x+ ‖PT

i x‖2
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Examples of second-order cone constraints

convex quadratic constraint (A = LLT positive definite)

xTAx+ 2bTx+ c ≤ 0

m
∥

∥LTx+ L−1b
∥

∥

2
≤ (bTA−1b− c)1/2

extends to positive semidefinite singular A

hyperbolic constraint

xTx ≤ yz, y, z ≥ 0

m
∥

∥

∥

∥

[

2x
y − z

]
∥

∥

∥

∥

2

≤ y + z, y, z ≥ 0
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Examples of SOC-representable constraints

positive powers

x1.5 ≤ t, x ≥ 0

m
∃z : x2 ≤ tz, z2 ≤ x, x, z ≥ 0

• two hyperbolic constraints can be converted to SOC constraints

• extends to powers xp for rational p ≥ 1

negative powers

x−3 ≤ t, x > 0

m
∃z : 1 ≤ tz, z2 ≤ tx, x, z ≥ 0

• two hyperbolic constraints on r.h.s. can be converted to SOC constraints

• extends to powers xp for rational p < 0
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Semidefinite program (SDP)

minimize cTx
subject to x1A1 + x2A2 + · · ·+ xnAn � B

• A1, A2, . . . , An, B are symmetric matrices

• inequality X � Y means Y −X is positive semidefinite, i.e.,

zT (Y −X)z =
∑

i,j

(Yij −Xij)zizj ≥ 0 for all z

• includes many nonlinear constraints as special cases
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Geometry

[
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]
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• a nonpolyhedral convex cone

• feasible set of a semidefinite program is the intersection of the positive
semidefinite cone in high dimension with planes
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Examples

A(x) = A0 + x1A1 + · · ·+ xmAm (Ai ∈ Sn)

eigenvalue minimization (and equivalent SDP)

minimize λmax(A(x)) minimize t
subject to A(x) � tI

matrix-fractional function

minimize bTA(x)−1b
subject to A(x) � 0

minimize t

subject to

[

A(x) b
bT t

]

� 0
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Matrix norm minimization

A(x) = A0 + x1A1 + x2A2 + · · ·+ xnAn (Ai ∈ Rp×q)

matrix norm approximation (‖X‖2 = maxk σk(X))

minimize ‖A(x)‖2 minimize t

subject to

[

tI A(x)T

A(x) tI

]

� 0

nuclear norm approximation (‖X‖∗ =
∑

k σk(X))

minimize ‖A(x)‖∗ minimize (trU + trV )/2

subject to

[

U A(x)T

A(x) V

]

� 0
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Semidefinite relaxations

semidefinite programming is often used

• to find good bounds for nonconvex polynomial problems, via relaxation

• as a heuristic for good suboptimal points

example: Boolean least-squares

minimize ‖Ax− b‖22
subject to x2i = 1, i = 1, . . . , n

• basic problem in digital communications

• could check all 2n possible values of x ∈ {−1, 1}n . . .

• an NP-hard problem, and very hard in general
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Semidefinite lifting

Boolean least-squares problem

minimize xTATAx− 2bTAx+ bT b
subject to x2i = 1, i = 1, . . . , n

reformulation: introduce new variable Y = xxT

minimize tr(ATAY )− 2bTAx+ bT b
subject to Y = xxT

diag(Y ) = 1

• cost function and second constraint are linear (in the variables Y , x)

• first constraint is nonlinear and nonconvex

. . . still a very hard problem
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Semidefinite relaxation

replace Y = xxT with weaker constraint Y � xxT to obtain relaxation

minimize tr(ATAY )− 2bTAx+ bT b
subject to Y � xxT

diag(Y ) = 1

• convex; can be solved as a semidefinite program

Y � xxT ⇐⇒
[

Y x
xT 1

]

� 0

• optimal value gives lower bound for Boolean LS problem

• if Y = xxT at the optimum, we have solved the exact problem

• otherwise, can use randomized rounding

generate z from N (x, Y − xxT ) and take x = sign(z)
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Example
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SDP bound LS solution

• n = 100: feasible set has 2100 ≈ 1030 points

• histogram of 1000 randomized solutions from SDP relaxation
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Overview

1. Basic theory and convex modeling

• convex sets and functions
• common problem classes and applications

2. Interior-point methods for conic optimization

• conic optimization
• barrier methods
• symmetric primal-dual methods

3. First-order methods

• gradient algorithms
• dual techniques
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Conic optimization

• definitions and examples

• modeling

• duality



Generalized (conic) inequalities

conic inequality: a constraint x ∈ K with K a convex cone in Rm

we require that K is a proper cone:

• closed

• pointed: K ∩ (−K) = {0}
• with nonempty interior: intK 6= ∅; equivalently, K + (−K) = Rm

notation

x �K y ⇐⇒ x− y ∈ K, x ≻K y ⇐⇒ x− y ∈ intK

with subscript in �K omitted if K is clear from the context
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Cone linear program

minimize cTx
subject to Ax �K b

if K is the nonnegative orthant, this reduces to regular linear program

widely used in recent literature on convex optimization

• modeling: a small number of ‘primitive’ cones is sufficient to express
most convex constraints that arise in practice

• algorithms: a convenient problem format for extending interior-point
algorithms for linear programming to convex optimization
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Norm cones

K =
{

(x, y) ∈ Rm−1 × R | ‖x‖ ≤ y
}

x1
x2

y

−1

0

1

−1

0

1
0

0.5

1

for the Euclidean norm this is the second-order cone (notation: Qm)
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Second-order cone program

minimize cTx

subject to ‖Bk0x+ dk0‖2 ≤ Bk1x+ dk1, k = 1, . . . , r

cone LP formulation: express constraints as Ax �K b

K = Qm1 × · · · × Qmr, A =

















−B10

−B11

...

−Br0

−Br1

















, b =

















d10

d11
...

dr0

dr1

















(assuming Bk0, dk0 have mk − 1 rows)
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Vector notation for symmetric matrices

• vectorized symmetric matrix: for U ∈ Sp

vec(U) =
√
2

(

U11√
2
, U21, . . . , Up1,

U22√
2
, U32, . . . , Up2, . . . ,

Upp√
2

)

• inverse operation: for u = (u1, u2, . . . , un) ∈ Rn with n = p(p+ 1)/2

mat(u) =
1√
2









√
2u1 u2 · · · up
u2

√
2up+1 · · · u2p−1

... ... ...

up u2p−1 · · ·
√
2up(p+1)/2









coefficients
√
2 are added so that standard inner products are preserved:

tr(UV ) = vec(U)T vec(V ), uTv = tr(mat(u)mat(v))
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Positive semidefinite cone

Sp = {vec(X) | X ∈ Sp
+} = {x ∈ Rp(p+1)/2 | mat(x) � 0}

0
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∣

∣

∣

∣

[

x y/
√
2
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√
2 z

]

� 0
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Semidefinite program

minimize cTx
subject to x1A11 + x2A12 + · · ·+ xnA1n � B1

. . .
x1Ar1 + x2Ar2 + · · ·+ xnArn � Br

r linear matrix inequalities of order p1, . . . , pr

cone LP formulation: express constraints as Ax �K B

K = Sp1 × Sp2 × · · · × Spr

A =









vec(A11) vec(A12) · · · vec(A1n)
vec(A21) vec(A22) · · · vec(A2n)

... ... ...
vec(Ar1) vec(Ar2) · · · vec(Arn)









, b =









vec(B1)
vec(B2)

...
vec(Br)









Conic optimization 61



Exponential cone

the epigraph of the perspective of expx is a non-proper cone

K =
{

(x, y, z) ∈ R3 | yex/y ≤ z, y > 0
}

the exponential cone is Kexp = clK = K ∪ {(x, 0, z) | x ≤ 0, z ≥ 0}

−2
−1

0
1

0

1

2

3
0

0.5

1

x
y

z
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Geometric program

minimize cTx

subject to log
ni
∑

k=1

exp(aTikx+ bik) ≤ 0, i = 1, . . . , r

cone LP formulation

minimize cTx

subject to





aTikx+ bik
1
zik



 ∈ Kexp, k = 1, . . . , ni, i = 1, . . . , r

ni
∑

k=1

zik ≤ 1, i = 1, . . . ,m
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Power cone

definition: for α = (α1, α2, . . . , αm) > 0,
m
∑

i=1

αi = 1

Kα =
{

(x, y) ∈ Rm
+ × R | |y| ≤ xα1

1 · · ·xαm
m

}

examples for m = 2

α = (12,
1
2) α = (23,

1
3) α = (34,

1
4)
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Modeling software

modeling packages for convex optimization

• CVX, YALMIP (MATLAB)

• CVXMOD, CVXPY (Python)

assist in formulating convex problems by automating two tasks:

• verifying convexity from convex calculus rules

• transforming problem in input format required by standard solvers

related packages

general-purpose optimization modeling: AMPL, GAMS
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CVX example

minimize ‖Ax− b‖1
subject to 0 ≤ xk ≤ 1, k = 1, . . . , n

MATLAB code

cvx_begin

variable x(3);

minimize(norm(A*x - b, 1))

subject to

x >= 0;

x <= 1;

cvx_end

• between cvx_begin and cvx_end, x is a CVX variable

• after execution, x is MATLAB variable with optimal solution
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Modeling and conic optimization

convex modeling systems (CVX, YALMIP, CVXMOD, CVXPY, . . . )

• convert problems stated in standard mathematical notation to cone LPs

• in principle, any convex problem can be represented as a cone LP

• in practice, a small set of primitive cones is used (Rn
+, Qp, Sp)

• choice of cones is limited by available algorithms and solvers (see later)

modeling systems implement set of rules for expressing constraints

f(x) ≤ t

as conic inequalities for the implemented cones
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Examples of second-order cone representable functions

• convex quadratic

f(x) = xTPx+ qTx+ r (P � 0)

• quadratic-over-linear function

f(x, y) =
xTx

y
with dom f = Rn × R+ (assume 0/0 = 0)

• convex powers with rational exponent

f(x) = |x|α, f(x) =

{

xβ x > 0
+∞ x ≤ 0

for rational α ≥ 1 and β ≤ 0

• p-norm f(x) = ‖x‖p for rational p ≥ 1
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Examples of SD cone representable functions

• matrix-fractional function

f(X, y) = yTX−1y with dom f = {(X, y) ∈ Sn
+ × Rn | y ∈ R(X)}

• maximum eigenvalue of symmetric matrix

• maximum singular value f(X) = ‖X‖2 = σ1(X)

‖X‖2 ≤ t ⇐⇒
[

tI X
XT tI

]

� 0

• nuclear norm f(X) = ‖X‖∗ =
∑

i σi(X)

‖X‖∗ ≤ t ⇐⇒ ∃U, V :

[

U X
XT V

]

� 0,
1

2
(trU + trV ) ≤ t
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Functions representable with exponential and power cone

exponential cone

• exponential and logarithm

• entropy f(x) = x log x

power cone

• increasing power of absolute value: f(x) = |x|p with p ≥ 1

• decreasing power: f(x) = xq with q ≤ 0 and domain R++

• p-norm: f(x) = ‖x‖p with p ≥ 1
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Linear programming duality

primal and dual LP

(P) minimize cTx
subject to Ax ≤ b

(D) maximize −bTz
subject to ATz + c = 0

z ≥ 0

• primal optimal value is p⋆ (+∞ if infeasible, −∞ if unbounded below)

• dual optimal value is d⋆ (−∞ if infeasible, +∞ if unbounded below)

duality theorem

• weak duality: p⋆ ≥ d⋆, with no exception

• strong duality: p⋆ = d⋆ if primal or dual is feasible

• if p⋆ = d⋆ is finite, then primal and dual optima are attained
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Dual cone

definition
K∗ = {y | xTy ≥ 0 for all x ∈ K}

a proper cone if K is a proper cone

dual inequality: x �∗ y means x �K∗ y for generic proper cone K

note: dual cone depends on choice of inner product:

H−1K∗

is dual cone for inner product 〈x, y〉 = xTHy
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Examples

• Rp
+, Qp, Sp are self-dual: K = K∗

• dual of norm cone is norm cone for dual norm

• dual of exponential cone

K∗
exp =

{

(u, v, w) ∈ R− × R× R+ | −u log(−u/w) + u− v ≤ 0
}

(with 0 log(0/w) = 0 if w ≥ 0)

• dual of power cone is

K∗
α =

{

(u, v) ∈ Rm
+ × R | |v| ≤ (u1/α1)

α1 · · · (um/αm)αm
}
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Primal and dual cone LP

primal problem (optimal value p⋆)

minimize cTx
subject to Ax � b

dual problem (optimal value d⋆)

maximize −bTz
subject to ATz + c = 0

z �∗ 0

weak duality: p⋆ ≥ d⋆ (without exception)

Conic optimization 74



Strong duality

p⋆ = d⋆

if primal or dual is strictly feasible

• slightly weaker than LP duality (which only requires feasibility)

• can have d⋆ < p⋆ with finite p⋆ and d⋆

other implications of strict feasibility

• if primal is strictly feasible, then dual optimum is attained (if d⋆ is finite)

• if dual is strictly feasible, then primal optimum is attained (if p⋆ is finite)
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Optimality conditions

minimize cTx
subject to Ax+ s = b

s � 0

maximize −bTz
subject to ATz + c = 0

z �∗ 0

optimality conditions

[

0
s

]

=

[

0 AT

−A 0

] [

x
z

]

+

[

c
b

]

s � 0, z �∗ 0, zTs = 0

duality gap: inner product of (x, z) and (0, s) gives

zTs = cTx+ bTz
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Convex optimization — MLSS 2011

Barrier methods

• barrier method for linear programming

• normal barriers

• barrier method for conic optimization



History

• 1960s: Sequentially Unconstrained Minimization Technique (SUMT)

solves nonlinear convex optimization problem

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

via a sequence of unconstrained minimization problems

minimize tf0(x)−
m
∑

i=1

log(−fi(x))

• 1980s: LP barrier methods with polynomial worst-case complexity

• 1990s: barrier methods for non-polyhedral cone LPs
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Logarithmic barrier function for linear inequalities

ψ(x) = φ(b−Ax), φ(s) = −
m
∑

i=1

log si

• a smooth convex function with domψ = {x | Ax < b}

• ψ(x) → ∞ at boundary of domψ

• gradient and Hessian are

∇ψ(x) = −AT∇φ(s), ∇2ψ(x) = AT∇φ2(s)A

with s = b−Ax

∇φ(s) = −
(

1

s1
, . . . ,

1

sm

)

, ∇φ2(s) = diag

(

1

s21
, . . . ,

1

s2m

)
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Central path for linear program

central path: set of minimizers x⋆(t) (with t > 0) of

ft(x) = tcTx+ φ(b−Ax)

c

x⋆ x⋆(t)

optimality conditions: x = x⋆(t) satisfies

∇ft(x) = tc−AT∇φ(s) = 0, s = b−Ax
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Central path and duality

dual feasible point on central path

• for x = x⋆(t) and s = b−Ax,

z∗(t) = −1

t
∇φ(s) =

(

1

ts1
,
1

ts2
, . . . ,

1

tsm

)

is strictly dual feasible: c+ATz = 0 and z > 0

• can be modified to correct for inexact centering of x

duality gap between x = x⋆(t) and z = z⋆(t) is

cTx+ bTz = sTz =
m

t

gives bound on suboptimality: cTx⋆(t)− p⋆ ≤ m/t
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Barrier method

starting with t > 0, strictly feasible x, repeat until cTx− p⋆ ≤ ǫ

• make one or more Newton steps to (approximately) minimize ft:

x+ = x− α∇2ft(x)
−1∇ft(x)

step size α is fixed or from line search

• increase t

complexity: with proper initialization, step size, update scheme for t,

#Newton steps = O
(√
m log(1/ǫ)

)

result follows from convergence analysis of Newton’s method for ft
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• barrier method for linear programming
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• barrier method for conic optimization



Normal barrier for proper cone

φ is a θ-normal barrier for the proper cone K if it is

• a barrier: smooth, convex, domain intK, blows up at boundary of K

• logarithmically homogeneous with parameter θ:

φ(tx) = φ(x)− θ log t, ∀x ∈ intK, t > 0

• self-concordant: restriction g(α) = φ(x+ αv) to any line satisfies

g′′′(α) ≤ 2g′′(α)3/2

introduced by Nesterov and Nemirovski (1994)
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Examples

nonnegative orthant: K = Rm
+

φ(x) = −
m
∑

i=1

log xi (θ = m)

second-order cone: K = Qp = {(x, y) ∈ Rp−1 × R | ‖x‖2 ≤ y}

φ(x, y) = − log(y2 − xTx) (θ = 2)

semidefinite cone: K = Sm = {x ∈ Rm(m+1)/2 | mat(x) � 0}

φ(x) = − log detmat(x) (θ = m)
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exponential cone: Kexp = cl{(x, y, z) ∈ R3 | yex/y ≤ z, y > 0}

φ(x, y, z) = − log (y log(z/y)− x)− log z − log y (θ = 3)

power cone: K = {(x1, x2, y) ∈ R+ × R+ × R | |y| ≤ xα1
1 x

α2
2 }

φ(x, y) = − log
(

x2α1
1 x2α2

2 − y2
)

− log x1 − log x2 (θ = 4)
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Central path

cone LP (with inequality with respect to proper cone K)

minimize cTx
subject to Ax � b

barrier for the feasible set

φ(b−Ax)

where φ is a θ-normal barrier for K

central path: set of minimizers x⋆(t) (with t > 0) of

ft(x) = tcTx+ φ(b−Ax)
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Newton step

centering problem

minimize ft(x) = tcTx+ φ(b−Ax)

Newton step at x
∆x = −∇2ft(x)

−1∇ft(x)

Newton decrement

λt(x) =
(

∆xT∇2ft(x)∆x
)1/2

=
(

−∇ft(x)T∆x
)1/2

used to measure proximity of x to x⋆(t)
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Damped Newton method

minimize ft(x) = tcTx+ φ(b−Ax)

algorithm

select ǫ ∈ (0, 1/2), η ∈ (0, 1/4], and a starting point x ∈ dom ft

repeat:

1. compute Newton step ∆x and Newton decrement λt(x)
2. if λt(x)

2 ≤ ǫ, return x
3. otherwise, set x := x+ α∆x with

α =
1

1 + λt(x)
if λt(x) ≥ η, α = 1 if λt(x) < η

alternatively, can use backtracking line search
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Convergence results for damped Newton method

• damped Newton phase

ft(x
+)− ft(x) ≤ −γ if λt(x) ≥ η

where γ = η − log(1 + η); ft decreases by at least a positive constant γ

• quadratically convergent phase

2λt(x
+) ≤ (2λt(x))

2
if λt(x) < η

implies λt(x
+) ≤ 2η2 < η, and Newton decrement decreases to zero

• stopping criterion λt(x)
2 ≤ ǫ implies

ft(x)− inf ft(x) ≤ ǫ
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Central path and duality

duality point on central path: x⋆(t) defines a strictly dual feasible z⋆(t)

z⋆(t) = −1

t
∇φ(s), s = b−Ax⋆(t)

duality gap: gap between x = x⋆(t) and z = z⋆(t) is

cTx+ bTz = sTz =
θ

t
, cTx− p⋆ ≤ θ

t

near central path: for inexactly centered x

cTx− p⋆ ≤
(

1 +
λt(x)√
θ

)

θ

t
if λt(x) < 1

(results follow from properties of normal barriers)
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Short-step barrier method

algorithm: parameters ǫ ∈ (0, 1), β = 1/8

• select initial x and t with λt(x) ≤ β

• repeat until 2θ/t ≤ ǫ:

t :=

(

1 +
1

1 + 8
√
θ

)

t, x := x−∇ft(x)−1∇ft(x)

properties

• increase t slowly so x stays in region of quadratic region (λt(x) ≤ β)

• iteration complexity

#iterations = O

(√
θ log

(

θ

ǫt0

))

• best known worst-case complexity; same as for linear programming
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Predictor-corrector methods

short-step barrier methods

• stay in narrow neighborhood of central path (defined by limit on λt)

• make small, fixed increases t+ = µt

as a result, quite slow in practice

predictor-corrector method

• select new t using a linear approximation to central path (‘predictor’)

• re-center with new t (‘corrector’)

allows faster and ‘adaptive’ increases in t; similar worst-case complexity
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Primal-dual methods

• primal-dual algorithms for linear programming

• symmetric cones

• primal-dual algorithms for conic optimization

• implementation



Primal-dual interior-point methods

similarities with barrier method

• follow the same central path

• same linear algebra cost per iteration

differences

• more robust and faster (typically less than 50 iterations)

• primal and dual iterates updated at each iteration

• symmetric treatment of primal and dual iterates

• can start at infeasible points

• include heuristics for adaptive choice of central path parameter t

• often have superlinear asymptotic convergence
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Primal-dual central path for linear programming

minimize cTx
subject to Ax+ s = b

s ≥ 0

maximize −bTz
subject to ATz + c = 0

z ≥ 0

optimality conditions

Ax+ s = b, ATz + c = 0, (s, z) ≥ 0, s ◦ z = 0

s ◦ z is component-wise vector product

primal-dual parametrization of central pah

Ax+ s = b, ATz + c = 0, (s, z) ≥ 0, s ◦ z = 1

t
1

solution is x = x∗(t), z = z∗(t)
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Primal-dual search direction

steps solve central path equations linearized around current iterates x, s, z

A(x+∆x) + s+∆s = b, AT (z +∆z) + c = 0 (1)

(s+∆z) ◦ (z +∆z) = σµ1

where µ = (sTz)/m and σ ∈ [0, 1]

• targets point on central path with 1/t = σµ, i.e., with gap σsTz

• different methods use different strategies for selecting σ

linearized equations: the two linear equations in (1) and

z ◦∆s+ s ◦∆z = σµ1− s ◦ z

after eliminating ∆s, ∆z this reduces to an equation

ATDA∆x = r, D = diag(z1/s1, . . . , zm/sm)
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Symmetric cones

symmetric primal-dual solvers for cone LPs are limited to symmetric cones

• second-order cone

• positive semidefinite cone

• direct products of these ‘primitive’ symmetric cones (such as Rp
+)

definition: cone of squares x = y2 = y ◦ y for a product ◦ that satisfies

1. bilinearity (x ◦ y is linear in x for fixed y and vice-versa)

2. x ◦ y = y ◦ x
3. x2 ◦ (y ◦ x) = (x2 ◦ y) ◦ x
4. xT (y ◦ z) = (x ◦ y)Tz

not necessarily associative
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Vector product and identity element

nonnegative orthant: componentwise product

x ◦ y = diag(x)y

identity element is e = 1 = (1, 1, . . . , 1)

positive semidefinite cone: symmetrized matrix product

x ◦ y =
1

2
vec(XY + Y X) with X = mat(x), Y = mat(Y )

identity element is e = vec(I)

second-order cone: the product of x = (x0, x1) and y = (y0, y1) is

x ◦ y =
1√
2

[

xTy
x0y1 + y0x1

]

identity element is e = (
√
2, 0, . . . , 0)
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Classification

• symmetric cones are studied in the theory of Euclidean Jordan algebras

• all possible symmetric cones have been characterized

list of symmetric cones

• the second-order cone

• the positive semidefinite cone of Hermitian matrices with real, complex,
or quaternion entries

• 3× 3 positive semidefinite matrices with octonion entries

• Cartesian products of these ‘primitive’ symmetric cones (such as Rp
+)

practical implication

can focus on Qp, Sp and study these cones using elementary linear algebra
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Spectral decomposition

with each symmetric cone/product we associate a ‘spectral’ decomposition

x =

θ
∑

i=1

λiqi, with

θ
∑

i=1

qi = e and qi ◦ qj =
{

qi i = j
0 i 6= j

semidefinite cone (K = Sp): eigenvalue decomposition of mat(x)

θ = p, mat(x) =

p
∑

i=1

λiviv
T
i , qi = vec(viv

T
i )

second-order cone (K = Qp)

θ = 2, λi =
x0 ± ‖x1‖2√

2
, qi =

1√
2

[

1
±x1/‖x1‖2

]

, i = 1, 2
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Applications

nonnegativity

x � 0 ⇐⇒ λ1, . . . , λθ ≥ 0, x ≻ 0 ⇐⇒ λ1, . . . , λθ > 0

powers (in particular, inverse and square root)

xα =
∑

i

λαi qi

log-det barrier

φ(x) = − log detx = −
θ
∑

i=1

log λi

• a θ-normal barrier

• gradient is ∇φ(x) = −x−1
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Symmetric parametrization of central path

centering problem

minimize tcTx+ φ(b−Ax)

optimality conditions (using ∇φ(s) = −s−1)

Ax+ s = b, ATz + c = 0, (s, z) ≻ 0, z =
1

t
s−1

equivalent symmetric form

Ax+ b = s, ATz + c = 0, (s, z) ≻ 0, s ◦ z = 1

t
e
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Scaling with Hessian

linear transformation with H = ∇2φ(u) has several important properties

• preserves conic inequalities: s ≻ 0 ⇐⇒ Hs ≻ 0

• if s is invertible, then Hs is invertible and (Hs)−1 = H−1s−1

• preserves central path:

s ◦ z = µ e ⇐⇒ (Hs) ◦ (H−1z) = µ e

• symmetric square root of H is H1/2 = ∇2φ(u1/2)

example (K = Sp):

S̃ = U−1SU−1 S = mat(s), U = mat(u)
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Primal-dual search direction

steps solve central path equations linearized around current iterates x, s, z

A(x+∆x) + s+∆s = b, AT (z +∆z) + c = 0 (2)

(H(s+∆s)) ◦
(

H−1(z +∆z)
)

= σµe

where µ = (sTz)/m, σ ∈ [0, 1], and H = ∇2φ(u)

• different algorithms use different choices of σ, u

• Nesterov-Todd scaling: H = ∇2φ(u) defined by Hs = H−1z

linearized equations: the two linear equations (2) and

(Hs) ◦ (H−1∆z) + (H−1z) ◦ (H∆s) = σµe− (Hs) ◦ (H−1z)

after eliminating ∆s, ∆z, reduces to an equation

AT∇2φ(w)A∆x = r, w = u2
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Software implementations

general-purpose software for nonlinear convex optimization

• several high-quality packages (MOSEK, Sedumi, SDPT3, . . . )

• exploit sparsity to achieve scalability

customized implementations

• can exploit non-sparse types of problem structure

• often orders of magnitude faster than general-purpose solvers
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Example: ℓ1-regularized least-squares

minimize ‖Ax− b‖22 + ‖x‖1

A is m× n (with m ≤ n) and dense

quadratic program formulation

minimize ‖Ax− b‖22 + 1Tu
subject to −u ≤ x ≤ u

• coefficient of Newton system in interior-point method is

[

ATA 0
0 0

]

+

[

D1 +D2 D2 −D1

D2 −D1 D1 +D2

]

(D1, D2 positive diagonal)

• expensive (O(n3)) for large n
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customized implementation

• can reduce Newton equation to solution of a system

(AD−1AT + I)∆u = r

• cost per iteration is O(m2n)

comparison (seconds on 2.83 Ghz Core 2 Quad machine)

m n custom general-purpose
50 200 0.02 0.32
50 400 0.03 0.59
100 1000 0.12 1.69
100 2000 0.24 3.43
500 1000 1.19 7.54
500 2000 2.38 17.6

custom solver is CVXOPT; general-purpose solver is MOSEK
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Overview

1. Basic theory and convex modeling

• convex sets and functions
• common problem classes and applications

2. Interior-point methods for conic optimization

• conic optimization
• barrier methods
• symmetric primal-dual methods

3. First-order methods

• gradient algorithms
• dual techniques



Convex optimization — MLSS 2011

Gradient methods

• gradient and subgradient method

• proximal gradient method

• fast proximal gradient methods
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Classical gradient method

to minimize a convex differentiable function f : choose x(0) and repeat

x(k) = x(k−1) − tk∇f(x(k−1)), k = 1, 2, . . .

step size tk is constant or from line search

advantages

• every iteration is inexpensive

• does not require second derivatives

disadvantages

• often very slow; very sensitive to scaling

• does not handle nondifferentiable functions
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Quadratic example

f(x) =
1

2
(x21 + γx22) (γ > 1)

with exact line search and starting point x(0) = (γ, 1)

‖x(k) − x⋆‖2
‖x(0) − x⋆‖2

=

(

γ − 1

γ + 1

)k

� 10 0 10

� 4

0

4

x1

x
2
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Nondifferentiable example

f(x) =
√

x21 + γx22 (|x2| ≤ x1), f(x) =
x1 + γ|x2|√

1 + γ
(|x2| > x1)

with exact line search, x(0) = (γ, 1), converges to non-optimal point

� 2 0 2 4� 2

0

2

x1

x
2
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First-order methods

address one or both disadvantages of the gradient method

methods for nondifferentiable or constrained problems

• smoothing methods

• subgradient method

• proximal gradient method

methods with improved convergence

• variable metric methods

• conjugate gradient method

• accelerated proximal gradient method

we will discuss subgradient and proximal gradient methods
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Subgradient

g is a subgradient of a convex function f at x if

f(y) ≥ f(x) + gT (y − x) ∀y ∈ dom f

x1 x2

f(x1) + gT
1 (x − x1)

f(x2) + gT
2 (x − x2)

f(x2) + gT
3 (x − x2)

f(x)

generalizes basic inequality for convex differentiable f

f(y) ≥ f(x) +∇f(x)T (y − x) ∀y ∈ dom f

Gradient methods 111



Subdifferential

the set of all subgradients of f at x is called the subdifferential ∂f(x)

absolute value f(x) = |x|

f(x) = |x| ∂f(x)

x

x

1

−1

Euclidean norm f(x) = ‖x‖2

∂f(x) =
1

‖x‖2
x if x 6= 0, ∂f(x) = {g | ‖g‖2 ≤ 1} if x = 0
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Subgradient calculus

weak calculus

rules for finding one subgradient

• sufficient for most algorithms for nondifferentiable convex optimization

• if one can evaluate f(x), one can usually compute a subgradient

• much easier than finding the entire subdifferential

subdifferentiability

• convex f is subdifferentiable on dom f except possibly at the boundary

• example of a non-subdifferentiable function: f(x) = −√
x at x = 0
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Examples of calculus rules

nonnegative combination: f = α1f1 + α2f2 with α1, α2 ≥ 0

g = α1g1 + α2g2, g1 ∈ ∂f1(x), g2 ∈ ∂f2(x)

composition with affine transformation: f(x) = h(Ax+ b)

g = AT g̃, g̃ ∈ ∂h(Ax+ b)

pointwise maximum f(x) = max{f1(x), . . . , fm(x)}

g ∈ ∂fi(x) where fi(x) = max
k

fk(x)

conjugate f∗(x) = supy(x
Ty − f(y)); take any maximizing y
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Subgradient method

to minimize a nondifferentiable convex function f : choose x(0) and repeat

x(k) = x(k−1) − tkg
(k−1), k = 1, 2, . . .

g(k−1) is any subgradient of f at x(k−1)

step size rules

• fixed step size: tk constant

• fixed step length: tk‖g(k−1)‖2 constant (i.e., ‖x(k)− x(k−1)‖2 constant)

• diminishing: tk → 0,
∞
∑

k=1

tk = ∞
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Some convergence results

assumption: f is convex and Lipschitz continuous with constant G > 0:

|f(x)− f(y)| ≤ G‖x− y‖2 ∀x, y

results

• fixed step size tk = t

converges to approximately G2t/2-suboptimal

• fixed length tk‖g(k−1)‖2 = s

converges to approximately Gs/2-suboptimal

• decreasing
∑

k tk → ∞, tk → 0: convergence

rate of convergence is 1/
√
k with proper choice of step size sequence
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Example: 1-norm minimization

minimize ‖Ax− b‖1 (A ∈ R500×100, b ∈ R500)

subgradient is given by AT sign(Ax− b)

0 500 1000 1500 2000 2500 300010-4

10-3

10-2

10-1

100
0.1
0.01
0.001

k

(f
(k

)
b
e
st
−

f
⋆
)/

f
⋆

fixed steplength
s = 0.1, 0.01, 0.001

0 1000 2000 3000 4000 500010-5

10-4

10-3

10-2

10-1

100
0.01/

�

k

0.01/k

k

diminishing step size
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√
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Outline

• gradient and subgradient method
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Proximal mapping

the proximal mapping (prox-operator) of a convex function h is

proxh(x) = argmin
u

(

h(u) +
1

2
‖u− x‖22

)

• h(x) = 0: proxh(x) = x

• h(x) = IC(x) (indicator function of C): proxh is projection on C

proxh(x) = argmin
u∈C

‖u− x‖22 = PC(x)

• h(x) = ‖x‖1: proxh is the ‘soft-threshold’ (shrinkage) operation

proxh(x)i =







xi − 1 xi ≥ 1
0 |xi| ≤ 1
xi + 1 xi ≤ −1
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Proximal gradient method

unconstrained problem with cost function split in two components

minimize f(x) = g(x) + h(x)

• g convex, differentiable, with dom g = Rn

• h convex, possibly nondifferentiable, with inexpensive prox-operator

proximal gradient algorithm

x(k) = proxtkh

(

x(k−1) − tk∇g(x(k−1))
)

tk > 0 is step size, constant or determined by line search
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Interpretation

x+ = proxth (x− t∇g(x))

from definition of proximal operator:

x+ = argmin
u

(

h(u) +
1

2t
‖u− x+ t∇g(x)‖22

)

= argmin
u

(

h(u) + g(x) +∇g(x)T (u− x) +
1

2t
‖u− x‖22

)

x+ minimizes h(u) plus a simple quadratic local model of g(u) around x
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Examples

minimize g(x) + h(x)

gradient method: h(x) = 0, i.e., minimize g(x)

x+ = x− t∇g(x)

gradient projection method: h(x) = IC(x), i.e., minimize g(x) over C

x+ = PC (x− t∇g(x)) C

x

x− t∇g(x)x+
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iterative soft-thresholding: h(x) = ‖x‖1, i.e., minimize g(x) + ‖x‖1

x+ = proxth (x− t∇g(x))

and

proxth(u)i =







ui − t ui ≥ t
0 −t ≤ ui ≤ t
ui + t ui ≥ t

ui
t

−t

proxth(u)i
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Some properties of proximal mappings

proxh(x) = argmin
u

(

h(u) +
1

2
‖u− x‖22

)

assume h is closed and convex (i.e., convex with closed epigraph)

• proxh(x) is uniquely defined for all x

• proxh is nonexpansive

‖proxh(x)− proxh(y)‖2 ≤ ‖x− y‖2

• Moreau decomposition

x = proxh(x) + proxh∗(x)

cf., properties of Euclidean projection on convex sets
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example: h is indicator function of subspace L

h(u) = IL(u) =

{

0 u ∈ L
+∞ otherwise

• conjugate h∗ is indicator function of the orthogonal complement L⊥

h∗(v) = sup
u∈L

vTu =

{

0 v ∈ L⊥

+∞ otherwise

= IL⊥(v)

• Moreau decomposition is orthogonal decomposition

x = PL(x) + PL⊥(x)
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Examples of inexpensive prox-operators

projection on simple sets

• hyperplanes and halfspaces

• rectangles {x | l ≤ x ≤ u}
• probability simplex {x | 1Tx = 1, x ≥ 0}
• norm ball for many norms (Euclidean, 1-norm, . . . )

• nonnegative orthant, second-order cone, positive semidefinite cone

Euclidean norm: h(x) = ‖x‖2

proxth(x) =

(

1− t

‖x‖2

)

x if ‖x‖2 ≥ t, proxth(x) = 0 otherwise
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logarithmic barrier

h(x) = −
n
∑

i=1

log xi, proxth(x)i =
xi +

√

x2i + 4t

2
, i = 1, . . . , n

Euclidean distance: d(x) = infy∈C ‖x− y‖2 (C closed convex)

proxtd(x) = θPC(x) + (1− θ)x, θ =
t

max{d(x), t}

squared Euclidean distance: h(x) = d(x)2/2

proxth(x) =
1

1 + t
x+

t

1 + t
PC(x)
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Prox-operator of conjugate

proxth∗(x) = x− tproxh/t(x/t)

• follows from Moreau decomposition

• of interest when prox-operator of h is inexpensive

example: norms

h(x) = IC(x), h∗(y) = ‖y‖∗

where C is unit norm ball for ‖ · ‖ and ‖ · ‖∗ is dual norm of ‖ · ‖

• proxh is projection on C

• formula useful for prox-operator of ‖ · ‖∗ if projection on C is inexpensive
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Support function

many convex functions can be expressed as support functions

h(x) = SC(x) = sup
y∈C

xTy

with C closed, convex

• conjugate is indicator function of C: h∗(y) = IC(y)

• hence, can compute proxth via projection on C

example: h(x) is sum of largest r components of x

h(x) = x[1] + · · ·+ x[r] = SC(x), C = {y | 0 ≤ y ≤ 1,1Ty = r}
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Convergence of proximal gradient method

minimize f(x) = g(x) + h(x)

assumptions

• ∇g is Lipschitz continuous with constant L > 0

‖∇g(x)−∇g(y)‖2 ≤ L‖x− y‖2 ∀x, y

• optimal value f⋆ is finite and attained at x⋆ (not necessarily unique)

result: with fixed step size tk = 1/L

f(x(k))− f⋆ ≤ L

2k
‖x(0) − x⋆‖22

• compare with 1/
√
k rate of subgradient method

• can be extended to include line searches
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Outline

• gradient and subgradient method

• proximal gradient method

• fast proximal gradient methods



Fast (proximal) gradient methods

• Nesterov (1983, 1988, 2005): three gradient projection methods with
1/k2 convergence rate

• Beck & Teboulle (2008): FISTA, a proximal gradient version of
Nesterov’s 1983 method

• Nesterov (2004 book), Tseng (2008): overview and unified analysis of
fast gradient methods

• several recent variations and extensions

this lecture: FISTA (Fast Iterative Shrinkage-Thresholding Algorithm)
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FISTA

unconstrained problem with composite objective

minimize f(x) = g(x) + h(x)

• g convex differentiable with dom g = Rn

• h convex with inexpensive prox-operator

algorithm: choose x(0) = y(0) ∈ domh; for k ≥ 1

x(k) = proxtkh

(

y(k−1) − tk∇g(y(k−1))
)

y(k) = x(k) +
k − 1

k + 2
(x(k) − x(k−1))
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Interpretation

• first iteration (k = 1) is a proximal gradient step at x(0)

• next iterations are proximal gradient steps at extrapolated points y(k−1)

x(k−2) x(k−1) y(k−1)

x(k) = proxtkh

(

y(k−1) − tk∇g(y(k−1))
)

sequence x(k) remains feasible (in domh); sequence y(k) not necessarily
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Convergence of FISTA

minimize f(x) = g(x) + h(x)

assumptions

• optimal value f⋆ is finite and attained at x⋆ (not necessarily unique)

• dom g = Rn and ∇g is Lipschitz continuous with constant L > 0

• h is closed (implies proxth(u) exists and is unique for all u)

result: with fixed step size tk = 1/L

f(x(k))− f⋆ ≤ 2L

(k + 1)2
‖x(0) − f⋆‖22

• compare with 1/k convergence rate for gradient method

• can be extended to include line searches
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Example

minimize log
m
∑

i=1

exp(aTi x+ bi)

randomly generated data with m = 2000, n = 1000, same fixed step size
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FISTA is not a descent method
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Convex optimization — MLSS 2011

Dual methods

• Lagrange duality

• dual decomposition

• dual proximal gradient method

• multiplier methods



Dual function

convex problem (with linear constraints for simplicity)

minimize f(x)
subject to Gx ≤ h

Ax = b

optimal value p⋆

Lagrangian

L(x, λ, ν) = f(x) + λT (Gx− h) + νT (Ax− b)

= f(x) + (GTλ+ATν)Tx− hTλ− bTν

dual function

g(λ, ν) = inf
x
L(x, λ, ν) = −f∗(−GTλ−ATν)− hTλ− bTν

(with f∗(y) = supx(y
Tx− f(x)) the conjugate of f)
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Dual problem

maximize g(λ, ν)
subject to λ ≥ 0

optimal value d⋆

a convex optimization problem in λ, ν

weak duality: p⋆ ≥ d⋆, without exception

strong duality: p⋆ = d⋆ if a constraint qualification holds

(for example, primal problem is feasible and dom f open)
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Least-norm solution of linear equations

minimize f(x) = ‖x‖
subject to Ax = b

recall that f∗ is indicator function of unit dual norm ball

dual problem

maximize −bTν − f∗(−ATν) =

{

−bTν ‖ATν‖∗ ≤ 1
−∞ otherwise

reformulated dual problem

maximize bTz
subject to ‖ATz‖∗ ≤ 1
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Norm approximation

minimize ‖Ax− b‖

reformulated problem

minimize ‖y‖
subject to y = Ax− b

dual function

g(ν) = inf
x,y

(

‖y‖+ νTy − νTAx+ bTν
)

=

{

bTν ATν = 0, ‖ν‖∗ ≤ 1
−∞ otherwise

dual problem
maximize bTz
subject to ATz = 0, ‖z‖∗ ≤ 1
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Karush-Kuhn-Tucker optimality conditions

if strong duality holds, then x, λ, ν are optimal if and only if

1. primal feasibility:

x ∈ dom f, Gx ≤ h, Ax = b

2. λ ≥ 0

3. complementary slackness:

λT (h−Gx) = 0

4. x minimizes L(x, λ, ν) = f(x) + λT (Gx− h) + νT (Ax− b)

for differentiable f , condition 4 can be expressed as

∇f(x) +GTλ+ATν = 0
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Outline

• Lagrange dual

• dual decomposition

• dual proximal gradient method

• multiplier methods



Dual methods

primal problem
minimize f(x)
subject to Gx ≤ h

Ax = b

dual problem

maximize −hTλ− bTν − f∗(−GTλ−ATν)
subject to λ ≥ 0

possible advantages of solving the dual when using first-order methods

• dual problem is unconstrained or has simple constraints

• dual problem can be decomposed into smaller problems
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(Sub-)gradients of conjugate function

f∗(y) = sup
x

(

yTx− f(x)
)

• subgradient: x is a subgradient at y if it maximizes yTx− f(x)

• if maximizing x is unique, then f∗ is differentiable

this is the case, for example, if f is strictly convex

strongly convex function: f is strongly convex with parameter µ > 0 if

f(x)− µ

2
xTx is convex

implies that ∇f∗(x) is Lipschitz continuous with parameter 1/µ
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Dual gradient method

primal problem with equality constraints and dual

minimize f(x)
subject to Ax = b

dual ascent: use (sub-)gradient method to minimize

−g(ν) = bTν + f∗(−ATν) = sup
x

(

(b−Ax)Tν − f(x)
)

algorithm

x+ = argmin
x

(

f(x) + νTAx
)

ν+ = ν + t(Ax+ − b)

of interest if calculation of x+ is inexpensive (for example, separable)
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Dual decomposition

minimize f1(x1) + f2(x2)
subject to G1x1 +G2x2 ≤ h

objective is separable; constraint is complicating (or coupling) constraint

dual problem (‘master’ problem)

maximize −hTλ− f∗1 (−GT
1 λ)− f∗2 (−GT

2 λ)
subject to λ ≥ 0

can be solved by (sub-)gradient projection if λ ≥ 0 is the only constraint

subproblems: for j = 1, 2, evaluate

f∗j (−GT
j λ) = − inf

xj

(

fj(xj) + λTGjxj
)

maximizer xj gives subgradient −Gjxj of f∗j (−GT
j λ) w.r.t. λ
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dual subgradient projection method

• solve two unconstrained (and independent) subproblems

x+j = argmin
xj

(

fj(xj) + λTGjxj
)

, j = 1, 2

• make projected subgradient update of λ

λ+ =
(

λ+ t(G1x
+
1 +G2x

+
2 − h)

)

+

interpretation: price coordination between two units in a system

• constraints are limits on shared resources; λi is price of resource i

• dual update λ+i = (λi − tsi)+ depends on slacks s = h−G1x1 −G2x2

– increases price λi if resource is over-utilized (si < 0)
– decreases price λi if resource is under-utilized (si > 0)
– never lets prices get negative
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First-order dual methods

minimize f(x)
subject to Gx ≥ h

Ax = b

maximize −f∗(−GTλ−ATν)
subject to λ ≥ 0

subgradient method: slow, step size selection difficult

gradient method: faster, requires differentiable f∗

• in many applications f∗ is not differentiable, has a nontrivial domain

• f∗ can be smoothed by adding a small strongly convex term to f

proximal gradient method (this section): dual costs split in two terms

• first term is differentiable

• second term has an inexpensive prox-operator
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Composite structure in the dual

primal problem with separable objective

minimize f(x) + h(y)
subject to Ax+By = b

dual problem

maximize −f∗(ATz)− h∗(BTz) + bTz

has the composite structure required for the proximal gradient method if

• f is strongly convex; hence ∇f∗ is Lipschitz continuous

• prox-operator of h∗(BTz) is cheap (closed form or efficient algorithm)
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Regularized norm approximation

minimize f(x) + ‖Ax− b‖

f strongly convex with modulus µ; ‖ · ‖ is any norm

reformulated problem and dual

minimize f(x) + ‖y‖
subject to y = Ax− b

maximize bTz − f∗(ATz)
subject to ‖z‖∗ ≤ 1

• gradient of dual cost is Lipschitz continuous with parameter ‖A‖22/µ

∇f∗(ATz) = argmin
x

(

f(x)− zTAx
)

• for most norms, projection on dual norm ball is inexpensive
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problem: minimize f(x) + ‖Ax− b‖

dual gradient projection algorithm: choose initial z and repeat

x̂ := argmin
x

(

f(x)− zTAx
)

z := PC (z + t(b−Ax̂))

• PC is projection on C = {y | ‖y‖∗ ≤ 1}
• step size t is constant or from backtracking line search

• can use accelerated gradient projection algorithm (FISTA) for z-update

• first step decouples if f is separable
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Moreau-Yosida regularization of the dual

a general technique for smoothing the dual of

minimize f(x)
subject to Ax = b

• maximizing g(ν) = infx (f(x)+ν
T (Ax− b)) is equivalent to maximizing

gt(ν) = sup
z

(

g(z)− 1

2t
‖ν − z‖22

)

• from duality, gt(ν) = infxLt(x, ν) where

Lt(x, ν) = f(x) + νT (Ax− b) + (t/2)‖Ax− b‖22

• gt is concave, differentiable with Lipschitz cont. gradient (constant 1/t)

∇gt(ν) = Ax̂− b, x̂ = argmin
x

Lt(x, ν)

Dual methods 149



Augmented Lagrangian method

algorithm: choose initial ν and repeat

x+ = argminLt(x, ν)

ν+ = ν + t(Ax+ − b)

• maximizes Moreau-Yosida regularization gt via gradient method

• Lt is the augmented Lagrangian (Lagrangian plus quadratic penalty)

Lt(x, ν) = f(x) + νT (Ax− b) +
t

2
‖Ax− b‖22

• method can be extended to problems with inequality constraints
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Dual decomposition

convex problem with separable objective

minimize f(x) + h(y)
subject to Ax+By = b

augmented Lagrangian

Lt(x, y, ν) = f(x) + h(y) + νT (Ax+By − b) +
t

2
‖Ax+By − b‖22

• difficulty: quadratic penalty destroys separability of Lagrangian

• solution: replace minimization over (x, y) by alternating minimization
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Alternating direction method of multipliers

apply one cycle of alternating minimization steps to augmented Lagrangian

1. minimize augmented Lagrangian over x:

x(k) = argmin
x

Lt(x, y
(k−1), ν(k−1))

2. minimize augmented Lagrangian over y:

y(k) = argmin
y

Lt(x
(k), y, ν(k−1))

3. dual update:

ν(k) := ν(k−1) + t
(

Ax(k) +By(k) − b
)

can be shown to converge under weak assumptions
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Example: sparse covariance selection

minimize tr(CX)− log detX + ‖X‖1

variable X ∈ Sn; ‖X‖1 is sum of absolute values of X

reformulation

minimize tr(CX)− log detX + ‖Y ‖1
subject to X − Y = 0

augmented Lagrangian

Lt(X,Y, Z)

= tr(CX)− log detX + ‖Y ‖1 + tr(Z(X − Y )) +
t

2
‖X − Y ‖2F
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ADMM steps: alternating minimization of augmented Lagrangian

tr(CX)− log detX + ‖Y ‖1 + tr(Z(X − Y )) +
t

2
‖X − Y ‖2F

• minimization over X:

X̂ = argmin
X

(

− log detX +
t

2
‖X − Y +

1

t
(C + Z)‖2F

)

follows easily from eigenvalue decomposition of Y − (1/t)(C + Z)

• minimization over Y :

Ŷ = argmin
Y

(

‖Y ‖1 +
t

2
‖Y − X̂ − 1

t
Z‖2F

)

apply element-wise soft-thresholding to X̂ − (1/t)Z

• dual update Z := Z + t(X̂ − Ŷ )

cost per iteration dominated by cost of eigenvalue decomposition
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Sources and references

these lectures are based on the courses

• EE364A (S. Boyd, Stanford), EE236B (UCLA), Convex Optimization

www.stanford.edu/class/ee364a

www.ee.ucla.edu/ee236b/

• EE236C (UCLA) Optimization Methods for Large-Scale Systems

www.ee.ucla.edu/~vandenbe/ee236c

• EE364B (S. Boyd, Stanford University) Convex Optimization II

www.stanford.edu/class/ee364b

see the websites for expanded notes, references to literature and software
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