Convex Optimization

Lieven Vandenberghe

Electrical Engineering Department, UC Los Angeles

Tutorial lectures, 18th Machine Learning Summer School
September 13-14, 2011

Introduction

- mathematical optimization
- linear and convex optimization
- recent history

Mathematical optimization

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}\left(x_{1}, \ldots, x_{n}\right) \\
\text { subject to } & f_{1}\left(x_{1}, \ldots, x_{n}\right) \leq 0 \\
& \ldots \\
& f_{m}\left(x_{1}, \ldots, x_{n}\right) \leq 0
\end{array}
$$

- a mathematical model of a decision, design, or estimation problem
- generally intractable
- even simple looking nonlinear optimization problems can be very hard

The famous exception: linear programming

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & a_{i}^{T} x \leq b_{i}, \quad i=1, \ldots, m
\end{array}
$$

- widely used since Dantzig introduced the simplex algorithm in 1948
- since 1950s, many applications in operations research, network optimization, finance, engineering, combinatorial optimization, . . .
- extensive theory (optimality conditions, sensitivity, . . .)
- there exist very efficient algorithms for solving linear programs

Convex optimization problem

```
minimize }\quad\mp@subsup{f}{0}{}(x
subject to }\mp@subsup{f}{i}{}(x)\leq0,\quadi=1,\ldots,
```

- objective and constraint functions are convex: for $0 \leq \theta \leq 1$

$$
f_{i}(\theta x+(1-\theta) y) \leq \theta f_{i}(x)+(1-\theta) f_{i}(y)
$$

- can be solved globally, with similar (polynomial-time) complexity as LPs
- surprisingly many problems can be solved via convex optimization
- provides tractable heuristics and relaxations for non-convex problems

History

- 1940s: linear programming

```
minimize }\quad\mp@subsup{c}{}{T}
subject to }\mp@subsup{a}{i}{T}x\leq\mp@subsup{b}{i}{},\quadi=1,\ldots,
```

- 1950s: quadratic programming
- 1960s: geometric programming
- 1990s: semidefinite programming, second-order cone programming, quadratically constrained quadratic programming, robust optimization, sum-of-squares programming, ...

New applications since 1990

- linear matrix inequality techniques in control
- support vector machine training via quadratic programming
- semidefinite programming relaxations in combinatorial optimization
- circuit design via geometric programming
- ℓ_{1}-norm optimization for sparse signal reconstruction
- applications in structural optimization, statistics, signal processing, communications, image processing, computer vision, quantum information theory, finance, power distribution, . . .

Advances in convex optimization algorithms

interior-point methods

- 1984 (Karmarkar): first practical polynomial-time algorithm for LP
- 1984-1990: efficient implementations for large-scale LPs
- around 1990 (Nesterov \& Nemirovski): polynomial-time interior-point methods for nonlinear convex programming
- since 1990: extensions and high-quality software packages

fast first-order algorithms

- similar to gradient descent, but with better convergence properties
- based on Nesterov's optimal-rate gradient methods from 1980s
- extend to certain nondifferentiable or constrained problems

Overview

1. Basic theory and convex modeling

- convex sets and functions
- common problem classes and applications

2. Interior-point methods for conic optimization

- conic optimization
- barrier methods
- symmetric primal-dual methods

3. First-order methods

- gradient algorithms
- dual techniques

Convex sets and functions

- convex sets
- convex functions
- operations that preserve convexity

Convex set

contains the line segment between any two points in the set

$$
x_{1}, x_{2} \in C, \quad 0 \leq \theta \leq 1 \quad \Longrightarrow \quad \theta x_{1}+(1-\theta) x_{2} \in C
$$

convex

not convex

not convex

Basic examples

affine set: solution set of linear equations $A x=b$
halfspace: solution of one linear inequality $a^{T} x \leq b(a \neq 0)$
polyhedron: solution of finitely many linear inequalities $A x \leq b$
ellipsoid: solution of quadratic inquality

$$
\left(x-x_{\mathrm{c}}\right)^{T} A\left(x-x_{\mathrm{c}}\right) \leq 1 \quad(A \text { positive definite })
$$

norm ball: solution of $\|x\| \leq R$ (for any norm)
positive semidefinite cone: $\mathbf{S}_{+}^{n}=\left\{X \in \mathbf{S}^{n} \mid X \succeq 0\right\}$
the intersection of any number of convex sets is convex

Example of intersection property

$$
C=\left\{x \in \mathbf{R}^{n}| | p(t) \mid \leq 1 \text { for }|t| \leq \pi / 3\right\}
$$

where $p(t)=x_{1} \cos t+x_{2} \cos 2 t+\cdots+x_{n} \cos n t$

C is intersection of infinitely many halfspaces, hence convex

Convex function

domain $\operatorname{dom} f$ is a convex set and Jensen's inequality holds:

$$
f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y)
$$

for all $x, y \in \operatorname{dom} f, 0 \leq \theta \leq 1$

f is concave if $-f$ is convex

Examples

- linear and affine functions are convex and concave
- $\exp x,-\log x, x \log x$ are convex
- x^{α} is convex for $x>0$ and $\alpha \geq 1$ or $\alpha \leq 0 ;|x|^{\alpha}$ is convex for $\alpha \geq 1$
- norms are convex
- quadratic-over-linear function $x^{T} x / t$ is convex in x, t for $t>0$
- geometric mean $\left(x_{1} x_{2} \cdots x_{n}\right)^{1 / n}$ is concave for $x \geq 0$
- $\log \operatorname{det} X$ is concave on set of positive definite matrices
- $\log \left(e^{x_{1}}+\cdots e^{x_{n}}\right)$ is convex

Epigraph and sublevel set

epigraph: epi $f=\{(x, t) \mid x \in \operatorname{dom} f, f(x) \leq t\}$
a function is convex if and only its epigraph is a convex set

sublevel sets: $C_{\alpha}=\{x \in \operatorname{dom} f \mid f(x) \leq \alpha\}$
the sublevel sets of a convex function are convex (converse is false)

Differentiable convex functions

differentiable f is convex if and only if $\operatorname{dom} f$ is convex and

$$
f(y) \geq f(x)+\nabla f(x)^{T}(y-x) \quad \text { for all } x, y \in \operatorname{dom} f
$$

twice differentiable f is convex if and only if $\operatorname{dom} f$ is convex and

$$
\nabla^{2} f(x) \succeq 0 \quad \text { for all } x \in \operatorname{dom} f
$$

Methods for establishing convexity of a function

1. verify definition
2. for twice differentiable functions, show $\nabla^{2} f(x) \succeq 0$
3. show that f is obtained from simple convex functions by operations that preserve convexity

- nonnegative weighted sum
- composition with affine function
- pointwise maximum and supremum
- minimization
- composition
- perspective

Positive weighted sum \& composition with affine function

nonnegative multiple: αf is convex if f is convex, $\alpha \geq 0$
sum: $f_{1}+f_{2}$ convex if f_{1}, f_{2} convex (extends to infinite sums, integrals)
composition with affine function: $f(A x+b)$ is convex if f is convex
examples

- logarithmic barrier for linear inequalities

$$
f(x)=-\sum_{i=1}^{m} \log \left(b_{i}-a_{i}^{T} x\right)
$$

- (any) norm of affine function: $f(x)=\|A x+b\|$

Pointwise maximum

$$
f(x)=\max \left\{f_{1}(x), \ldots, f_{m}(x)\right\}
$$

is convex if f_{1}, \ldots, f_{m} are convex
example: sum of r largest components of $x \in \mathbf{R}^{n}$

$$
f(x)=x_{[1]}+x_{[2]}+\cdots+x_{[r]}
$$

is convex $\left(x_{[i]}\right.$ is i th largest component of $\left.x\right)$
proof:

$$
f(x)=\max \left\{x_{i_{1}}+x_{i_{2}}+\cdots+x_{i_{r}} \mid 1 \leq i_{1}<i_{2}<\cdots<i_{r} \leq n\right\}
$$

Pointwise supremum

$$
g(x)=\sup _{y \in \mathcal{A}} f(x, y)
$$

is convex if $f(x, y)$ is convex in x for each $y \in \mathcal{A}$
example: maximum eigenvalue of symmetric matrix

$$
\lambda_{\max }(X)=\sup _{\|y\|_{2}=1} y^{T} X y
$$

Minimization

$$
h(x)=\inf _{y \in C} f(x, y)
$$

is convex if $f(x, y)$ is convex in (x, y) and C is a convex set

examples

- distance to a convex set $C: h(x)=\inf _{y \in C}\|x-y\|$
- optimal value of linear program as function of righthand side

$$
h(x)=\inf _{y: A y \leq x} c^{T} y
$$

follows by taking

$$
f(x, y)=c^{T} y, \quad \operatorname{dom} f=\{(x, y) \mid A y \leq x\}
$$

Composition

composition of $g: \mathbf{R}^{n} \rightarrow \mathbf{R}$ and $h: \mathbf{R} \rightarrow \mathbf{R}$:

$$
f(x)=h(g(x))
$$

f is convex if
g convex, h convex and nondecreasing
g concave, h convex and nonincreasing
(if we assign $h(x)=\infty$ for $x \in \operatorname{dom} h$)

examples

- $\exp g(x)$ is convex if g is convex
- $1 / g(x)$ is convex if g is concave and positive

Vector composition

composition of $g: \mathbf{R}^{n} \rightarrow \mathbf{R}^{k}$ and $h: \mathbf{R}^{k} \rightarrow \mathbf{R}:$

$$
f(x)=h(g(x))=h\left(g_{1}(x), g_{2}(x), \ldots, g_{k}(x)\right)
$$

f is convex if
g_{i} convex, h convex and nondecreasing in each argument
g_{i} concave, h convex and nonincreasing in each argument
(if we assign $h(x)=\infty$ for $x \in \operatorname{dom} h$)

example

$\log \sum_{i=1}^{m} \exp g_{i}(x)$ is convex if g_{i} are convex

Perspective

the perspective of a function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is the function $g: \mathbf{R}^{n} \times \mathbf{R} \rightarrow \mathbf{R}$,

$$
g(x, t)=t f(x / t)
$$

g is convex if f is convex on $\operatorname{dom} g=\{(x, t) \mid x / t \in \operatorname{dom} f, t>0\}$
examples

- perspective of $f(x)=x^{T} x$ is quadratic-over-linear function

$$
g(x, t)=\frac{x^{T} x}{t}
$$

- perspective of negative logarithm $f(x)=-\log x$ is relative entropy

$$
g(x, t)=t \log t-t \log x
$$

Conjugate function

the conjugate of a function f is

$$
f^{*}(y)=\sup _{x \in \operatorname{dom} f}\left(y^{T} x-f(x)\right)
$$

f^{*} is convex (even if f is not)

Examples

convex quadratic function $(Q \succ 0)$

$$
f(x)=\frac{1}{2} x^{T} Q x \quad f^{*}(y)=\frac{1}{2} y^{T} Q^{-1} y
$$

negative entropy

$$
f(x)=\sum_{i=1}^{n} x_{i} \log x_{i} \quad \quad f^{*}(y)=\sum_{i=1}^{n} e^{y_{i}}-1
$$

norm

$$
f(x)=\|x\| \quad f^{*}(y)= \begin{cases}0 & \|y\|_{*} \leq 1 \\ +\infty & \text { otherwise }\end{cases}
$$

indicator function (C convex)

$$
f(x)=I_{C}(x)=\left\{\begin{array}{ll}
0 & x \in C \\
+\infty & \text { otherwise }
\end{array} \quad f^{*}(y)=\sup _{x \in C} y^{T} x\right.
$$

Convex optimization problems

- linear programming
- quadratic programming
- geometric programming
- second-order cone programming
- semidefinite programming

Convex optimization problem

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& A x=b
\end{array}
$$

$f_{0}, f_{1}, \ldots, f_{m}$ are convex functions

- feasible set is convex
- locally optimal points are globally optimal
- tractable, in theory and practice

Linear program (LP)

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x+d \\
\text { subject to } & G x \leq h \\
& A x=b
\end{array}
$$

- inequality is componentwise vector inequality
- convex problem with affine objective and constraint functions
- feasible set is a polyhedron

Piecewise-linear minimization

$$
\text { minimize } f(x)=\max _{i=1, \ldots, m}\left(a_{i}^{T} x+b_{i}\right)
$$

\qquad
equivalent linear program

$$
\begin{array}{ll}
\operatorname{minimize} & t \\
\text { subject to } & a_{i}^{T} x+b_{i} \leq t, \quad i=1, \ldots, m
\end{array}
$$

an LP with variables $x, t \in \mathbf{R}$

ℓ_{1}-Norm and ℓ_{∞}-norm minimization

ℓ_{1}-norm approximation and equivalent LP $\left(\|y\|_{1}=\sum_{k}\left|y_{k}\right|\right)$

$$
\begin{aligned}
& \text { minimize }\|A x-b\|_{1} \\
& \text { minimize } \sum_{i=1}^{n} y_{i} \\
& \text { subject to } \quad-y \leq A x-b \leq y
\end{aligned}
$$

ℓ_{∞}-norm approximation $\left(\|y\|_{\infty}=\max _{k}\left|y_{k}\right|\right)$

$$
\begin{array}{ll}
\text { minimize } & \|A x-b\|_{\infty} \quad \\
& \text { minimize } y \\
\text { subject to }-y \mathbf{1} \leq A x-b \leq y \mathbf{1}
\end{array}
$$

(1 is vector of ones)
example: histograms of residuals $A x-b$ (with A is 200×80) for

$$
x_{\text {ls }}=\operatorname{argmin}\|A x-b\|_{2}, \quad x_{\ell_{1}}=\operatorname{argmin}\|A x-b\|_{1}
$$

1-norm distribution is wider with a high peak at zero

Robust regression

- 42 points t_{i}, y_{i} (circles), including two outliers
- function $f(t)=\alpha+\beta t$ fitted using 2-norm (dashed) and 1-norm

Linear discrimination

separate two sets of points $\left\{x_{1}, \ldots, x_{N}\right\},\left\{y_{1}, \ldots, y_{M}\right\}$ by a hyperplane

$$
\begin{array}{ll}
a^{T} x_{i}+b>0, & i=1, \ldots, N \\
a^{T} y_{i}+b<0, & i=1, \ldots, M
\end{array}
$$

homogeneous in a, b, hence equivalent to the linear inequalities (in a, b)

$$
a^{T} x_{i}+b \geq 1, \quad i=1, \ldots, N, \quad a^{T} y_{i}+b \leq-1, \quad i=1, \ldots, M
$$

Approximate linear separation of non-separable sets

$$
\operatorname{minimize} \quad \sum_{i=1}^{N} \max \left\{0,1-a^{T} x_{i}-b\right\}+\sum_{i=1}^{M} \max \left\{0,1+a^{T} y_{i}+b\right\}
$$

- a piecewise-linear minimization problem in a, b; equivalent to an LP
- can be interpreted as a heuristic for minimizing \#misclassified points

Quadratic program (QP)

$$
\begin{array}{ll}
\operatorname{minimize} & (1 / 2) x^{T} P x+q^{T} x+r \\
\text { subject to } & G x \leq h
\end{array}
$$

- $P \in \mathbf{S}_{+}^{n}$, so objective is convex quadratic
- minimize a convex quadratic function over a polyhedron

Linear program with random cost

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & G x \leq h
\end{array}
$$

- c is random vector with mean \bar{c} and covariance Σ
- hence, $c^{T} x$ is random variable with mean $\bar{c}^{T} x$ and variance $x^{T} \Sigma x$
expected cost-variance trade-off

$$
\begin{array}{ll}
\operatorname{minimize} & \mathbf{E} c^{T} x+\gamma \operatorname{var}\left(c^{T} x\right)=\bar{c}^{T} x+\gamma x^{T} \Sigma x \\
\text { subject to } & G x \leq h
\end{array}
$$

$\gamma>0$ is risk aversion parameter

Robust linear discrimination

$$
\begin{aligned}
\mathcal{H}_{1} & =\left\{z \mid a^{T} z+b=1\right\} \\
\mathcal{H}_{2} & =\left\{z \mid a^{T} z+b=-1\right\}
\end{aligned}
$$

distance between hyperplanes is $2 /\|a\|_{2}$
to separate two sets of points by maximum margin,

$$
\begin{array}{ll}
\operatorname{minimize} & \|a\|_{2}^{2}=a^{T} a \\
\text { subject to } & a^{T} x_{i}+b \geq 1, \quad i=1, \ldots, N \\
& a^{T} y_{i}+b \leq-1, \quad i=1, \ldots, M
\end{array}
$$

a quadratic program in a, b

Support vector classifier

$$
\min . \quad \gamma\|a\|_{2}^{2}+\sum_{i=1}^{N} \max \left\{0,1-a^{T} x_{i}-b\right\}+\sum_{i=1}^{M} \max \left\{0,1+a^{T} y_{i}+b\right\}
$$

equivalent to a QP

Total variation signal reconstruction

$$
\operatorname{minimize} \quad\left\|\hat{x}-x_{\mathrm{cor}}\right\|_{2}^{2}+\gamma \phi(\hat{x})
$$

- $x_{\text {cor }}=x+v$ is corrupted version of unknown signal x, with noise v
- variable \hat{x} (reconstructed signal) is estimate of x
- $\phi: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is quadratic or total variation smoothing penalty

$$
\phi_{\text {quad }}(\hat{x})=\sum_{i=1}^{n-1}\left(\hat{x}_{i+1}-\hat{x}_{i}\right)^{2}, \quad \phi_{\mathrm{tv}}(\hat{x})=\sum_{i=1}^{n-1}\left|\hat{x}_{i+1}-\hat{x}_{i}\right|
$$

example: $x_{\text {cor }}$, and reconstruction with quadratic and t.v. smoothing

- quadratic smoothing smooths out noise and sharp transitions in signal
- total variation smoothing preserves sharp transitions in signal

Geometric programming

posynomial function

$$
f(x)=\sum_{k=1}^{K} c_{k} x_{1}^{a_{1 k}} x_{2}^{a_{2 k}} \cdots x_{n}^{a_{n k}}, \quad \operatorname{dom} f=\mathbf{R}_{++}^{n}
$$

with $c_{k}>0$
geometric program (GP)

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 1, \quad i=1, \ldots, m
\end{array}
$$

with f_{i} posynomial

Geometric program in convex form

change variables to

$$
y_{i}=\log x_{i}
$$

and take logarithm of cost, constraints
geometric program in convex form:

$$
\begin{array}{ll}
\operatorname{minimize} & \log \left(\sum_{k=1}^{K} \exp \left(a_{0 k}^{T} y+b_{0 k}\right)\right) \\
\text { subject to } & \log \left(\sum_{k=1}^{K} \exp \left(a_{i k}^{T} y+b_{i k}\right)\right) \leq 0, \quad i=1, \ldots, m
\end{array}
$$

$b_{i k}=\log c_{i k}$

Second-order cone program (SOCP)

$$
\begin{array}{ll}
\operatorname{minimize} & f^{T} x \\
\text { subject to } & \left\|A_{i} x+b_{i}\right\|_{2} \leq c_{i}^{T} x+d_{i}, \quad i=1, \ldots, m
\end{array}
$$

- $\|\cdot\|_{2}$ is Euclidean norm $\|y\|_{2}=\sqrt{y_{1}^{2}+\cdots+y_{n}^{2}}$
- constraints are nonlinear, nondifferentiable, convex
constraints are inequalities w.r.t. second-order cone:

$$
\left\{y \mid \sqrt{y_{1}^{2}+\cdots+y_{p-1}^{2}} \leq y_{p}\right\}
$$

Robust linear program (stochastic)

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & \operatorname{prob}\left(a_{i}^{T} x \leq b_{i}\right) \geq \eta, \quad i=1, \ldots, m
\end{array}
$$

- a_{i} random and normally distributed with mean \bar{a}_{i}, covariance Σ_{i}
- we require that x satisfies each constraint with probability exceeding η

$$
\eta=50 \%
$$

$$
\eta=90 \%
$$

SOCP formulation

the 'chance constraint' $\operatorname{prob}\left(a_{i}^{T} x \leq b_{i}\right) \geq \eta$ is equivalent to the constraint

$$
\bar{a}_{i}^{T} x+\Phi^{-1}(\eta)\left\|\Sigma_{i}^{1 / 2} x\right\|_{2} \leq b_{i}
$$

Φ is the (unit) normal cumulative density function

robust LP is a second-order cone program for $\eta \geq 0.5$

Robust linear program (deterministic)

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & a_{i}^{T} x \leq b_{i} \text { for all } a_{i} \in \mathcal{E}_{i}, \quad i=1, \ldots, m
\end{array}
$$

- a_{i} uncertain but bounded by ellipsoid $\mathcal{E}_{i}=\left\{\bar{a}_{i}+P_{i} u \mid\|u\|_{2} \leq 1\right\}$
- we require that x satisfies each constraint for all possible a_{i}

SOCP formulation

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & \bar{a}_{i}^{T} x+\left\|P_{i}^{T} x\right\|_{2} \leq b_{i}, \quad i=1, \ldots, m
\end{array}
$$

follows from

$$
\sup _{\|u\|_{2} \leq 1}\left(\bar{a}_{i}+P_{i} u\right)^{T} x=\bar{a}_{i}^{T} x+\left\|P_{i}^{T} x\right\|_{2}
$$

Examples of second-order cone constraints

convex quadratic constraint ($A=L L^{T}$ positive definite)

$$
\begin{gathered}
x^{T} A x+2 b^{T} x+c \leq 0 \\
\left\|L^{T} x+L^{-1} b\right\|_{2} \leq\left(b^{T} A^{-1} b-c\right)^{1 / 2}
\end{gathered}
$$

extends to positive semidefinite singular A
hyperbolic constraint

$$
\begin{gathered}
x^{T} x \leq y z, \quad y, z \geq 0 \\
\left\|\left[\begin{array}{c}
2 x \\
y-z
\end{array}\right]\right\|_{2} \leq y+z, \quad y, z \geq 0
\end{gathered}
$$

Examples of SOC-representable constraints

positive powers

$$
\begin{gathered}
x^{1.5} \leq t, \quad x \geq 0 \\
\Uparrow \\
\exists z: \quad x^{2} \leq t z, \quad z^{2} \leq x, \quad x, z \geq 0
\end{gathered}
$$

- two hyperbolic constraints can be converted to SOC constraints
- extends to powers x^{p} for rational $p \geq 1$ negative powers

$$
\begin{gathered}
x^{-3} \leq t, \quad x>0 \\
\mathfrak{\Downarrow} \\
\exists z: \quad 1 \leq t z, \quad z^{2} \leq t x, \quad x, z \geq 0
\end{gathered}
$$

- two hyperbolic constraints on r.h.s. can be converted to SOC constraints
- extends to powers x^{p} for rational $p<0$

Semidefinite program (SDP)

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & x_{1} A_{1}+x_{2} A_{2}+\cdots+x_{n} A_{n} \preceq B
\end{array}
$$

- $A_{1}, A_{2}, \ldots, A_{n}, B$ are symmetric matrices
- inequality $X \preceq Y$ means $Y-X$ is positive semidefinite, i.e.,

$$
z^{T}(Y-X) z=\sum_{i, j}\left(Y_{i j}-X_{i j}\right) z_{i} z_{j} \geq 0 \text { for all } z
$$

- includes many nonlinear constraints as special cases

Geometry

$$
\left[\begin{array}{ll}
x & y \\
y & z
\end{array}\right] \succeq 0
$$

- a nonpolyhedral convex cone
- feasible set of a semidefinite program is the intersection of the positive semidefinite cone in high dimension with planes

Examples

$$
A(x)=A_{0}+x_{1} A_{1}+\cdots+x_{m} A_{m} \quad\left(A_{i} \in \mathbf{S}^{n}\right)
$$

eigenvalue minimization (and equivalent SDP)

$$
\operatorname{minimize} \quad \lambda_{\max }(A(x))
$$

$$
\begin{array}{ll}
\operatorname{minimize} & t \\
\text { subject to } & A(x) \preceq t I
\end{array}
$$

matrix-fractional function

$$
\begin{array}{lll}
\operatorname{minimize} & b^{T} A(x)^{-1} b & \text { minimize }
\end{array} t \begin{array}{cc}
t \\
\text { subject to } & A(x) \succeq 0
\end{array} \quad \text { subject to }\left[\begin{array}{cc}
A(x) & b \\
b^{T} & t
\end{array}\right] \succeq 0
$$

Matrix norm minimization

$$
A(x)=A_{0}+x_{1} A_{1}+x_{2} A_{2}+\cdots+x_{n} A_{n} \quad\left(A_{i} \in \mathbf{R}^{p \times q}\right)
$$

matrix norm approximation $\left(\|X\|_{2}=\max _{k} \sigma_{k}(X)\right)$

$$
\operatorname{minimize} \quad\|A(x)\|_{2}
$$

minimize t

$$
\text { subject to }\left[\begin{array}{cc}
t I & A(x)^{T} \\
A(x) & t I
\end{array}\right] \succeq 0
$$

nuclear norm approximation $\left(\|X\|_{*}=\sum_{k} \sigma_{k}(X)\right)$

$$
\begin{array}{lll}
\operatorname{minimize} & \|A(x)\|_{*} & \text { minimize } \\
& (\operatorname{tr} U+\operatorname{tr} V) / 2 \\
& \text { subject to } & {\left[\begin{array}{cc}
U & A(x)^{T} \\
A(x) & V
\end{array}\right] \succeq 0}
\end{array}
$$

Semidefinite relaxations

semidefinite programming is often used

- to find good bounds for nonconvex polynomial problems, via relaxation
- as a heuristic for good suboptimal points
example: Boolean least-squares

$$
\begin{array}{ll}
\operatorname{minimize} & \|A x-b\|_{2}^{2} \\
\text { subject to } & x_{i}^{2}=1, \quad i=1, \ldots, n
\end{array}
$$

- basic problem in digital communications
- could check all 2^{n} possible values of $x \in\{-1,1\}^{n} \ldots$
- an NP-hard problem, and very hard in general

Semidefinite lifting

Boolean least-squares problem

$$
\begin{array}{ll}
\operatorname{minimize} & x^{T} A^{T} A x-2 b^{T} A x+b^{T} b \\
\text { subject to } & x_{i}^{2}=1, \quad i=1, \ldots, n
\end{array}
$$

reformulation: introduce new variable $Y=x x^{T}$

$$
\begin{array}{ll}
\operatorname{minimize} & \operatorname{tr}\left(A^{T} A Y\right)-2 b^{T} A x+b^{T} b \\
\text { subject to } & Y=x x^{T} \\
& \operatorname{diag}(Y)=\mathbf{1}
\end{array}
$$

- cost function and second constraint are linear (in the variables Y, x)
- first constraint is nonlinear and nonconvex
.. still a very hard problem

Semidefinite relaxation

replace $Y=x x^{T}$ with weaker constraint $Y \succeq x x^{T}$ to obtain relaxation

$$
\begin{array}{ll}
\operatorname{minimize} & \operatorname{tr}\left(A^{T} A Y\right)-2 b^{T} A x+b^{T} b \\
\text { subject to } & Y \succeq x x^{T} \\
& \operatorname{diag}(Y)=\mathbf{1}
\end{array}
$$

- convex; can be solved as a semidefinite program

$$
Y \succeq x x^{T} \Longleftrightarrow\left[\begin{array}{cc}
Y & x \\
x^{T} & 1
\end{array}\right] \succeq 0
$$

- optimal value gives lower bound for Boolean LS problem
- if $Y=x x^{T}$ at the optimum, we have solved the exact problem
- otherwise, can use randomized rounding
generate z from $\mathcal{N}\left(x, Y-x x^{T}\right)$ and take $x=\operatorname{sign}(z)$

Example

- $n=100$: feasible set has $2^{100} \approx 10^{30}$ points
- histogram of 1000 randomized solutions from SDP relaxation

Overview

1. Basic theory and convex modeling

- convex sets and functions
- common problem classes and applications

2. Interior-point methods for conic optimization

- conic optimization
- barrier methods
- symmetric primal-dual methods

3. First-order methods

- gradient algorithms
- dual techniques

Conic optimization

- definitions and examples
- modeling
- duality

Generalized (conic) inequalities

conic inequality: a constraint $x \in K$ with K a convex cone in \mathbf{R}^{m}
we require that K is a proper cone:

- closed
- pointed: $K \cap(-K)=\{0\}$
- with nonempty interior: int $K \neq \emptyset$; equivalently, $K+(-K)=\mathbf{R}^{m}$
notation

$$
x \succeq_{K} y \quad \Longleftrightarrow \quad x-y \in K, \quad x \succ_{K} y \quad \Longleftrightarrow \quad x-y \in \operatorname{int} K
$$

with subscript in \succeq_{K} omitted if K is clear from the context

Cone linear program

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x \preceq_{K} b
\end{array}
$$

if K is the nonnegative orthant, this reduces to regular linear program
widely used in recent literature on convex optimization

- modeling: a small number of 'primitive' cones is sufficient to express most convex constraints that arise in practice
- algorithms: a convenient problem format for extending interior-point algorithms for linear programming to convex optimization

Norm cones

$$
K=\left\{(x, y) \in \mathbf{R}^{m-1} \times \mathbf{R} \mid\|x\| \leq y\right\}
$$

for the Euclidean norm this is the second-order cone (notation: \mathcal{Q}^{m})

Second-order cone program

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & \left\|B_{k 0} x+d_{k 0}\right\|_{2} \leq B_{k 1} x+d_{k 1}, \quad k=1, \ldots, r
\end{array}
$$

cone LP formulation: express constraints as $A x \preceq_{K} b$

$$
K=\mathcal{Q}^{m_{1}} \times \cdots \times \mathcal{Q}^{m_{r}}, \quad A=\left[\begin{array}{c}
-B_{10} \\
-B_{11} \\
\vdots \\
-B_{r 0} \\
-B_{r 1}
\end{array}\right], \quad b=\left[\begin{array}{c}
d_{10} \\
d_{11} \\
\vdots \\
d_{r 0} \\
d_{r 1}
\end{array}\right]
$$

(assuming $B_{k 0}, d_{k 0}$ have $m_{k}-1$ rows)

Vector notation for symmetric matrices

- vectorized symmetric matrix: for $U \in \mathbf{S}^{p}$

$$
\operatorname{vec}(U)=\sqrt{2}\left(\frac{U_{11}}{\sqrt{2}}, U_{21}, \ldots, U_{p 1}, \frac{U_{22}}{\sqrt{2}}, U_{32}, \ldots, U_{p 2}, \ldots, \frac{U_{p p}}{\sqrt{2}}\right)
$$

- inverse operation: for $u=\left(u_{1}, u_{2}, \ldots, u_{n}\right) \in \mathbf{R}^{n}$ with $n=p(p+1) / 2$

$$
\operatorname{mat}(u)=\frac{1}{\sqrt{2}}\left[\begin{array}{cccc}
\sqrt{2} u_{1} & u_{2} & \cdots & u_{p} \\
u_{2} & \sqrt{2} u_{p+1} & \cdots & u_{2 p-1} \\
\vdots & \vdots & & \vdots \\
u_{p} & u_{2 p-1} & \cdots & \sqrt{2} u_{p(p+1) / 2}
\end{array}\right]
$$

coefficients $\sqrt{2}$ are added so that standard inner products are preserved:

$$
\operatorname{tr}(U V)=\operatorname{vec}(U)^{T} \operatorname{vec}(V), \quad u^{T} v=\operatorname{tr}(\operatorname{mat}(u) \operatorname{mat}(v))
$$

Positive semidefinite cone

$$
\mathcal{S}^{p}=\left\{\boldsymbol{\operatorname { v e c }}(X) \mid X \in \mathbf{S}_{+}^{p}\right\}=\left\{x \in \mathbf{R}^{p(p+1) / 2} \mid \boldsymbol{\operatorname { m a t }}(x) \succeq 0\right\}
$$

$$
\mathcal{S}^{2}=\left\{(x, y, z) \left\lvert\,\left[\begin{array}{cc}
x & y / \sqrt{2} \\
y / \sqrt{2} & z
\end{array}\right] \succeq 0\right.\right\}
$$

Semidefinite program

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & x_{1} A_{11}+x_{2} A_{12}+\cdots+x_{n} A_{1 n} \preceq B_{1} \\
& \cdots \\
& x_{1} A_{r 1}+x_{2} A_{r 2}+\cdots+x_{n} A_{r n} \preceq B_{r}
\end{array}
$$

r linear matrix inequalities of order p_{1}, \ldots, p_{r}
cone LP formulation: express constraints as $A x \preceq_{K} B$

$$
\begin{gathered}
K=\mathcal{S}^{p_{1}} \times \mathcal{S}^{p_{2}} \times \cdots \times \mathcal{S}^{p_{r}} \\
A=\left[\begin{array}{cccc}
\operatorname{vec}\left(A_{11}\right) & \operatorname{vec}\left(A_{12}\right) & \cdots & \operatorname{vec}\left(A_{1 n}\right) \\
\operatorname{vec}\left(A_{21}\right) & \operatorname{vec}\left(A_{22}\right) & \cdots & \operatorname{vec}\left(A_{2 n}\right) \\
\vdots & \vdots & & \vdots \\
\operatorname{vec}\left(A_{r 1}\right) & \operatorname{vec}\left(A_{r 2}\right) & \cdots & \operatorname{vec}\left(A_{r n}\right)
\end{array}\right], \quad b=\left[\begin{array}{c}
\operatorname{vec}\left(B_{1}\right) \\
\operatorname{vec}\left(B_{2}\right) \\
\vdots \\
\operatorname{vec}\left(B_{r}\right)
\end{array}\right]
\end{gathered}
$$

Exponential cone

the epigraph of the perspective of $\exp x$ is a non-proper cone

$$
K=\left\{(x, y, z) \in \mathbf{R}^{3} \mid y e^{x / y} \leq z, y>0\right\}
$$

the exponential cone is $K_{\exp }=\mathbf{c l} K=K \cup\{(x, 0, z) \mid x \leq 0, z \geq 0\}$

Geometric program

minimize $c^{T} x$

$$
\text { subject to } \log \sum_{k=1}^{n_{i}} \exp \left(a_{i k}^{T} x+b_{i k}\right) \leq 0, \quad i=1, \ldots, r
$$

cone LP formulation

minimize $\quad c^{T} x$

$$
\begin{aligned}
\text { subject to } & {\left[\begin{array}{c}
a_{i k}^{T} x+b_{i k} \\
1 \\
z_{i k}
\end{array}\right] \in K_{\exp }, \quad k=1, \ldots, n_{i}, \quad i=1, \ldots, r } \\
& \sum_{k=1}^{n_{i}} z_{i k} \leq 1, \quad i=1, \ldots, m
\end{aligned}
$$

Power cone

definition: for $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right)>0, \sum_{i=1}^{m} \alpha_{i}=1$

$$
K_{\alpha}=\left\{(x, y) \in \mathbf{R}_{+}^{m} \times \mathbf{R}| | y \mid \leq x_{1}^{\alpha_{1}} \cdots x_{m}^{\alpha_{m}}\right\}
$$

examples for $m=2$

$$
\alpha=\left(\frac{1}{2}, \frac{1}{2}\right)
$$

$$
\alpha=\left(\frac{2}{3}, \frac{1}{3}\right)
$$

$$
\alpha=\left(\frac{3}{4}, \frac{1}{4}\right)
$$

Outline

- definition and examples
- modeling
- duality

Modeling software

modeling packages for convex optimization

- CVX, YALMIP (MATLAB)
- CVXMOD, CVXPY (Python)
assist in formulating convex problems by automating two tasks:
- verifying convexity from convex calculus rules
- transforming problem in input format required by standard solvers
related packages
general-purpose optimization modeling: AMPL, GAMS

CVX example

```
minimize \(\quad\|A x-b\|_{1}\)
subject to \(0 \leq x_{k} \leq 1, \quad k=1, \ldots, n\)
```


MATLAB code

```
cvx_begin
    variable x(3);
    minimize(norm(A*x - b, 1))
    subject to
        x >= 0;
        x <= 1;
cvx_end
```

- between cvx_begin and cvx_end, x is a CVX variable
- after execution, x is MATLAB variable with optimal solution

Modeling and conic optimization

convex modeling systems (CVX, YALMIP, CVXMOD, CVXPY, ...)

- convert problems stated in standard mathematical notation to cone LPs
- in principle, any convex problem can be represented as a cone LP
- in practice, a small set of primitive cones is used $\left(\mathbf{R}_{+}^{n}, \mathcal{Q}^{p}, \mathcal{S}^{p}\right)$
- choice of cones is limited by available algorithms and solvers (see later)
modeling systems implement set of rules for expressing constraints

$$
f(x) \leq t
$$

as conic inequalities for the implemented cones

Examples of second-order cone representable functions

- convex quadratic

$$
f(x)=x^{T} P x+q^{T} x+r \quad(P \succeq 0)
$$

- quadratic-over-linear function

$$
f(x, y)=\frac{x^{T} x}{y} \quad \text { with } \operatorname{dom} f=\mathbf{R}^{n} \times \mathbf{R}_{+} \quad(\text { assume } 0 / 0=0)
$$

- convex powers with rational exponent

$$
f(x)=|x|^{\alpha}, \quad f(x)= \begin{cases}x^{\beta} & x>0 \\ +\infty & x \leq 0\end{cases}
$$

for rational $\alpha \geq 1$ and $\beta \leq 0$

- p-norm $f(x)=\|x\|_{p}$ for rational $p \geq 1$

Examples of SD cone representable functions

- matrix-fractional function

$$
f(X, y)=y^{T} X^{-1} y \quad \text { with } \operatorname{dom} f=\left\{(X, y) \in \mathbf{S}_{+}^{n} \times \mathbf{R}^{n} \mid y \in \mathcal{R}(X)\right\}
$$

- maximum eigenvalue of symmetric matrix
- maximum singular value $f(X)=\|X\|_{2}=\sigma_{1}(X)$

$$
\|X\|_{2} \leq t \quad \Longleftrightarrow \quad\left[\begin{array}{cc}
t I & X \\
X^{T} & t I
\end{array}\right] \succeq 0
$$

- nuclear norm $f(X)=\|X\|_{*}=\sum_{i} \sigma_{i}(X)$

$$
\|X\|_{*} \leq t \quad \Longleftrightarrow \quad \exists U, V:\left[\begin{array}{cc}
U & X \\
X^{T} & V
\end{array}\right] \succeq 0, \quad \frac{1}{2}(\operatorname{tr} U+\operatorname{tr} V) \leq t
$$

Functions representable with exponential and power cone

exponential cone

- exponential and logarithm
- entropy $f(x)=x \log x$

power cone

- increasing power of absolute value: $f(x)=|x|^{p}$ with $p \geq 1$
- decreasing power: $f(x)=x^{q}$ with $q \leq 0$ and domain \mathbf{R}_{++}
- p-norm: $f(x)=\|x\|_{p}$ with $p \geq 1$

Outline

- definition and examples
- modeling
- duality

Linear programming duality

primal and dual LP

(P) minimize $c^{T} x$ subject to $A x \leq b$
(D) maximize $-b^{T} z$
subject to $A^{T} z+c=0$
$z \geq 0$

- primal optimal value is p^{\star} ($+\infty$ if infeasible, $-\infty$ if unbounded below)
- dual optimal value is d^{\star} ($-\infty$ if infeasible, $+\infty$ if unbounded below)

duality theorem

- weak duality: $p^{\star} \geq d^{\star}$, with no exception
- strong duality: $p^{\star}=d^{\star}$ if primal or dual is feasible
- if $p^{\star}=d^{\star}$ is finite, then primal and dual optima are attained

Dual cone

definition

$$
K^{*}=\left\{y \mid x^{T} y \geq 0 \text { for all } x \in K\right\}
$$

a proper cone if K is a proper cone
dual inequality: $x \succeq_{*} y$ means $x \succeq_{K^{*}} y$ for generic proper cone K
note: dual cone depends on choice of inner product:

$$
H^{-1} K^{*}
$$

is dual cone for inner product $\langle x, y\rangle=x^{T} H y$

Examples

- $\mathbf{R}_{+}^{p}, \mathcal{Q}^{p}, \mathcal{S}^{p}$ are self-dual: $K=K^{*}$
- dual of norm cone is norm cone for dual norm
- dual of exponential cone

$$
K_{\text {exp }}^{*}=\left\{(u, v, w) \in \mathbf{R}_{-} \times \mathbf{R} \times \mathbf{R}^{+} \mid-u \log (-u / w)+u-v \leq 0\right\}
$$

(with $0 \log (0 / w)=0$ if $w \geq 0$)

- dual of power cone is

$$
K_{\alpha}^{*}=\left\{(u, v) \in \mathbf{R}_{+}^{m} \times \mathbf{R}| | v \mid \leq\left(u_{1} / \alpha_{1}\right)^{\alpha_{1}} \cdots\left(u_{m} / \alpha_{m}\right)^{\alpha_{m}}\right\}
$$

Primal and dual cone LP

primal problem (optimal value p^{\star})

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x \preceq b
\end{array}
$$

dual problem (optimal value d^{\star})

$$
\begin{array}{ll}
\operatorname{maximize} & -b^{T} z \\
\text { subject to } & A^{T} z+c=0 \\
& z \succeq_{*} 0
\end{array}
$$

weak duality: $p^{\star} \geq d^{\star}$ (without exception)

Strong duality

$$
p^{\star}=d^{\star}
$$

if primal or dual is strictly feasible

- slightly weaker than LP duality (which only requires feasibility)
- can have $d^{\star}<p^{\star}$ with finite p^{\star} and d^{\star}
other implications of strict feasibility
- if primal is strictly feasible, then dual optimum is attained (if d^{\star} is finite)
- if dual is strictly feasible, then primal optimum is attained (if p^{\star} is finite)

Optimality conditions

$$
\begin{array}{llll}
\operatorname{minimize} & c^{T} x & \text { maximize } & -b^{T} z \\
\text { subject to } & A x+s=b & \text { subject to } & A^{T} z+c=0 \\
& s \succeq 0 & & z \succeq_{*} 0
\end{array}
$$

optimality conditions

$$
\begin{gathered}
{\left[\begin{array}{l}
0 \\
s
\end{array}\right]=\left[\begin{array}{cc}
0 & A^{T} \\
-A & 0
\end{array}\right]\left[\begin{array}{l}
x \\
z
\end{array}\right]+\left[\begin{array}{l}
c \\
b
\end{array}\right]} \\
s \succeq 0, \quad z \succeq_{*} 0, \quad z^{T} s=0
\end{gathered}
$$

duality gap: inner product of (x, z) and $(0, s)$ gives

$$
z^{T} s=c^{T} x+b^{T} z
$$

Barrier methods

- barrier method for linear programming
- normal barriers
- barrier method for conic optimization

History

- 1960s: Sequentially Unconstrained Minimization Technique (SUMT) solves nonlinear convex optimization problem

```
minimize }\mp@subsup{f}{0}{}(x
subject to }\mp@subsup{f}{i}{}(x)\leq0,\quadi=1,\ldots,
```

via a sequence of unconstrained minimization problems

$$
\operatorname{minimize} \quad t f_{0}(x)-\sum_{i=1}^{m} \log \left(-f_{i}(x)\right)
$$

- 1980s: LP barrier methods with polynomial worst-case complexity
- 1990s: barrier methods for non-polyhedral cone LPs

Logarithmic barrier function for linear inequalities

$$
\psi(x)=\phi(b-A x), \quad \phi(s)=-\sum_{i=1}^{m} \log s_{i}
$$

- a smooth convex function with $\operatorname{dom} \psi=\{x \mid A x<b\}$
- $\psi(x) \rightarrow \infty$ at boundary of $\operatorname{dom} \psi$
- gradient and Hessian are

$$
\nabla \psi(x)=-A^{T} \nabla \phi(s), \quad \nabla^{2} \psi(x)=A^{T} \nabla \phi^{2}(s) A
$$

with $s=b-A x$

$$
\nabla \phi(s)=-\left(\frac{1}{s_{1}}, \ldots, \frac{1}{s_{m}}\right), \quad \nabla \phi^{2}(s)=\operatorname{diag}\left(\frac{1}{s_{1}^{2}}, \ldots, \frac{1}{s_{m}^{2}}\right)
$$

Central path for linear program

central path: set of minimizers $x^{\star}(t)($ with $t>0)$ of

$$
f_{t}(x)=t c^{T} x+\phi(b-A x)
$$

optimality conditions: $x=x^{\star}(t)$ satisfies

$$
\nabla f_{t}(x)=t c-A^{T} \nabla \phi(s)=0, \quad s=b-A x
$$

Central path and duality

dual feasible point on central path

- for $x=x^{\star}(t)$ and $s=b-A x$,

$$
z^{*}(t)=-\frac{1}{t} \nabla \phi(s)=\left(\frac{1}{t s_{1}}, \frac{1}{t s_{2}}, \ldots, \frac{1}{t s_{m}}\right)
$$

is strictly dual feasible: $c+A^{T} z=0$ and $z>0$

- can be modified to correct for inexact centering of x
duality gap between $x=x^{\star}(t)$ and $z=z^{\star}(t)$ is

$$
c^{T} x+b^{T} z=s^{T} z=\frac{m}{t}
$$

gives bound on suboptimality: $c^{T} x^{\star}(t)-p^{\star} \leq m / t$

Barrier method

starting with $t>0$, strictly feasible x, repeat until $c^{T} x-p^{\star} \leq \epsilon$

- make one or more Newton steps to (approximately) minimize f_{t} :

$$
x^{+}=x-\alpha \nabla^{2} f_{t}(x)^{-1} \nabla f_{t}(x)
$$

step size α is fixed or from line search

- increase t
complexity: with proper initialization, step size, update scheme for t,

$$
\# \text { Newton steps }=O(\sqrt{m} \log (1 / \epsilon))
$$

result follows from convergence analysis of Newton's method for f_{t}

Outline

- barrier method for linear programming
- normal barriers
- barrier method for conic optimization

Normal barrier for proper cone

ϕ is a θ-normal barrier for the proper cone K if it is

- a barrier: smooth, convex, domain int K, blows up at boundary of K
- logarithmically homogeneous with parameter θ :

$$
\phi(t x)=\phi(x)-\theta \log t, \quad \forall x \in \operatorname{int} K, t>0
$$

- self-concordant: restriction $g(\alpha)=\phi(x+\alpha v)$ to any line satisfies

$$
g^{\prime \prime \prime}(\alpha) \leq 2 g^{\prime \prime}(\alpha)^{3 / 2}
$$

introduced by Nesterov and Nemirovski (1994)

Examples

nonnegative orthant: $K=\mathbf{R}_{+}^{m}$

$$
\phi(x)=-\sum_{i=1}^{m} \log x_{i} \quad(\theta=m)
$$

second-order cone: $K=\mathcal{Q}^{p}=\left\{(x, y) \in \mathbf{R}^{p-1} \times \mathbf{R} \mid\|x\|_{2} \leq y\right\}$

$$
\phi(x, y)=-\log \left(y^{2}-x^{T} x\right) \quad(\theta=2)
$$

semidefinite cone: $K=\mathcal{S}^{m}=\left\{x \in \mathbf{R}^{m(m+1) / 2} \mid \boldsymbol{\operatorname { m a t }}(x) \succeq 0\right\}$

$$
\phi(x)=-\log \operatorname{det} \operatorname{mat}(x) \quad(\theta=m)
$$

exponential cone: $K_{\exp }=\boldsymbol{\operatorname { c l }}\left\{(x, y, z) \in \mathbf{R}^{3} \mid y e^{x / y} \leq z, y>0\right\}$

$$
\phi(x, y, z)=-\log (y \log (z / y)-x)-\log z-\log y \quad(\theta=3)
$$

power cone: $K=\left\{\left(x_{1}, x_{2}, y\right) \in \mathbf{R}_{+} \times \mathbf{R}_{+} \times \mathbf{R}| | y \mid \leq x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}}\right\}$

$$
\phi(x, y)=-\log \left(x_{1}^{2 \alpha_{1}} x_{2}^{2 \alpha_{2}}-y^{2}\right)-\log x_{1}-\log x_{2} \quad(\theta=4)
$$

Central path

cone LP (with inequality with respect to proper cone K)

$$
\begin{array}{ll}
\text { minimize } & c^{T} x \\
\text { subject to } & A x \preceq b
\end{array}
$$

barrier for the feasible set

$$
\phi(b-A x)
$$

where ϕ is a θ-normal barrier for K
central path: set of minimizers $x^{\star}(t)($ with $t>0)$ of

$$
f_{t}(x)=t c^{T} x+\phi(b-A x)
$$

Newton step

centering problem

$$
\operatorname{minimize} f_{t}(x)=t c^{T} x+\phi(b-A x)
$$

Newton step at x

$$
\Delta x=-\nabla^{2} f_{t}(x)^{-1} \nabla f_{t}(x)
$$

Newton decrement

$$
\begin{aligned}
\lambda_{t}(x) & =\left(\Delta x^{T} \nabla^{2} f_{t}(x) \Delta x\right)^{1 / 2} \\
& =\left(-\nabla f_{t}(x)^{T} \Delta x\right)^{1 / 2}
\end{aligned}
$$

used to measure proximity of x to $x^{\star}(t)$

Damped Newton method

$$
\operatorname{minimize} f_{t}(x)=t c^{T} x+\phi(b-A x)
$$

algorithm

select $\epsilon \in(0,1 / 2), \eta \in(0,1 / 4]$, and a starting point $x \in \operatorname{dom} f_{t}$
repeat:

1. compute Newton step Δx and Newton decrement $\lambda_{t}(x)$
2. if $\lambda_{t}(x)^{2} \leq \epsilon$, return x
3. otherwise, set $x:=x+\alpha \Delta x$ with

$$
\alpha=\frac{1}{1+\lambda_{t}(x)} \quad \text { if } \lambda_{t}(x) \geq \eta, \quad \alpha=1 \quad \text { if } \lambda_{t}(x)<\eta
$$

alternatively, can use backtracking line search

Convergence results for damped Newton method

- damped Newton phase

$$
f_{t}\left(x^{+}\right)-f_{t}(x) \leq-\gamma \quad \text { if } \lambda_{t}(x) \geq \eta
$$

where $\gamma=\eta-\log (1+\eta) ; f_{t}$ decreases by at least a positive constant γ

- quadratically convergent phase

$$
2 \lambda_{t}\left(x^{+}\right) \leq\left(2 \lambda_{t}(x)\right)^{2} \quad \text { if } \lambda_{t}(x)<\eta
$$

implies $\lambda_{t}\left(x^{+}\right) \leq 2 \eta^{2}<\eta$, and Newton decrement decreases to zero

- stopping criterion $\lambda_{t}(x)^{2} \leq \epsilon$ implies

$$
f_{t}(x)-\inf f_{t}(x) \leq \epsilon
$$

Outline

- barrier method for linear programming
- normal barriers
- barrier method for conic optimization

Central path and duality

duality point on central path: $x^{\star}(t)$ defines a strictly dual feasible $z^{\star}(t)$

$$
z^{\star}(t)=-\frac{1}{t} \nabla \phi(s), \quad s=b-A x^{\star}(t)
$$

duality gap: gap between $x=x^{\star}(t)$ and $z=z^{\star}(t)$ is

$$
c^{T} x+b^{T} z=s^{T} z=\frac{\theta}{t}, \quad c^{T} x-p^{\star} \leq \frac{\theta}{t}
$$

near central path: for inexactly centered x

$$
c^{T} x-p^{\star} \leq\left(1+\frac{\lambda_{t}(x)}{\sqrt{\theta}}\right) \frac{\theta}{t} \quad \text { if } \lambda_{t}(x)<1
$$

(results follow from properties of normal barriers)

Short-step barrier method

algorithm: parameters $\epsilon \in(0,1), \beta=1 / 8$

- select initial x and t with $\lambda_{t}(x) \leq \beta$
- repeat until $2 \theta / t \leq \epsilon$:

$$
t:=\left(1+\frac{1}{1+8 \sqrt{\theta}}\right) t, \quad x:=x-\nabla f_{t}(x)^{-1} \nabla f_{t}(x)
$$

properties

- increase t slowly so x stays in region of quadratic region $\left(\lambda_{t}(x) \leq \beta\right)$
- iteration complexity

$$
\# \text { iterations }=O\left(\sqrt{\theta} \log \left(\frac{\theta}{\epsilon t_{0}}\right)\right)
$$

- best known worst-case complexity; same as for linear programming

Predictor-corrector methods

short-step barrier methods

- stay in narrow neighborhood of central path (defined by limit on λ_{t})
- make small, fixed increases $t^{+}=\mu t$
as a result, quite slow in practice
predictor-corrector method
- select new t using a linear approximation to central path ('predictor')
- re-center with new t ('corrector')
allows faster and 'adaptive' increases in t; similar worst-case complexity

Primal-dual methods

- primal-dual algorithms for linear programming
- symmetric cones
- primal-dual algorithms for conic optimization
- implementation

Primal-dual interior-point methods

similarities with barrier method

- follow the same central path
- same linear algebra cost per iteration

differences

- more robust and faster (typically less than 50 iterations)
- primal and dual iterates updated at each iteration
- symmetric treatment of primal and dual iterates
- can start at infeasible points
- include heuristics for adaptive choice of central path parameter t
- often have superlinear asymptotic convergence

Primal-dual central path for linear programming

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x+s=b \\
& s \geq 0
\end{array}
$$

$$
\begin{array}{ll}
\operatorname{maximize} & -b^{T} z \\
\text { subject to } & A^{T} z+c=0 \\
& z \geq 0
\end{array}
$$

optimality conditions

$$
A x+s=b, \quad A^{T} z+c=0, \quad(s, z) \geq 0, \quad s \circ z=0
$$

$s \circ z$ is component-wise vector product
primal-dual parametrization of central pah

$$
A x+s=b, \quad A^{T} z+c=0, \quad(s, z) \geq 0, \quad s \circ z=\frac{1}{t} \mathbf{1}
$$

solution is $x=x^{*}(t), z=z^{*}(t)$

Primal-dual search direction

steps solve central path equations linearized around current iterates x, s, z

$$
\begin{gather*}
A(x+\Delta x)+s+\Delta s=b, \quad A^{T}(z+\Delta z)+c=0 \tag{1}\\
(s+\Delta z) \circ(z+\Delta z)=\sigma \mu \mathbf{1}
\end{gather*}
$$

where $\mu=\left(s^{T} z\right) / m$ and $\sigma \in[0,1]$

- targets point on central path with $1 / t=\sigma \mu$, i.e., with gap $\sigma s^{T} z$
- different methods use different strategies for selecting σ
linearized equations: the two linear equations in (1) and

$$
z \circ \Delta s+s \circ \Delta z=\sigma \mu \mathbf{1}-s \circ z
$$

after eliminating $\Delta s, \Delta z$ this reduces to an equation

$$
A^{T} D A \Delta x=r, \quad D=\operatorname{diag}\left(z_{1} / s_{1}, \ldots, z_{m} / s_{m}\right)
$$

Outline

- primal-dual algorithms for linear programming
- symmetric cones
- primal-dual algorithms for conic optimization
- implementation

Symmetric cones

symmetric primal-dual solvers for cone LPs are limited to symmetric cones

- second-order cone
- positive semidefinite cone
- direct products of these 'primitive' symmetric cones (such as \mathbf{R}_{+}^{p})
definition: cone of squares $x=y^{2}=y \circ y$ for a product \circ that satisfies

1. bilinearity ($x \circ y$ is linear in x for fixed y and vice-versa)
2. $x \circ y=y \circ x$
3. $x^{2} \circ(y \circ x)=\left(x^{2} \circ y\right) \circ x$
4. $x^{T}(y \circ z)=(x \circ y)^{T} z$
not necessarily associative

Vector product and identity element

nonnegative orthant: componentwise product

$$
x \circ y=\operatorname{diag}(x) y
$$

identity element is $\mathbf{e}=\mathbf{1}=(1,1, \ldots, 1)$
positive semidefinite cone: symmetrized matrix product

$$
x \circ y=\frac{1}{2} \operatorname{vec}(X Y+Y X) \quad \text { with } X=\operatorname{mat}(x), Y=\operatorname{mat}(Y)
$$

identity element is $\mathbf{e}=\operatorname{vec}(I)$
second-order cone: the product of $x=\left(x_{0}, x_{1}\right)$ and $y=\left(y_{0}, y_{1}\right)$ is

$$
x \circ y=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
x^{T} y \\
x_{0} y_{1}+y_{0} x_{1}
\end{array}\right]
$$

identity element is $\mathbf{e}=(\sqrt{2}, 0, \ldots, 0)$

Classification

- symmetric cones are studied in the theory of Euclidean Jordan algebras
- all possible symmetric cones have been characterized

list of symmetric cones

- the second-order cone
- the positive semidefinite cone of Hermitian matrices with real, complex, or quaternion entries
- 3×3 positive semidefinite matrices with octonion entries
- Cartesian products of these 'primitive' symmetric cones (such as \mathbf{R}_{+}^{p})

practical implication

can focus on $\mathcal{Q}^{p}, \mathcal{S}^{p}$ and study these cones using elementary linear algebra

Spectral decomposition

with each symmetric cone/product we associate a 'spectral' decomposition

$$
x=\sum_{i=1}^{\theta} \lambda_{i} q_{i}, \quad \text { with } \quad \sum_{i=1}^{\theta} q_{i}=\mathbf{e} \quad \text { and } \quad q_{i} \circ q_{j}=\left\{\begin{array}{cc}
q_{i} & i=j \\
0 & i \neq j
\end{array}\right.
$$

semidefinite cone $\left(K=\mathcal{S}^{p}\right)$: eigenvalue decomposition of $\operatorname{mat}(x)$

$$
\theta=p, \quad \operatorname{mat}(x)=\sum_{i=1}^{p} \lambda_{i} v_{i} v_{i}^{T}, \quad q_{i}=\operatorname{vec}\left(v_{i} v_{i}^{T}\right)
$$

second-order cone $\left(K=\mathcal{Q}^{p}\right)$

$$
\theta=2, \quad \lambda_{i}=\frac{x_{0} \pm\left\|x_{1}\right\|_{2}}{\sqrt{2}}, \quad q_{i}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
\pm x_{1} /\left\|x_{1}\right\|_{2}
\end{array}\right], \quad i=1,2
$$

Applications

nonnegativity

$$
x \succeq 0 \quad \Longleftrightarrow \quad \lambda_{1}, \ldots, \lambda_{\theta} \geq 0, \quad x \succ 0 \quad \Longleftrightarrow \quad \lambda_{1}, \ldots, \lambda_{\theta}>0
$$

powers (in particular, inverse and square root)

$$
x^{\alpha}=\sum_{i} \lambda_{i}^{\alpha} q_{i}
$$

log-det barrier

$$
\phi(x)=-\log \operatorname{det} x=-\sum_{i=1}^{\theta} \log \lambda_{i}
$$

- a θ-normal barrier
- gradient is $\nabla \phi(x)=-x^{-1}$

Outline

- primal-dual algorithms for linear programming
- symmetric cones
- primal-dual algorithms for conic optimization
- implementation

Symmetric parametrization of central path

centering problem

$$
\text { minimize } t c^{T} x+\phi(b-A x)
$$

optimality conditions (using $\nabla \phi(s)=-s^{-1}$)

$$
A x+s=b, \quad A^{T} z+c=0, \quad(s, z) \succ 0, \quad z=\frac{1}{t} s^{-1}
$$

equivalent symmetric form

$$
A x+b=s, \quad A^{T} z+c=0, \quad(s, z) \succ 0, \quad s \circ z=\frac{1}{t} \mathbf{e}
$$

Scaling with Hessian

linear transformation with $H=\nabla^{2} \phi(u)$ has several important properties

- preserves conic inequalities: $s \succ 0 \Longleftrightarrow H s \succ 0$
- if s is invertible, then $H s$ is invertible and $(H s)^{-1}=H^{-1} s^{-1}$
- preserves central path:

$$
s \circ z=\mu \mathbf{e} \quad \Longleftrightarrow \quad(H s) \circ\left(H^{-1} z\right)=\mu \mathbf{e}
$$

- symmetric square root of H is $H^{1 / 2}=\nabla^{2} \phi\left(u^{1 / 2}\right)$
example $\left(K=\mathcal{S}^{p}\right)$:

$$
\tilde{S}=U^{-1} S U^{-1} \quad S=\operatorname{mat}(s), \quad U=\operatorname{mat}(u)
$$

Primal-dual search direction

steps solve central path equations linearized around current iterates x, s, z

$$
\begin{gather*}
A(x+\Delta x)+s+\Delta s=b, \quad A^{T}(z+\Delta z)+c=0 \tag{2}\\
(H(s+\Delta s)) \circ\left(H^{-1}(z+\Delta z)\right)=\sigma \mu \mathbf{e}
\end{gather*}
$$

where $\mu=\left(s^{T} z\right) / m, \sigma \in[0,1]$, and $H=\nabla^{2} \phi(u)$

- different algorithms use different choices of σ, u
- Nesterov-Todd scaling: $H=\nabla^{2} \phi(u)$ defined by $H s=H^{-1} z$
linearized equations: the two linear equations (2) and

$$
(H s) \circ\left(H^{-1} \Delta z\right)+\left(H^{-1} z\right) \circ(H \Delta s)=\sigma \mu \mathbf{e}-(H s) \circ\left(H^{-1} z\right)
$$

after eliminating $\Delta s, \Delta z$, reduces to an equation

$$
A^{T} \nabla^{2} \phi(w) A \Delta x=r, \quad w=u^{2}
$$

Outline

- primal-dual algorithms for linear programming
- symmetric cones
- primal-dual algorithms for conic optimization
- implementation

Software implementations

general-purpose software for nonlinear convex optimization

- several high-quality packages (MOSEK, Sedumi, SDPT3, . . .)
- exploit sparsity to achieve scalability
customized implementations
- can exploit non-sparse types of problem structure
- often orders of magnitude faster than general-purpose solvers

Example: ℓ_{1}-regularized least-squares

$$
\text { minimize }\|A x-b\|_{2}^{2}+\|x\|_{1}
$$

A is $m \times n$ (with $m \leq n$) and dense
quadratic program formulation

$$
\begin{array}{ll}
\operatorname{minimize} & \|A x-b\|_{2}^{2}+\mathbf{1}^{T} u \\
\text { subject to } & -u \leq x \leq u
\end{array}
$$

- coefficient of Newton system in interior-point method is

$$
\left[\begin{array}{cc}
A^{T} A & 0 \\
0 & 0
\end{array}\right]+\left[\begin{array}{cc}
D_{1}+D_{2} & D_{2}-D_{1} \\
D_{2}-D_{1} & D_{1}+D_{2}
\end{array}\right] \quad\left(D_{1}, D_{2} \text { positive diagonal }\right)
$$

- expensive $\left(O\left(n^{3}\right)\right)$ for large n

customized implementation

- can reduce Newton equation to solution of a system

$$
\left(A D^{-1} A^{T}+I\right) \Delta u=r
$$

- cost per iteration is $O\left(m^{2} n\right)$
comparison (seconds on 2.83 Ghz Core 2 Quad machine)

m	n	custom	general-purpose
50	200	0.02	0.32
50	400	0.03	0.59
100	1000	0.12	1.69
100	2000	0.24	3.43
500	1000	1.19	7.54
500	2000	2.38	17.6

custom solver is CVXOPT; general-purpose solver is MOSEK

Overview

1. Basic theory and convex modeling

- convex sets and functions
- common problem classes and applications

2. Interior-point methods for conic optimization

- conic optimization
- barrier methods
- symmetric primal-dual methods

3. First-order methods

- gradient algorithms
- dual techniques

Gradient methods

- gradient and subgradient method
- proximal gradient method
- fast proximal gradient methods

Classical gradient method

to minimize a convex differentiable function f : choose $x^{(0)}$ and repeat

$$
x^{(k)}=x^{(k-1)}-t_{k} \nabla f\left(x^{(k-1)}\right), \quad k=1,2, \ldots
$$

step size t_{k} is constant or from line search
advantages

- every iteration is inexpensive
- does not require second derivatives

disadvantages

- often very slow; very sensitive to scaling
- does not handle nondifferentiable functions

Quadratic example

$$
f(x)=\frac{1}{2}\left(x_{1}^{2}+\gamma x_{2}^{2}\right) \quad(\gamma>1)
$$

with exact line search and starting point $x^{(0)}=(\gamma, 1)$

$$
\frac{\left\|x^{(k)}-x^{\star}\right\|_{2}}{\left\|x^{(0)}-x^{\star}\right\|_{2}}=\left(\frac{\gamma-1}{\gamma+1}\right)^{k}
$$

Nondifferentiable example

$$
f(x)=\sqrt{x_{1}^{2}+\gamma x_{2}^{2}} \quad\left(\left|x_{2}\right| \leq x_{1}\right), \quad f(x)=\frac{x_{1}+\gamma\left|x_{2}\right|}{\sqrt{1+\gamma}} \quad\left(\left|x_{2}\right|>x_{1}\right)
$$

with exact line search, $\boldsymbol{x}^{(0)}=(\gamma, 1)$, converges to non-optimal point

First-order methods

address one or both disadvantages of the gradient method methods for nondifferentiable or constrained problems

- smoothing methods
- subgradient method
- proximal gradient method methods with improved convergence
- variable metric methods
- conjugate gradient method
- accelerated proximal gradient method
we will discuss subgradient and proximal gradient methods

Subgradient

g is a subgradient of a convex function f at x if

$$
f(y) \geq f(x)+g^{T}(y-x) \quad \forall y \in \operatorname{dom} f
$$

generalizes basic inequality for convex differentiable f

$$
f(y) \geq f(x)+\nabla f(x)^{T}(y-x) \quad \forall y \in \operatorname{dom} f
$$

Subdifferential

the set of all subgradients of f at x is called the subdifferential $\partial f(x)$
absolute value $f(x)=|x|$

Euclidean norm $f(x)=\|x\|_{2}$

$$
\partial f(x)=\frac{1}{\|x\|_{2}} x \quad \text { if } x \neq 0, \quad \partial f(x)=\left\{g \mid\|g\|_{2} \leq 1\right\} \quad \text { if } x=0
$$

Subgradient calculus

weak calculus

rules for finding one subgradient

- sufficient for most algorithms for nondifferentiable convex optimization
- if one can evaluate $f(x)$, one can usually compute a subgradient
- much easier than finding the entire subdifferential

subdifferentiability

- convex f is subdifferentiable on $\operatorname{dom} f$ except possibly at the boundary
- example of a non-subdifferentiable function: $f(x)=-\sqrt{x}$ at $x=0$

Examples of calculus rules

nonnegative combination: $f=\alpha_{1} f_{1}+\alpha_{2} f_{2}$ with $\alpha_{1}, \alpha_{2} \geq 0$

$$
g=\alpha_{1} g_{1}+\alpha_{2} g_{2}, \quad g_{1} \in \partial f_{1}(x), \quad g_{2} \in \partial f_{2}(x)
$$

composition with affine transformation: $f(x)=h(A x+b)$

$$
g=A^{T} \tilde{g}, \quad \tilde{g} \in \partial h(A x+b)
$$

pointwise maximum $f(x)=\max \left\{f_{1}(x), \ldots, f_{m}(x)\right\}$

$$
g \in \partial f_{i}(x) \quad \text { where } f_{i}(x)=\max _{k} f_{k}(x)
$$

conjugate $f^{*}(x)=\sup _{y}\left(x^{T} y-f(y)\right)$; take any maximizing y

Subgradient method

to minimize a nondifferentiable convex function f : choose $x^{(0)}$ and repeat

$$
x^{(k)}=x^{(k-1)}-t_{k} g^{(k-1)}, \quad k=1,2, \ldots
$$

$g^{(k-1)}$ is any subgradient of f at $x^{(k-1)}$

step size rules

- fixed step size: t_{k} constant
- fixed step length: $t_{k}\left\|g^{(k-1)}\right\|_{2}$ constant (i.e., $\left\|x^{(k)}-x^{(k-1)}\right\|_{2}$ constant)
- diminishing: $t_{k} \rightarrow 0, \sum_{k=1}^{\infty} t_{k}=\infty$

Some convergence results

assumption: f is convex and Lipschitz continuous with constant $G>0$:

$$
|f(x)-f(y)| \leq G\|x-y\|_{2} \quad \forall x, y
$$

results

- fixed step size $t_{k}=t$
converges to approximately $G^{2} t / 2$-suboptimal
- fixed length $t_{k}\left\|g^{(k-1)}\right\|_{2}=s$
converges to approximately $G s / 2$-suboptimal
- decreasing $\sum_{k} t_{k} \rightarrow \infty, t_{k} \rightarrow 0$: convergence
rate of convergence is $1 / \sqrt{k}$ with proper choice of step size sequence

Example: 1-norm minimization

$$
\operatorname{minimize}\|A x-b\|_{1} \quad\left(A \in \mathbf{R}^{500 \times 100}, b \in \mathbf{R}^{500}\right)
$$

subgradient is given by $A^{T} \boldsymbol{\operatorname { s i g n }}(A x-b)$

fixed steplength

$$
s=0.1,0.01,0.001
$$

diminishing step size

$$
t_{k}=0.01 / \sqrt{k}, t_{k}=0.01 / k
$$

Outline

- gradient and subgradient method
- proximal gradient method
- fast proximal gradient methods

Proximal mapping

the proximal mapping (prox-operator) of a convex function h is

$$
\operatorname{prox}_{h}(x)=\underset{u}{\operatorname{argmin}}\left(h(u)+\frac{1}{2}\|u-x\|_{2}^{2}\right)
$$

- $h(x)=0: \operatorname{prox}_{h}(x)=x$
- $h(x)=I_{C}(x)$ (indicator function of C): prox_{h} is projection on C

$$
\operatorname{prox}_{h}(x)=\underset{u \in C}{\operatorname{argmin}}\|u-x\|_{2}^{2}=P_{C}(x)
$$

- $h(x)=\|x\|_{1}: \operatorname{prox}_{h}$ is the 'soft-threshold' (shrinkage) operation

$$
\operatorname{prox}_{h}(x)_{i}= \begin{cases}x_{i}-1 & x_{i} \geq 1 \\ 0 & \left|x_{i}\right| \leq 1 \\ x_{i}+1 & x_{i} \leq-1\end{cases}
$$

Proximal gradient method

unconstrained problem with cost function split in two components

$$
\operatorname{minimize} \quad f(x)=g(x)+h(x)
$$

- g convex, differentiable, with $\operatorname{dom} g=\mathbf{R}^{n}$
- h convex, possibly nondifferentiable, with inexpensive prox-operator
proximal gradient algorithm

$$
x^{(k)}=\operatorname{prox}_{t_{k} h}\left(x^{(k-1)}-t_{k} \nabla g\left(x^{(k-1)}\right)\right)
$$

$t_{k}>0$ is step size, constant or determined by line search

Interpretation

$$
x^{+}=\operatorname{prox}_{t h}(x-t \nabla g(x))
$$

from definition of proximal operator:

$$
\begin{aligned}
x^{+} & =\underset{u}{\operatorname{argmin}}\left(h(u)+\frac{1}{2 t}\|u-x+t \nabla g(x)\|_{2}^{2}\right) \\
& =\underset{u}{\operatorname{argmin}}\left(h(u)+g(x)+\nabla g(x)^{T}(u-x)+\frac{1}{2 t}\|u-x\|_{2}^{2}\right)
\end{aligned}
$$

x^{+}minimizes $h(u)$ plus a simple quadratic local model of $g(u)$ around x

Examples

$$
\operatorname{minimize} \quad g(x)+h(x)
$$

gradient method: $h(x)=0$, i.e., minimize $g(x)$

$$
x^{+}=x-t \nabla g(x)
$$

gradient projection method: $h(x)=I_{C}(x)$, i.e., minimize $g(x)$ over C

$$
x^{+}=P_{C}(x-t \nabla g(x))
$$

iterative soft-thresholding: $h(x)=\|x\|_{1}$, i.e., minimize $g(x)+\|x\|_{1}$

$$
x^{+}=\operatorname{prox}_{t h}(x-t \nabla g(x))
$$

and

$$
\operatorname{prox}_{t h}(u)_{i}= \begin{cases}u_{i}-t & u_{i} \geq t \\ 0 & -t \leq u_{i} \leq t \\ u_{i}+t & u_{i} \geq t\end{cases}
$$

Some properties of proximal mappings

$$
\operatorname{prox}_{h}(x)=\underset{u}{\operatorname{argmin}}\left(h(u)+\frac{1}{2}\|u-x\|_{2}^{2}\right)
$$

assume h is closed and convex (i.e., convex with closed epigraph)

- $\operatorname{prox}_{h}(x)$ is uniquely defined for all x
- prox_{h} is nonexpansive

$$
\left\|\operatorname{prox}_{h}(x)-\operatorname{prox}_{h}(y)\right\|_{2} \leq\|x-y\|_{2}
$$

- Moreau decomposition

$$
x=\operatorname{prox}_{h}(x)+\operatorname{prox}_{h^{*}}(x)
$$

$c f$., properties of Euclidean projection on convex sets
example: h is indicator function of subspace L

$$
h(u)=I_{L}(u)= \begin{cases}0 & u \in L \\ +\infty & \text { otherwise }\end{cases}
$$

- conjugate h^{*} is indicator function of the orthogonal complement L^{\perp}

$$
\begin{aligned}
h^{*}(v)=\sup _{u \in L} v^{T} u & = \begin{cases}0 & v \in L^{\perp} \\
+\infty & \text { otherwise }\end{cases} \\
& =I_{L^{\perp}}(v)
\end{aligned}
$$

- Moreau decomposition is orthogonal decomposition

$$
x=P_{L}(x)+P_{L^{\perp}}(x)
$$

Examples of inexpensive prox-operators

projection on simple sets

- hyperplanes and halfspaces
- rectangles $\{x \mid l \leq x \leq u\}$
- probability simplex $\left\{x \mid \mathbf{1}^{T} x=1, x \geq 0\right\}$
- norm ball for many norms (Euclidean, 1-norm, . . .)
- nonnegative orthant, second-order cone, positive semidefinite cone

Euclidean norm: $h(x)=\|x\|_{2}$
$\operatorname{prox}_{t h}(x)=\left(1-\frac{t}{\|x\|_{2}}\right) x \quad$ if $\|x\|_{2} \geq t, \quad \operatorname{prox}_{t h}(x)=0 \quad$ otherwise
logarithmic barrier

$$
h(x)=-\sum_{i=1}^{n} \log x_{i}, \quad \operatorname{prox}_{t h}(x)_{i}=\frac{x_{i}+\sqrt{x_{i}^{2}+4 t}}{2}, \quad i=1, \ldots, n
$$

Euclidean distance: $d(x)=\inf _{y \in C}\|x-y\|_{2}$ (C closed convex)

$$
\operatorname{prox}_{t d}(x)=\theta P_{C}(x)+(1-\theta) x, \quad \theta=\frac{t}{\max \{d(x), t\}}
$$

squared Euclidean distance: $h(x)=d(x)^{2} / 2$

$$
\operatorname{prox}_{t h}(x)=\frac{1}{1+t} x+\frac{t}{1+t} P_{C}(x)
$$

Prox-operator of conjugate

$$
\operatorname{prox}_{t h^{*}}(x)=x-t \operatorname{prox}_{h / t}(x / t)
$$

- follows from Moreau decomposition
- of interest when prox-operator of h is inexpensive
example: norms

$$
h(x)=I_{C}(x), \quad h^{*}(y)=\|y\|_{*}
$$

where C is unit norm ball for $\|\cdot\|$ and $\|\cdot\|_{*}$ is dual norm of $\|\cdot\|$

- prox_{h} is projection on C
- formula useful for prox-operator of $\|\cdot\|_{*}$ if projection on C is inexpensive

Support function

many convex functions can be expressed as support functions

$$
h(x)=S_{C}(x)=\sup _{y \in C} x^{T} y
$$

with C closed, convex

- conjugate is indicator function of $C: h^{*}(y)=I_{C}(y)$
- hence, can compute $\operatorname{prox}_{t h}$ via projection on C
example: $h(x)$ is sum of largest r components of x

$$
h(x)=x_{[1]}+\cdots+x_{[r]}=S_{C}(x), \quad C=\left\{y \mid 0 \leq y \leq \mathbf{1}, \mathbf{1}^{T} y=r\right\}
$$

Convergence of proximal gradient method

$$
\operatorname{minimize} \quad f(x)=g(x)+h(x)
$$

assumptions

- ∇g is Lipschitz continuous with constant $L>0$

$$
\|\nabla g(x)-\nabla g(y)\|_{2} \leq L\|x-y\|_{2} \quad \forall x, y
$$

- optimal value f^{\star} is finite and attained at x^{\star} (not necessarily unique) result: with fixed step size $t_{k}=1 / L$

$$
f\left(x^{(k)}\right)-f^{\star} \leq \frac{L}{2 k}\left\|x^{(0)}-x^{\star}\right\|_{2}^{2}
$$

- compare with $1 / \sqrt{k}$ rate of subgradient method
- can be extended to include line searches

Outline

- gradient and subgradient method
- proximal gradient method
- fast proximal gradient methods

Fast (proximal) gradient methods

- Nesterov (1983, 1988, 2005): three gradient projection methods with $1 / k^{2}$ convergence rate
- Beck \& Teboulle (2008): FISTA, a proximal gradient version of Nesterov's 1983 method
- Nesterov (2004 book), Tseng (2008): overview and unified analysis of fast gradient methods
- several recent variations and extensions
this lecture: FISTA (Fast Iterative Shrinkage-Thresholding Algorithm)

FISTA

unconstrained problem with composite objective

$$
\operatorname{minimize} \quad f(x)=g(x)+h(x)
$$

- g convex differentiable with $\operatorname{dom} g=\mathbf{R}^{n}$
- h convex with inexpensive prox-operator
algorithm: choose $x^{(0)}=y^{(0)} \in \operatorname{dom} h$; for $k \geq 1$

$$
\begin{aligned}
x^{(k)} & =\operatorname{prox}_{t_{k} h}\left(y^{(k-1)}-t_{k} \nabla g\left(y^{(k-1)}\right)\right) \\
y^{(k)} & =x^{(k)}+\frac{k-1}{k+2}\left(x^{(k)}-x^{(k-1)}\right)
\end{aligned}
$$

Interpretation

- first iteration $(k=1)$ is a proximal gradient step at $x^{(0)}$
- next iterations are proximal gradient steps at extrapolated points $y^{(k-1)}$

sequence $x^{(k)}$ remains feasible (in dom h); sequence $y^{(k)}$ not necessarily

Convergence of FISTA

$$
\operatorname{minimize} \quad f(x)=g(x)+h(x)
$$

assumptions

- optimal value f^{\star} is finite and attained at x^{\star} (not necessarily unique)
- $\operatorname{dom} g=\mathbf{R}^{n}$ and ∇g is Lipschitz continuous with constant $L>0$
- h is closed (implies $\operatorname{prox}_{t h}(u)$ exists and is unique for all u)
result: with fixed step size $t_{k}=1 / L$

$$
f\left(x^{(k)}\right)-f^{\star} \leq \frac{2 L}{(k+1)^{2}}\left\|x^{(0)}-f^{\star}\right\|_{2}^{2}
$$

- compare with $1 / k$ convergence rate for gradient method
- can be extended to include line searches

Example

$$
\operatorname{minimize} \quad \log \sum_{i=1}^{m} \exp \left(a_{i}^{T} x+b_{i}\right)
$$

randomly generated data with $m=2000, n=1000$, same fixed step size

FISTA is not a descent method

Dual methods

- Lagrange duality
- dual decomposition
- dual proximal gradient method
- multiplier methods

Dual function

convex problem (with linear constraints for simplicity)

$$
\begin{array}{ll}
\operatorname{minimize} & f(x) \\
\text { subject to } & G x \leq h \\
& A x=b
\end{array}
$$

optimal value p^{\star}
Lagrangian

$$
\begin{aligned}
L(x, \lambda, \nu) & =f(x)+\lambda^{T}(G x-h)+\nu^{T}(A x-b) \\
& =f(x)+\left(G^{T} \lambda+A^{T} \nu\right)^{T} x-h^{T} \lambda-b^{T} \nu
\end{aligned}
$$

dual function

$$
g(\lambda, \nu)=\inf _{x} L(x, \lambda, \nu)=-f^{*}\left(-G^{T} \lambda-A^{T} \nu\right)-h^{T} \lambda-b^{T} \nu
$$

(with $f^{*}(y)=\sup _{x}\left(y^{T} x-f(x)\right)$ the conjugate of f)

Dual problem

$$
\begin{array}{ll}
\text { maximize } & g(\lambda, \nu) \\
\text { subject to } & \lambda \geq 0
\end{array}
$$

optimal value d^{\star}
a convex optimization problem in λ, ν
weak duality: $p^{\star} \geq d^{\star}$, without exception
strong duality: $p^{\star}=d^{\star}$ if a constraint qualification holds (for example, primal problem is feasible and $\operatorname{dom} f$ open)

Least-norm solution of linear equations

$$
\begin{array}{ll}
\operatorname{minimize} & f(x)=\|x\| \\
\text { subject to } & A x=b
\end{array}
$$

recall that f^{*} is indicator function of unit dual norm ball

dual problem

$$
\text { maximize }-b^{T} \nu-f^{*}\left(-A^{T} \nu\right)= \begin{cases}-b^{T} \nu & \left\|A^{T} \nu\right\|_{*} \leq 1 \\ -\infty & \text { otherwise }\end{cases}
$$

reformulated dual problem

$$
\begin{array}{ll}
\text { maximize } & b^{T} z \\
\text { subject to } & \left\|A^{T} z\right\|_{*} \leq 1
\end{array}
$$

Norm approximation

$$
\operatorname{minimize} \quad\|A x-b\|
$$

reformulated problem

$$
\begin{array}{ll}
\operatorname{minimize} & \|y\| \\
\text { subject to } & y=A x-b
\end{array}
$$

dual function

$$
\begin{aligned}
g(\nu) & =\inf _{x, y}\left(\|y\|+\nu^{T} y-\nu^{T} A x+b^{T} \nu\right) \\
& =\left\{\begin{array}{ll}
b^{T} \nu & A^{T} \nu=0, \\
-\infty & \text { otherwise }
\end{array} \quad\|\nu\|_{*} \leq 1\right.
\end{aligned}
$$

dual problem

$$
\begin{array}{ll}
\operatorname{maximize} & b^{T} z \\
\text { subject to } & A^{T} z=0, \quad\|z\|_{*} \leq 1
\end{array}
$$

Karush-Kuhn-Tucker optimality conditions

if strong duality holds, then x, λ, ν are optimal if and only if

1. primal feasibility:

$$
x \in \operatorname{dom} f, \quad G x \leq h, \quad A x=b
$$

2. $\lambda \geq 0$
3. complementary slackness:

$$
\lambda^{T}(h-G x)=0
$$

4. x minimizes $L(x, \lambda, \nu)=f(x)+\lambda^{T}(G x-h)+\nu^{T}(A x-b)$ for differentiable f, condition 4 can be expressed as

$$
\nabla f(x)+G^{T} \lambda+A^{T} \nu=0
$$

Outline

- Lagrange dual
- dual decomposition
- dual proximal gradient method
- multiplier methods

Dual methods

primal problem

$$
\begin{array}{ll}
\operatorname{minimize} & f(x) \\
\text { subject to } & G x \leq h \\
& A x=b
\end{array}
$$

dual problem

$$
\begin{array}{ll}
\text { maximize } & -h^{T} \lambda-b^{T} \nu-f^{*}\left(-G^{T} \lambda-A^{T} \nu\right) \\
\text { subject to } & \lambda \geq 0
\end{array}
$$

possible advantages of solving the dual when using first-order methods

- dual problem is unconstrained or has simple constraints
- dual problem can be decomposed into smaller problems

(Sub-)gradients of conjugate function

$$
f^{*}(y)=\sup _{x}\left(y^{T} x-f(x)\right)
$$

- subgradient: x is a subgradient at y if it maximizes $y^{T} x-f(x)$
- if maximizing x is unique, then f^{*} is differentiable this is the case, for example, if f is strictly convex
strongly convex function: f is strongly convex with parameter $\mu>0$ if

$$
f(x)-\frac{\mu}{2} x^{T} x \quad \text { is convex }
$$

implies that $\nabla f^{*}(x)$ is Lipschitz continuous with parameter $1 / \mu$

Dual gradient method

primal problem with equality constraints and dual

$$
\begin{array}{ll}
\operatorname{minimize} & f(x) \\
\text { subject to } & A x=b
\end{array}
$$

dual ascent: use (sub-)gradient method to minimize

$$
-g(\nu)=b^{T} \nu+f^{*}\left(-A^{T} \nu\right)=\sup _{x}\left((b-A x)^{T} \nu-f(x)\right)
$$

algorithm

$$
\begin{aligned}
x^{+} & =\underset{x}{\operatorname{argmin}}\left(f(x)+\nu^{T} A x\right) \\
\nu^{+} & =\nu+t\left(A x^{+}-b\right)
\end{aligned}
$$

of interest if calculation of x^{+}is inexpensive (for example, separable)

Dual decomposition

$$
\begin{array}{ll}
\operatorname{minimize} & f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right) \\
\text { subject to } & G_{1} x_{1}+G_{2} x_{2} \leq h
\end{array}
$$

objective is separable; constraint is complicating (or coupling) constraint dual problem ('master' problem)

$$
\begin{array}{ll}
\text { maximize } & -h^{T} \lambda-f_{1}^{*}\left(-G_{1}^{T} \lambda\right)-f_{2}^{*}\left(-G_{2}^{T} \lambda\right) \\
\text { subject to } & \lambda \geq 0
\end{array}
$$

can be solved by (sub-)gradient projection if $\lambda \geq 0$ is the only constraint subproblems: for $j=1,2$, evaluate

$$
f_{j}^{*}\left(-G_{j}^{T} \lambda\right)=-\inf _{x_{j}}\left(f_{j}\left(x_{j}\right)+\lambda^{T} G_{j} x_{j}\right)
$$

maximizer x_{j} gives subgradient $-G_{j} x_{j}$ of $f_{j}^{*}\left(-G_{j}^{T} \lambda\right)$ w.r.t. λ

dual subgradient projection method

- solve two unconstrained (and independent) subproblems

$$
x_{j}^{+}=\underset{x_{j}}{\operatorname{argmin}}\left(f_{j}\left(x_{j}\right)+\lambda^{T} G_{j} x_{j}\right), \quad j=1,2
$$

- make projected subgradient update of λ

$$
\lambda^{+}=\left(\lambda+t\left(G_{1} x_{1}^{+}+G_{2} x_{2}^{+}-h\right)\right)_{+}
$$

interpretation: price coordination between two units in a system

- constraints are limits on shared resources; λ_{i} is price of resource i
- dual update $\lambda_{i}^{+}=\left(\lambda_{i}-t s_{i}\right)_{+}$depends on slacks $s=h-G_{1} x_{1}-G_{2} x_{2}$
- increases price λ_{i} if resource is over-utilized $\left(s_{i}<0\right)$
- decreases price λ_{i} if resource is under-utilized $\left(s_{i}>0\right)$
- never lets prices get negative

Outline

- Lagrange dual
- dual decomposition
- dual proximal gradient method
- multiplier methods

First-order dual methods

$$
\begin{array}{llll}
\operatorname{minimize} & f(x) & \text { maximize } & -f^{*}\left(-G^{T} \lambda-A^{T} \nu\right) \\
\text { subject to } & G x \geq h & \text { subject to } & \lambda \geq 0 \\
& A x=b & &
\end{array}
$$

subgradient method: slow, step size selection difficult
gradient method: faster, requires differentiable f^{*}

- in many applications f^{*} is not differentiable, has a nontrivial domain
- f^{*} can be smoothed by adding a small strongly convex term to f
proximal gradient method (this section): dual costs split in two terms
- first term is differentiable
- second term has an inexpensive prox-operator

Composite structure in the dual

primal problem with separable objective

$$
\begin{array}{ll}
\operatorname{minimize} & f(x)+h(y) \\
\text { subject to } & A x+B y=b
\end{array}
$$

dual problem

$$
\operatorname{maximize} \quad-f^{*}\left(A^{T} z\right)-h^{*}\left(B^{T} z\right)+b^{T} z
$$

has the composite structure required for the proximal gradient method if

- f is strongly convex; hence ∇f^{*} is Lipschitz continuous
- prox-operator of $h^{*}\left(B^{T} z\right)$ is cheap (closed form or efficient algorithm)

Regularized norm approximation

$$
\operatorname{minimize} \quad f(x)+\|A x-b\|
$$

f strongly convex with modulus $\mu ;\|\cdot\|$ is any norm
reformulated problem and dual

$$
\begin{array}{llll}
\operatorname{minimize} & f(x)+\|y\| & \text { maximize } & b^{T} z-f^{*}\left(A^{T} z\right) \\
\text { subject to } & y=A x-b & \text { subject to } & \|z\|_{*} \leq 1
\end{array}
$$

- gradient of dual cost is Lipschitz continuous with parameter $\|A\|_{2}^{2} / \mu$

$$
\nabla f^{*}\left(A^{T} z\right)=\underset{x}{\operatorname{argmin}}\left(f(x)-z^{T} A x\right)
$$

- for most norms, projection on dual norm ball is inexpensive
problem: minimize $f(x)+\|A x-b\|$
dual gradient projection algorithm: choose initial z and repeat

$$
\begin{aligned}
\hat{x} & :=\underset{x}{\operatorname{argmin}}\left(f(x)-z^{T} A x\right) \\
z & :=P_{C}(z+t(b-A \hat{x}))
\end{aligned}
$$

- P_{C} is projection on $C=\left\{y \mid\|y\|_{*} \leq 1\right\}$
- step size t is constant or from backtracking line search
- can use accelerated gradient projection algorithm (FISTA) for z-update
- first step decouples if f is separable

Outline

- Lagrange dual
- dual decomposition
- dual proximal gradient method
- multiplier methods

Moreau-Yosida regularization of the dual

a general technique for smoothing the dual of

$$
\begin{array}{ll}
\text { minimize } & f(x) \\
\text { subject to } & A x=b
\end{array}
$$

- maximizing $g(\nu)=\inf _{x}\left(f(x)+\nu^{T}(A x-b)\right)$ is equivalent to maximizing

$$
g_{t}(\nu)=\sup _{z}\left(g(z)-\frac{1}{2 t}\|\nu-z\|_{2}^{2}\right)
$$

- from duality, $g_{t}(\nu)=\inf _{x} L_{t}(x, \nu)$ where

$$
L_{t}(x, \nu)=f(x)+\nu^{T}(A x-b)+(t / 2)\|A x-b\|_{2}^{2}
$$

- g_{t} is concave, differentiable with Lipschitz cont. gradient (constant $1 / t$)

$$
\nabla g_{t}(\nu)=A \hat{x}-b, \quad \hat{x}=\underset{x}{\operatorname{argmin}} L_{t}(x, \nu)
$$

Augmented Lagrangian method

algorithm: choose initial ν and repeat

$$
\begin{aligned}
& x^{+}=\operatorname{argmin} L_{t}(x, \nu) \\
& \nu^{+}=\nu+t\left(A x^{+}-b\right)
\end{aligned}
$$

- maximizes Moreau-Yosida regularization g_{t} via gradient method
- L_{t} is the augmented Lagrangian (Lagrangian plus quadratic penalty)

$$
L_{t}(x, \nu)=f(x)+\nu^{T}(A x-b)+\frac{t}{2}\|A x-b\|_{2}^{2}
$$

- method can be extended to problems with inequality constraints

Dual decomposition

convex problem with separable objective

$$
\begin{array}{ll}
\operatorname{minimize} & f(x)+h(y) \\
\text { subject to } & A x+B y=b
\end{array}
$$

augmented Lagrangian

$$
L_{t}(x, y, \nu)=f(x)+h(y)+\nu^{T}(A x+B y-b)+\frac{t}{2}\|A x+B y-b\|_{2}^{2}
$$

- difficulty: quadratic penalty destroys separability of Lagrangian
- solution: replace minimization over (x, y) by alternating minimization

Alternating direction method of multipliers

apply one cycle of alternating minimization steps to augmented Lagrangian

1. minimize augmented Lagrangian over x :

$$
x^{(k)}=\underset{x}{\operatorname{argmin}} L_{t}\left(x, y^{(k-1)}, \nu^{(k-1)}\right)
$$

2. minimize augmented Lagrangian over y :

$$
y^{(k)}=\underset{y}{\operatorname{argmin}} L_{t}\left(x^{(k)}, y, \nu^{(k-1)}\right)
$$

3. dual update:

$$
\nu^{(k)}:=\nu^{(k-1)}+t\left(A x^{(k)}+B y^{(k)}-b\right)
$$

can be shown to converge under weak assumptions

Example: sparse covariance selection

$$
\text { minimize } \operatorname{tr}(C X)-\log \operatorname{det} X+\|X\|_{1}
$$

variable $X \in \mathbf{S}^{n} ;\|X\|_{1}$ is sum of absolute values of X
reformulation

$$
\begin{array}{ll}
\operatorname{minimize} & \operatorname{tr}(C X)-\log \operatorname{det} X+\|Y\|_{1} \\
\text { subject to } & X-Y=0
\end{array}
$$

augmented Lagrangian

$$
\begin{aligned}
& L_{t}(X, Y, Z) \\
& \quad=\operatorname{tr}(C X)-\log \operatorname{det} X+\|Y\|_{1}+\operatorname{tr}(Z(X-Y))+\frac{t}{2}\|X-Y\|_{F}^{2}
\end{aligned}
$$

ADMM steps: alternating minimization of augmented Lagrangian

$$
\operatorname{tr}(C X)-\log \operatorname{det} X+\|Y\|_{1}+\operatorname{tr}(Z(X-Y))+\frac{t}{2}\|X-Y\|_{F}^{2}
$$

- minimization over X :

$$
\hat{X}=\underset{X}{\operatorname{argmin}}\left(-\log \operatorname{det} X+\frac{t}{2}\left\|X-Y+\frac{1}{t}(C+Z)\right\|_{F}^{2}\right)
$$

follows easily from eigenvalue decomposition of $Y-(1 / t)(C+Z)$

- minimization over Y :

$$
\hat{Y}=\underset{Y}{\operatorname{argmin}}\left(\|Y\|_{1}+\frac{t}{2}\left\|Y-\hat{X}-\frac{1}{t} Z\right\|_{F}^{2}\right)
$$

apply element-wise soft-thresholding to $\hat{X}-(1 / t) Z$

- dual update $Z:=Z+t(\hat{X}-\hat{Y})$
cost per iteration dominated by cost of eigenvalue decomposition

Sources and references

these lectures are based on the courses

- EE364A (S. Boyd, Stanford), EE236B (UCLA), Convex Optimization WWW.stanford.edu/class/ee364a www.ee.ucla.edu/ee236b/
- EE236C (UCLA) Optimization Methods for Large-Scale Systems www.ee.ucla.edu/~vandenbe/ee236c
- EE364B (S. Boyd, Stanford University) Convex Optimization II WWw.stanford.edu/class/ee364b
see the websites for expanded notes, references to literature and software

