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Motivation and key ideas

Summary: key ideas

Inference: the process of discovering from data
about mechanisms that may have caused or generated that data
or at least explain it

Goals are varied
perhaps simply predicting future data
more ambitiously, learning about scientific or societal truths

In applied mathematics language, these are inverse problems
Bayesian inference is about using probability to do all this
A key strength: all sources of uncertainty are simultaneously and
coherently considered
It is model-based

in the language of machine learning, these are generative models
we can use Bayesian methods to choose and criticise our models
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Motivation and key ideas

Summary: contents

motivation
probability
basic principles and concepts
modelling in principle and practice
computing Bayesian inferences
subjective and objective theories
sensitivity to assumptions
some more substantial applications
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Motivation and key ideas

Connections

There are connections with all other topics covered in this summer
school, but especially with

Arnaud Doucet: Monte Carlo methods (yesterday & today)
Yee Whye Teh: Bayesian nonparametrics (next Monday/Tuesday)
Martin Wainwright: Graphical models (next Thursday/Friday)

so in my lectures, these topics will be under-played.
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Motivation and key ideas

Machine Learning (As Explained to a Statistician)
Michael Jordan

A loose confederation of themes in statistical inference (and
decision-making)
A focus on prediction and exploratory data analysis - not much
worry about “coverage”
A focus on computational methodology and empirical evaluation,
with a dollop of empirical process theory - lots of nonparametrics,
but not much asymptotics
Sometimes Bayesian and sometimes frequentist - not much
interplay
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Motivation and key ideas

Third generation machine intelligence
Chris Bishop

General theme: deep integration of domain knowledge and statistical
learning

Bayesian framework
Probabilistic graphical models
Fast inference using local message-passing

Origins: Bayesian networks, decision theory, HMMs, Kalman filters,
MRFs, mean field theory, ...
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Motivation and key ideas

Statistics and machine learning

Origins in different communities and with different traditions, but
rapidly converging
Machine learning

has been more ambitious in reach and scale
big problems, but structure within observations, not between them
focus on prediction, evaluated by cross-validation, etc

Statistics
more emphasis on model-building, more reliance on models
more aim at scientific understanding, less concern with throughput
evaluation through models

Still a lot to learn from each other
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Motivation and key ideas

Bayesian and frequentist statistics

There are different paradigms for statistical inference – not just these
two, by the way. Historically, philosophical debates have been
interesting, sometimes distracting or destructive. Nowadays, there’s
more understanding and flexibility, less ‘theology’.
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Motivation and key ideas

Bayesian and frequentist statistics

Bayesian
methods only come from
models
inferences should be made
conditional on the current data
focus on coherence
natural in the setting of a
long-term project with a
domain expert?
philosophically compelling but
can be hard to do

Frequentist
methods can come from
anywhere
inferential methods should
give good answers in repeated
use
focus on calibration
natural when writing software
that will be used by many
people with many data sets?
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Motivation and key ideas

Bayesian inference: some other issues

defending a Bayesian analysis: why should you have to?
directness of inference
flexibility of inference - ranking, selection
borrowing strength (one thing is always informative about another)
really pays off in complex, high-dimensional problems
ubiquitous cheap computing has really allowed Bayesian analysis
to blossom
evaluating Bayesian methods by their frequentist performance
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Basics

Probability

“nothing but common sense reduced to calculus”
measures uncertainty on a [0,1] scale (with obvious
interpretations of 0 and 1)
P(A ∪ B) = P(A) + P(B) if A ∩ B = ∅ (the chance of A or B is the
sum of the individual chances, if A and B cannot both occur
together)

This (or rather, this with the 2nd rule extended to countably infinite
collections of events) is all you need for the entire theory.

Most of the time, we only need work with random variables –
numerical-valued random outcomes – and their distributions.
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Basics

Bayes theorem

To escape the firing squad, you can draw two balls from the urns – if
you get a red ball, you are freed. You choose an urn at random, and
the ball you draw first is blue!

If you stick with the same urn for the 2nd draw, what is your chance of
escape?

Would you do better to switch urns after the first draw?
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Basics

Bayes theorem

A silly problem - but captures the ideas of
inference: which urn did you draw from?
prediction: what will the next ball be?
decision: which is the better strategy?

– all determined by rules of probability.
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Basics

Bayes theorem

Let the random quantities of interest by U (urn), B1 (first ball drawn)
and B2 (second ball drawn). Then the inference question needs us to
evaluate

P(U = left|B1 = blue) = P(U = left ∩ B1 = blue)/P(B1 = blue)

But P(U = left ∩ B1 = blue) = P(U = left)× P(B1 = blue|U = left) =
1/2× 2/5 = 1/5

Also P(B1 = blue) = P(U = left ∩ B1 = blue) + P(U = right ∩ B1 =
blue) = 1/5 + 1/2× 3/4 = 23/40

So our answer is 1/5÷ 23/40 = 8/23.
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Basics

Bayes theorem

For a binary variable like U it’s cleaner to work with odds:

P(U = left|B1 = blue)

P(U = right|B1 = blue)
=

P(U = left)
P(U = right)

× P(B1 = blue|U = left)
P(B1 = blue|U = right)

=
1/2
1/2
× 2/5

3/4
=

8
15

That solves the inference question. We see that, given the data that
B1 = blue we now think it is more likely that we are drawing from the
urn on the right.

But we are not certain about that – and the rules of probability correctly
use that uncertainty in the prediction and decision questions.
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Basics

Bayes theorem – prediction

For the prediction question we want P(B2 = red|B1 = blue), or
equivalently the odds

P(B2 = red|B1 = blue)

P(B2 = blue|B1 = blue)
=

P(B1 = blue ∩ B2 = red)

P(B1 = blue ∩ B2 = blue)

and to evaluate both numerator and denominator we go back to
conditioning on U, e.g. P(B1=blue ∩ B2= red)
= P(U = left)P(B1=blue|U = left)P(B2= red|U = left,B1=blue)
+P(U = right)P(B1=blue|U = right)P(B2= red|U = right,B1=blue)
= 1/2× 2/5× 3/4 + 1/2× 3/4× 1/3 = 11/40.

Similarly
P(B1 = blue∩B2 = blue) = 1/2×2/5×1/4+1/2×3/4×2/3 = 12/40,
and finally the odds that B2 = red given B1 = blue are 11/12.
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Basics

Bayes theorem – decision

For the decision question we want simply to compare these odds that
B2 = red given B1 = blue with the same thing calculated assuming
you switch urns after the first draw.

What do you think? Stick or switch?
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Basics

Bayes theorem

Inference
p(θ|y) =

p(θ)p(y |θ)∫
p(θ)p(y |θ)dθ

Prediction

p(y+|y) =

∫
p(θ)p(y |θ)p(y+|θ, y)dθ∫

p(θ)p(y |θ)dθ
=

∫
p(θ|y)p(y+|θ, y)dθ
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Basics Basic principles and concepts

Consistent use of probability to quantify uncertainty

All variables in the system as modelled as random variables –
whatever their role: parameters, data, latent, observable,
observed, unobservable, unobserved, future . . . – we do not blur
these distinctions philosophically, just treat them together
mathematically.
The randomness of these quantities can be of different kinds –
notably epistemological and aleatory
epistemological uncertainty: concerning lack of knowledge about
unique and potentially verifiable events, essentially a degree of
ignorance
aleatory uncertainty: concerned with essentially random
phenomena
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Basics Basic principles and concepts

Epistemological and aleatory
Thanks to David Spiegelhalter

An experiment I carry out in front of school audiences helps to
distinguish these 2 concepts.

I hold a coin and ask, "What is the chance this will come up heads?"
They cheerfully say something like "50%" or "half-and-half."

I then toss the coin, catch it, flip it onto the back of my hand without
revealing it, and ask, "What is the probability this is heads?" Pause.
Then someone, less confidently, mumbles "50%."

I reveal the coin to myself, but not to them, and ask, "What is your
probability that this is heads?" Very grudgingly they might eventually
admit "50%."
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Basics Basic principles and concepts

Epistemological and aleatory
Thanks to David Spiegelhalter

In this experiment I have gone from pure aleatory uncertainty to pure
epistemological uncertainty, showing

epistemological uncertainty is "in the eye of the beholder" (my
probability was eventually 0% or 100%, whereas theirs was still
50%),
that the language of probability applied to both forms, and
that these different types of uncertainty may be perceived
differently.
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Basics Basic principles and concepts

Consistent use of probability to quantify uncertainty

We work throughout with a single joint probability distribution –
that of all the variables, whatever their status
This joint distribution is arrived at (‘assessed’) through scientific
judgement, guided by the laws of probability
We model the process of observation by conditioning on observed
values (may be philosophically controversial)
We can then perform inference by looking at
P(unobserved|observed) (=P(hidden|visible))
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Basics Basic principles and concepts

Likelihood and prior

In a simple standard setting, suppose we have parameters θ and
data y . Having observed y , we make inference about θ using the
posterior p(θ|y).
p(θ|y) = p(θ, y)/p(y) ∝ p(θ, y) (proportional in θ)
Almost always, the joint distribution p(θ, y) is created from

the marginal distribution (or prior) for θ, p(θ), and
the conditional distribution (or likelihood) for y given θ, p(y |θ)
(a generative model),
multiplied to give p(θ, y) = p(θ)× p(y |θ)

We will talk more about priors later, but quite commonly p(θ) and
p(y |θ) are different in nature – the prior p(θ) is often entirely
subjective, perhaps based on unquantified scientific judgement,
while the likelihood p(y |θ) may be open to empirical verification.
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Basics Basic principles and concepts

Sequential acquisition of data

One of the many free benefits of using probability consistently in
inference can be seen in the neat way that inferences are updated as
data are acquired, in a sequential setting.
Suppose we acquire y1, y2, . . . in sequence, and wish to update our
inference about θ after each observation. In the simple case where
y1, y2, . . . are conditionally independent given θ, we have

p(θ, y1, y2, . . . , yn) = p(θ)
n∏

i=1

p(yi |θ) , so

p(θ|y1, y2, . . . , yn) ∝ p(θ)
n∏

i=1

p(yi |θ) ∝ p(θ|y1, y2, . . . , yn−1)× p(yn|θ)

. . . the prior for the nth datum is the posterior after the (n − 1)th.
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Basics Basic principles and concepts

Utility and loss

Reading many accounts of Bayesian analysis, you’d think that it is only
about combining prior and likelihood – what you thought about θ before
you had any data, and what you learnt about θ by acquiring the data –
together with some computational and presentational work.

But a third important ingredient is needed, always present though often
implicit. It is essential to think about it explicitly if

you are taking decisions
you are testing hypotheses
you are being thoughtful about estimation

This approach is called decision theory.
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Basics Basic principles and concepts

Utility and loss

Having modelled your system, observed data and obtained the
posterior distribution p(θ|y) – what do you do with it?

Utility theory is very general and comprehensive, and allows you to
analyse the value (for example in money terms) of acquiring data in the
presence of uncertainty. For inference, it is enough to think about the
simpler idea of loss functions.

we observe y ,
make a decision d = δ(y), and
incur a loss L(d , θ) if the true value of ‘nature’ is θ,

– ‘how bad’ is it to decide d = δ(y) when θ is true?
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Basics Basic principles and concepts

Loss functions and hypothesis testing

A hypothesis is a statement about θ. In the simplest case, imagine we
know (or can assume) that either θ lies in a set Ω0 or a set Ω1, with
Ω0 ∩ Ω1 = ∅. We want to use data y to decide which of the statements
θ ∈ Ω0 and θ ∈ Ω1 is true – that is we take a decision d = d0 or d1
where di is ‘I think θ ∈ Ωi ’.

If we get the right answer, that’s fine. Otherwise we incur a loss:

L(di , θ) =

{
0 if θ ∈ Ωi ,

ai otherwise,

where a0,a1 > 0.

Now, you observe y – what should you decide?
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Basics Basic principles and concepts

Loss functions and hypothesis testing

If you knew θ, it’s trivial to decide d0 or d1 – but you only know y .
An intuitively natural principle (justified by axiomatic utility theory) is to
choose d to minimise the (posterior) expected loss.

E(L(d , θ)|y) =

∫
L(d , θ)p(θ|y)dθ

In our simple testing problem, E(L(di , θ)|y) = aip(θ 6∈ Ωi |y). This
amounts to choosing d0 if p(θ ∈ Ω0|y) > a0/(a0 + a1) – thresholds the
posterior probability, taking into account the possibly different costs of
false positives and false negatives.

Note that in this (and every) case, the optimal decision is naturally a
function of y .
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Basics Basic principles and concepts

Loss functions and estimation

Estimation is the process of giving a single value of θ as a ‘best guess’
given the data – so is covered by decision theory with ‘decision’ that θ
has a particular value θ̂. The posterior expected loss if you assert that
θ = θ̂ is then

E(L(θ̂, θ)|y) =

∫
L(θ̂, θ)p(θ|y)dθ

A common choice is quadratic loss, L(θ̂, θ) = (θ̂ − θ)2 (for a single
parameter θ), and we can then simplify
E(L(θ̂, θ)|y) = E((θ̂ − θ)2|y) = (θ̂ − E(θ|y))2 + var(θ|y). The best we
can do is therefore to set θ̂ = E(θ|y) – i.e. use the posterior
expectation. The same is true for a vector parameter, using
L(θ̂, θ) = (θ̂ − θ)T A(θ̂ − θ) for any positive definite A.
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Basics Basic principles and concepts

Loss functions and estimation

But the decision theory approach allows more flexibility than that –
perhaps the cost of over-estimation is greater than that of
underestimation, then you would want to assume that
L(θ + c, θ) > L(θ − c, θ) for all c > 0.
For example, suppose

L(θ̂, θ) =

{
τ |θ̂ − θ| θ̂ < θ

(1− τ)|θ̂ − θ| θ̂ > θ

then the posterior expected loss turns out to be minimised when θ̂ is
the 100τ% percentile of the posterior distribution p(θ|y).

In summary, optimal Bayesian estimation needs you to choose your
loss function, and the choice of quadratic loss/posterior mean
estimator is not inevitable.
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Basics Basic principles and concepts

Loss functions and frequentist inference

Loss functions also play a role in frequentist theory, though one that is
less prominent.

But frequentists are interested in the expectation of the loss function
under the distribution of the data not the parameter:

R(δ, θ) =

∫
L(δ(y), θ)p(y |θ)dy

For example, the minimax decision rule δ is that which minimises
maxθ R(δ, θ) over δ.

A decision rule is admissible if there is no other rule that is better for all
θ: it turns out that, loosely speaking, every admissible rule is a Bayes
rule!
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Basics Priors

Conjugacy

For some standard models p(y |θ) for data, a particular choice of prior
p(θ) yields particular algebraic and computational advantages.

A prior p(θ) is conjugate for a particular likelihood p(y |θ) is the
resulting posterior p(θ|y) has the same algebraic form.

For example, if p(y |θ) is the Poisson distribution exp(−θ)θy/y ! and we
assume a Gamma prior p(θ) = βαθα−1 exp(−βθ)/Γ(α), then

p(θ|y) ∝ p(θ)× p(y |θ) ∝ exp(−θ)θy × θα−1 exp(−βθ)

∝ θα+y−1 exp(−(β + 1)θ)

so p(θ|y) is another Gamma distribution, but with parameters (α, β)
updated to (α + y , β + 1).
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Basics Priors

Conjugacy

A second observation z would further update this to
Gamma(α + y + z, β + 2): so we can interpret the Gamma prior as
equivalent to ‘prior data’: β observations whose total is α; conjugate
priors can always be interpreted in this way.

Conjugacy used to be a supremely important factor in choosing a prior,
but with the complexity of models typically now used, and the
development of computational methods that make algebraic tractability
less important, this is no longer true.

However, you still often see conditionally conjugate priors assumed
even when MCMC computation is being used, because of small
computational advantages. It’s a mistake to let these considerations
seduce you into adopting a prior that does not reflect the scientific
judgements you wish to bring to the analysis.
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Basics Priors

Subjective and Objective Bayes

Subjective Bayesians take the view that once we have worked hard to
understand the system under study, so that we can model everything
coherently (with the aid of Bayes’ theorem), then all probabilities
properly represent our degrees of belief, and cannot be challenged.

The objective Bayes view is that achieving this understanding is too
difficult, especially in complex models, and we will be inevitably be
forced into simplifying assumptions (lots of independence for example)
that will conflict with our true judgements. Conditional probabilities are
taken not as representing judgements, but as quantifying the extent to
what one event logically determines another. The emphasis switches
to choosing priors to have minimal impact on posterior inference.
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Basics Priors

Uninformative priors

There have been various attempts to define ‘objective’ priors that
represent complete prior ignorance in a logically consistent and
realistic way.

Jeffreys’ prior for a given likelihood is proportional to |I(θ)|1/2, I(θ)
being Fisher’s information matrix. It has the nice property of being
equivariant under smooth transformations of θ.

Other ideas for representing ignorance are based on entropy, including
maximum entropy priors, and Bernardo’s reference priors, which have
the property that they maximise the information that will be gained
asymptotically under replications of the experiment.

Both Jeffreys’ and reference priors have the unattractive feature that
they depend on the form of the data that will be collected, not only on
the intrinsic character of the ‘state of nature’ θ itself.
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Basics Priors

Improper priors

A distribution is improper if it integrates (or sums) to∞. It is quite
possible for a prior to be improper but the corresponding posterior

p(θ|y) =
p(θ)p(y |θ)∫
p(θ)p(y |θ)dθ

to be perfectly proper – e.g. the previous example with α = β = 0. It’s
tempting to rely on this when you have little or no genuine prior
information. Is it safe to do so?

Yes – but only when the prior and the resulting posterior are both limits
of corresponding proper (prior, posterior) pairs: pn(θ)→ p(θ),
pn(θ|y) ∝ pn(θ)p(y |θ)→ p(θ|y).

Uninformative priors are often improper.
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Basics Priors

Some principles of Bayesian modelling

Hierarchical models
Exchangeability
HMMs and state-space models
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Basics Hierarchical modelling

Motivation for hierarchical modelling

How to make inference on multiple parameters {θ1, . . . , θI} measured
on I units (persons, centres, areas, ... ) which are related or connected
by the structure of the problem ?
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Basics Hierarchical modelling

The ‘surgical’ example

In 12 hospitals carrying out
cardiac surgery on babies,
the numbers of operations
performed and mortality
rates are recorded. What
are the best and worst
hospitals? Are the
differences more than can
be attributable to chance?
What rate do you expect in
the 13th hospital? Or in the
12th hospital, in a different
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Basics Hierarchical modelling

The ‘surgical’ example

In this example, θi is the true mortality rate in the i th hospital. Let Yi
and ni be the number of deaths and the number of operations, in the
i th hospital. We might assume Yi ∼ Binomial(ni , θi).
We can identify three different assumptions:

1. Identical parameters: All the θ’s are identical, in which case all the
data can be pooled and the individual units ignored.

2. Independent parameters: All the θ’s are entirely unrelated, in
which case the results from each unit can be analysed
independently (for example using a fully specified prior distribution
within each unit)
→ individual estimates of θi are likely to be highly variable (unless very

large sample sizes)

3. Exchangeable parameters: The θ’s are assumed to be ‘similar’ in
the sense that the ‘labels’ convey no information
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Basics Hierarchical modelling

The ‘surgical’ example

In the 12 hospitals, the ‘raw’ mortality rates vary between 0/47
(hospital A) and 31/215=0.1442 (H); the aggregated rate is
208/2814=0.0739. What are the ‘true’ rates in hospitals A and H?

Non-Bayesian answer 1. Assume that in hospital i , the number of
deaths Yi ∼ Bin(ni , θ). The maximum likelihood estimator of θ is
(
∑

i Yi)/(
∑

i ni) = 0.0739, which applies to both A and H.

Non-Bayesian answer 2. Assume that in hospital i , the number of
deaths Yi ∼ Bin(ni , θi), independently. The maximum likelihood
estimator of θi is Yi/ni = 0 for A and 0.1442 for H.

Could the θi all be equal? If θ is 0.0739, the chance that YH is as big or
bigger than 31 is 0.000284. So, no!
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Basics Hierarchical modelling

The ‘surgical’ example

Bayesian answer 1. Assume in addition that a priori, θ ∼ Beta(α, β)
where α and β are say 4 and 46. (This gives a mean and variance for
the Beta distribution roughly comparable to the sample mean and
variance of the raw mortality rates). Then we get the posterior mean
= (

∑
i Yi + α)/(

∑
i ni + α + β) = 0.0740 (for both A and H).

Bayesian answer 2. Making a similar prior assumption on each θi , the
posterior mean of θi is (Yi +α)/(ni +α+ β) = 0.0412, 0.1321 for A and
H.
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Basics Hierarchical modelling

The ‘surgical’ example

Which is best? Note that the Bayesian estimates are ‘shrunk’ towards
the prior mean α/(α + β) = 0.08, to an extent depending on the
‘denominator’ ni or n. This eliminates ridiculous conclusions like
θA = 0. However, it is still the case that only the data from hospital i is
used in estimating θi . Surely the other hospitals’ data carries
information too? (For example, suppose that YH was missing: would
you be able to guess its value better after having observed the other
data?)
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Basics Hierarchical modelling

The ‘surgical’ example

Our initial model 1 (Bayesian or non-Bayesian) revealed difficulty with
the assumption that there was a common mortality rate θ in every
hospital; we asked:

Does this model adequately describe the random variation in
outcomes for each hospital?
Are the hospital failure rates more variable than our model
assumes?

and concluded ’no’ and ’yes’, respectively.
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Basics Hierarchical modelling

Modelling the excess variation

Let’s look at Bayesian model 2 above in more detail: we have modified
model 1 to allow for a different failure probability, θi for each hospital i :

(yi | θi) ∼ Binomial(ni , θi) where θi ∼ Beta(α, β)

Interpretation:

{θi}, the ‘true’ surgical failure rate in the hospitals are viewed as a
random sample from a common population distribution
⇒ hospital failure rates are assumed to be similar but not identical

Beta(α, β) prior describes the distribution of surgical failure rates
amongst the ‘population’ of hospitals

How would you specify values for α and β?
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Basics Hierarchical modelling

Approximate ‘empirical Bayes’ approach

Calculate crude failure rates yi/ni

Calculate the observed mean and variance of the 12 values yi/ni

Solve for α̂ and β̂ to obtain a beta distribution with this mean and
variance
Using Beta(α̂, β̂) as a prior, apply Bayes theorem to obtain
posteriors for true failure rates θi , p(θi |α̂, β̂, y1, y2, . . . , yI)
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Basics Hierarchical modelling

Potential problems with this approach:

We are using the data twice:
Once to estimate the prior
Again to estimate θi for each hospital

⇒ overestimate precision of our inference
Using any point estimate for α and β ignores some posterior
uncertainty about the population distribution of the θi ’s
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Basics Hierarchical modelling

Bayesian hierarchical models

The methods discussed here will allow us to do better, because we will
be able to assume in advance that the true mortality rates across the
hospitals are different (because the circumstances, patients, doctors,
... are different), but similar (because the operations, disease, ... are
the same). The effect we will see is that the raw estimates are shrunk
towards each other.

To do this, we need to deal with more than two sorts of variable – the
parameters and data of ordinary Bayesian models. The hospitals
problem has 3 levels of uncertainty – the hazard of this type of
operation, the variability between hospitals, and chance factors in an
individual patients’ operation. Such models are called hierarchical.
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Full hierarchical Bayes approach

Assume a joint probability model for the entire set of parameters
(θ1, θ2, . . . , θI , α, β)
– requires us to assign known prior distributions to α, β, e.g.

α ∼ Exponential(1) and β ∼ Exponential(1)

Apply Bayes theorem to calculate the joint posterior distribution of
all the unknown quantities simultaneously.

Level 1: yi ∼ Binomial(ni , θi), independently for each i
Level 2: θi ∼ Beta(α, β), independently for each i
Level 3: Prior for α, β
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Advantages of this approach

The posterior distribution for each θi

‘borrows strength’ from the likelihood contributions for all
hospitals, via their joint influence on the estimate of the unknown
population (prior) parameters α and β
reflects our full uncertainty about the true values of α and β

Such models are also called Random effects or Multilevel models.
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Graphical models for surgical example

Directed acyclic graphs (DAGs):
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Shrinkage and hierarchical models

To take a different example, suppose in each unit we observe a
response xi assumed to have a Normal likelihood

xi ∼ N(θi , τ
2
i )

Unit means θi are assumed to be exchangeable, and to have a Normal
distribution

θi ∼ N(µ, σ2)

where µ and σ2 are ‘hyper-parameters’, for the moment assumed
known, as are τ2

i .
It can be shown that, after observing xi , Bayes’ theorem gives

θi |xi ∼ N(wiµ+ (1− wi)xi , (1− wi)τ
2
i )

where wi = τ2
i /(τ2

i + σ2) ∈ (0,1) is the weight given to the prior mean.
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Shrinkage and hierarchical models

A Bayesian model therefore leads to inferences for each θi giving
intervals that are narrower than in the non-Bayesian approach, but
shrunk towards the prior mean response. wi controls both the
‘shrinkage’, and the reduction in the width of the interval: it depends on
precision of the individual unit i relative to the variability between units.
When {τ2

i } are also given a prior, the same principles apply, although
the solution is less explicit.

In a hierarchical model, µ and σ2 are random, and the effect of this is
more complicated again, and best seen numerically; the amount of
shrinkage is not determined in advance – it is discovered from the data
(an automatic consequence of Bayes’ theorem). µ will also be shrunk
towards the data in its posterior distribution, so that the θi are now
shrunk towards a “typical” x value.
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Exchangeability and de Finetti’s theorem

‘Exchangeability’ is a formal expression of the idea that we find no
systematic reason to distinguish the individual random variables
θ1, ..., θI – a judgement that they are ‘similar’ but not identical.

It is often an important ingredient in prior modelling.

An infinite sequence of 0/1 random variables θ1, θ2, . . . is called
(infinitely) exchangeable if any finite subset has a joint distribution that
is the same whatever the order in which the variables are written. E.g.
p(θ4, θ7, θ9) = p(θ7, θ9, θ4).
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Exchangeability and de Finetti’s theorem

If the variables are independent Bernoulli(φ), they are obviously
exchangeable. This remains true if φ is random (as in the coin-tossing
example, with two biased coins), since e.g.

p(θ4, θ7, θ9) =

∫ 1

0
p(φ)φθ4(1− φ)1−θ4φθ7(1− φ)1−θ7φθ9(1− φ)1−θ9dφ

(in the case φ has a continuous distribution), and this obviously only
depends on {θ4, θ7, θ9} (in fact only their sum), not the order they
appear. The remarkable thing is that the converse of this is true – the
only way to get infinitely exchangeable 0/1 random variables is by
Bernoulli trials with a fixed or random φ. This is (a form of) de Finetti’s
theorem. There are more general versions of the theorem, not just for
0/1 variables.
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Exchangeability and de Finetti’s theorem

It gives mathematical support for using hierarchical models: if your
prior beliefs about a set of parameters (e.g. the hospital mortality rates
{θi}) are exchangeable (really just a symmetry assumption), then
without loss of generality you can model them as i.i.d. from some
distribution given φ, and then make φ random.

p(θ1, θ2, . . . , θI) =

∫
p(φ)

I∏
i=1

p(θi |φ)dφ

Thus, under broad conditions an assumption of exchangeable units is
mathematically equivalent to assuming the θ’s are drawn at random
from some population distribution.
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What else do hierarchical models address?

Real data about real systems are complex: classic statistical methods
are not enough. Among the features that real data might have that we
could begin to handle are:

repeated measures,
heterogeneity between individuals,
explanatory variables at individual and group level,
measurement errors, multiple instruments,
missing data, informative censoring,
spatial or temporal structure.
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Summary: why hierarchical?

Many interlinked arguments to favour the use of hierarchical models:

by breaking down the problem in layers, able to separate structural
judgments on observables, on parameters and subjective
information
reduces the arbitrariness of hyperparameter choice→ “robustify”
the inference
natural structure for expressing dependence, prior correlations, ...
in a plausible way (see next lectures)
through shrinkage and borrowing of strength, parameter estimates
are stabilised
by de Finetti, if our beliefs are exchangeable, then they can be
expressed mathematically by a hierarchical model.
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Hidden Markov models and State space models

These classes of models, which are often treated as distinct, are really
two flavours of a similar idea, and they collectively provide a flexible
way of modelling dependent random systems evolving in ‘time’, where
‘time’ may be time, or linear position, or location in a genome, or
. . . The linear structure means that short cuts can often be taken in
computing inferences.

The key idea is that there are two sequences – a ‘hidden’ one
{xt , t = 0,1,2, . . .} and an observed one {yt , t = 0,1,2, . . .}. The
structure in the system is provided by assuming that {xt} is a Markov
chain, and the simplicity from assuming that only xt has a direct
influence of yt ; loosely, yt is a ‘noisy version’ of xt .

What this means essentially is that the dependence is in the system,
rather than the observation process, and this is realistic in very many
applications – and often convenient computationally.
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Hidden Markov models and State space models

In the language of graphical modelling, these models are represented
by this generic directed acyclic graph:

x1 x2 x3 x4 x5 x6 x7

y1 y2 y3 y4 y5 y6 y7
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Hidden Markov models

In HMM’s as usually defined, the distinctive feature is that xt has a
finite state space. Sometimes the states are known, but not always.
Usually, the transition probabilities between the states are unknown. In
a finite HMM, the values of yt are also in a finite set, so that everything
is discrete. In a normal HMM, the distribution of yt given xt is normal.

Examples.
communication channels
DNA and protein sequencing
ion channels
speech recognition
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State space models

As usually defined, the term state space models covers cases where
the process xt is continuous-valued. The classic version is the
gaussian linear state space model

xt+1 = axt + rut

yt = bxt + svt

where a, r ,b, s are constants (known or unknown) and ut and vt are
independent sequences of i.i.d. normal random variables. In many
applications, these quantities are all vectors and matrices.
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State space models

Examples.
automatic control, signal processing
time series, econometrics
tracking
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Filtering, smoothing and prediction

In many applications, where t represents actual time, we will wish to
make online inference, that is to report what we know about the x
process immediately after each yt is observed. Filtering refers to
estimating xt , given y≤t ≡ yt , yt−1, yt−2, . . . Smoothing refers to
estimating xs for some s < t , given y≤t . Prediction refers to estimating
xs for some s > t , given y≤t .

Even when there is no requirement to do inference online, it may still
be an attractive option since it may be much cheaper to compute (say)
p(xt |y≤t ) (filtering) than p(xt |all y), although this means throwing
information away.
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Kalman filtering

For the gaussian linear state space model, and vector generalisations
of it, there is a well-known and long-standing algorithm called the
Kalman filter for computing p(xt |y≤t ); because in a multivariate normal
(gaussian) distribution, all conditional distributions are also normal, all
that the algorithm needs to do is compute the mean and variance of
the filtering distribution, that is mt = E(xt |y≤t ) and wt = var(xt |y≤t ).

These can be calculated by the following recursion:

mt =
s2amt−1 + (a2wt−1 + r2)byt

s2 + (a2wt−1 + r2)b2

wt =
s2(a2wt−1 + r2)

s2 + (a2wt−1 + r2)b2
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Kalman filtering and variants

There are many different equivalent ways of writing this, and of course
in the vector case the expressions involve matrices and look more
complicated.

The Kalman filter is probably one of the most-often used algorithms in
the whole of electronic engineering.

If the state-space model is not gaussian, and/or not linear, there is no
general recursive formula for p(xt |y≤t ). Various adaptations of the idea
have been devised to solve the filtering problem approximately. In
recent years, the idea of particle filtering, where the distributions are
represented by large random samples, and the calculations are all
done by simulation, has become very popular.
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Forwards/backwards recursions

We can read off the joint distribution of all variables from the DAG:
letting x = (x0, x1, . . . , xT ) and y = (y1, y2, . . . , yT ) (note that we begin
x at t = 0), we have

p(x , y) = p(x0)
T∏

t=1

[p(xt |xt−1)p(yt |xt )]

(proportional as a function of x), assuming there are no unknown
parameters. Once the data are observed, they are fixed, so let us
remove them from the notation, and abbreviate:
g1(x0, x1) = p(x0)p(x1|x0)p(y1|x1) and gt (xt−1, xt ) = p(xt |xt−1)p(yt |xt ),
for t = 2, . . . ,T , then

p(x , y) =
T∏

t=1

gt (xt−1, xt )
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Forwards/backwards recursions

To calculate p(xt |y) = p(xt , y)/p(y) we need to sum this over all
values of x0, x1, . . . , xt−1, xt+1, . . . , xT , i.e.

p(xt , y) =
∑
x0

· · ·
∑
xt−1

∑
xt+1

· · ·
∑
xT

T∏
t=1

gt (xt−1, xt )

We can permute the order of the sums and products to find that the
right hand side is the same as rt (xt )st (xt ) where

rt (xt ) =
∑
xt−1

gt (xt−1, xt )
∑
xt−2

gt−1(xt−2, xt−1) . . .

and
st (xt ) =

∑
xt+1

gt+1(xt , xt+1)
∑
xt+2

gt+2(xt+1, xt+2) . . .
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Forwards/backwards recursions

But note the recursive structure:

rt (xt ) =
∑
xt−1

gt (xt−1, xt )rt−1(xt−1) and

st (xt ) =
∑
xt+1

gt+1(xt , xt+1)st+1(xt+1)

So we can make an enormous saving of computing effort by
performing these two recursions, starting from r0(x0) ≡ 1 and
sT (xT ) ≡ 1. Having found all the rt and st functions, you then just set

p(xt |y) =
rt (xt )st (xt )∑
xt

rt (xt )st (xt )
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Forwards/backwards recursions

This argument can be easily modified for specific filtering, smoothing
or predicting tasks, for example,

p(xt |y≤t ) =
rt (xt )∑
xt

rt (xt )
.

There are also modifications in the same spirit to deal with other
(static) parameters, and with maximising or sampling rather than
marginalising.

There are also analogous algorithms for exact probability calculations
on certain other graphs with discrete variables – trees and junction
trees, more general than linear chains.
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More general lessons

HMMs and state space models are classic examples of a principle with
much wider application – possibilities for flexible modelling of
dependence in data through

a (hidden) latent dependent process, indexed in time, space, . . . ,
with detailed structure chosen to facilitate inference
data distributed as conditionally independent given the latent
process, reflecting appropriate distributional assumptions for the
context

– generates powerful classes of dependent mixture models useful in
many domains.
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