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Summary: 
An important clinical application of biostatistics is the development of statistical 
models for the prognosis of a patient at the moment of diagnosis. In cancer the 
usual way of giving a prognosis is by means of the x-year survival probability, 
with x=1, 5 or 10, for example.  Traditionally, the prognosis is based on clinical 
information at the start of the treatment, like age, gender, size of the tumor, tumor 
stage etc. In the last decade new types of genomic information have become 
available like micro-array gene expression and proteomic mass spectrometry data. 
The problem with this new type of data is its abundance. Micro-arrays can 
measure the expression of tens of thousands of genes, for example.  
 
The talk will address three issues:  

1. How to obtain valid prognostic model based on high-dimensional genomic 
data. 

2. How to assess the added value of the genomic information. 
3. How to obtain robust dynamic predictions (predictions available later on in 

the follow-up) 
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Talk based on 
 
van Houwelingen, HC; Bruinsma, T; Hart, AAM; van 't Veer, LJ; Wessels, 
LFA. 2006.  
Cross-validated Cox regression on microarray gene expression data. 
STATISTICS IN MEDICINE 25 (18): 3201-3216. 
 
van Houwelingen, HC; Putter, H., 2011  
Dynamic prediction in clinical survival analysis, CRC/Chapman & Hall 
chapters 11 and 12. (Will appear on December 1, 2011) 
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Crash-course survival analysis. 
 
Definitions 

 Survival time survT  

 Survival function ( ) ( )survS t P T t   

 Censoring time (end of follow-up) censT  

 Censoring function ( ) ( )censC t P T t   

 Observed min( , )cens survT T T  

 Event indicator  1   if survT T , 0   if censT T  
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Prediction model 

 hazard 
'( ) ln( ( ))( )
( )

S t d S th t
S t dt

    ; 
( )( )

( )
P T t dth t dt

P T t
 




 

 Cox proportional hazard model 0( | ) ( )exp( ' )h t X h t X   

Estimation 

 Survival and Censoring function estimated by Kaplan-Meier curves 

 Likelihood of observation ( , ) ( , )T t d   :    ( ) ( )dS t h t  

 Regression parameters   estimated by maximum partial likelihood 

 Baseline hazard 0 ( )h t  estimated by Breslow estimator 
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The data are from 
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Re-analyzed in 
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Information on survival and censoring
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Clinical information 
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Genomic information 
 Gene expression ( ln(ratio) ) on 4919 genes (out of 24885 genes) 
 Internally normalized at geometric mean=0. 

 
Many genes show 
some effect on survival. 
 
Funnel plot of 
regression coefficient b 
versus 

21 / ( )Information se b . 
Band corresponds with 

2 ( )se b   
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Major problem: How to handle so many predictors? 
 
Using them all in Cox regression does not make sense. Some form of 
tuning is needed. 
Possible approaches   

 
 
 
 
 
 
 
 

Methods compared in Bøvelstad et al., Bioinformatics 
Conclusion: Ridge regression (as used in my paper) performs best on 
this type of data. 
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Penalized Cox regression using genomic data 
 
 penalized log-likelihood:   0 0( , ) ( , ) ( )penl h l h pen       
 Ridge regression 2( ) 0.5 jj

pen     

 LASSO    ( ) | |jj
pen    

 Both implemented in Goeman’s R-package “penalized” 
 Optimal  , opt , obtained through cross-validation (using the 

cross-validated partial log-likelihood CVPL) 
 Big difference   

o  Ridge regression   ˆ 0j   for all j 
o  Lasso      ˆ 0j   for most j 
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Results 
Crossvalidated partial log-likelihoods 
 

Ridge regression       Lasso 
 
 
 
 
 
 
 
 
 
 
Ridge regression performs better and is “smoother”.  
Optimal Lasso uses only 16 genes in the model. 
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Relation between Ridge and Lasso can be studied by comparing 
 

ˆ'Ridge RidgePI X   and ˆ'Lasso LassoPI X   
 
 
Correlation =0.90 
 

( ) ( )Ridge LassoSD PI SD PI  
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It is hard to see the difference between the two predictors. 
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However: 
 
Lasso, does not contain any “additional information” as can be seen 
from a “super learner” model on the cross-validated predictors. 
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Genomic versus clinical predictor. 
Remember the Van de Vijver paper 
 
 
 
 
However, Clinical performs slightly better and Genomics does not 
add vary much (correlation r=0.652) 
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Dynamic prediction based on Landmarking. 
Predict from LMt  to LMt w  

 
 

Prediction window 5w   years. 
 
Prediction based on existing (cross-validated) predictors.  
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Supermodel smoothes the landmark effect 
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5-year prediction.  
“High” =mean+st.dev. 
“Low” = mean-st.dev.  
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Could we do better?  
Genetic predictors per landmark data set 
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Degenerates for clinical predictor 
 

Combination of “adaptive genomic” and fixed “clinical” is fine. 
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Conclusion/discussion 

Fixed model 

 High-dimensional genomic data can be useful for prediction 

 Lasso-versus-Ridge regression: pro’s and con’s 

 Genomic does not beat Clinical 

Dynamic model 

 Effect of predictors changes over time 

 Landmarking versus time-varying effects 

 Genomic beats clinical later on in the follow up. 

 Need for update clinical data (relapse, metastasis, etcetera) 
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