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Multiple-Instance Learning (MIL)

Traditional Supervised (single instance) learning
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Multiple-instance learning [Dietterich et al. '97]
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Two MIL assumptions:
— Abag is negative if all of its members are negative
— ADbag is positive If it contains at least one positive instance

learning with ambiguously labeled data




Instance-Selection based MIL

« Transform a MIL problem into a standard single-instance
learning problem
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 How to form the embedding space?
— Select a set of representative instances (prototypes)
— A similarity-based representation

Which instances best model the data? How many prototypes are
needed? Robustness to outliers and labeling noise?



A comparison of Instance-Selection
based MIL methods

Method Prototypes Classifier Drawback

DD-SVM one from each SVM + RBF  sensitive to labeling noise

[Chen and Wang, training bag

2004] DD function

MILES all the instances 1-norm SVM  exponentially expensive as

[Chen et al., 2006] in the training bags implicitinstance  the volume of the training data
selection Increases

MILD one from each SVM + RBF  no neg. prototype

[Li and Yeung, pos. training bag

2010] A conditional prob.model

MILIS one from each linear SVM alternating instance selection

[Fu et al., 2011] and training (expensive)

training bag
A pdf for neg. \—/

instances based on KDE

Our suggestion: A clustering based approach

(based on dominant sets [Pavan and Pelillo, 2003, 2007}



Dominant Sets

a pairwise clustering approach

makes no assumption on the underlying data
representation

detects the proper number of clusters and is very robust to
outliers

Imposes no constraint on the structure of the similarity
matrix, being able to naturally deal with asymmetric and
negative similarities alike.

can handle unseen data in a principled way

[Pavan and Pelillo, 2003, 2007]



Dominant Sets

« A generalization of a maximal cligue to edge-weighted
graphs
Definition 1. A nonempty subset of verticesS <V suchthat ) . .+ wy (i) > 0
'for anynonempty T €S, issaid to be dominant if:

1. ws(i) > 0, forall i €S, ( internal homogeneity )
2. Wsyip (i) < 0, forall i £S. (externalinhomogeneity )

90
The set {1,2,3} is dominant

« Dominant Sets = Clusters
[Pavan and Pelillo, 2003, 2007]



Dominant Sets

Theorem 1. Dominant sets can be computed as the support o(x) of the local
maximaizers of

(1)

where A is the weighted adjacency matriz of edge-weighted graph G=(V, E,w),
A={x € R" | x>0 and e!'x=1} is the standard simplex in R™ with e being a
vector of ones of appropriate dimension, and o(x) is defined as the set of
indices corresponding to its positive component, i.e. o(x) = {i€V | x; > 0}.

mazimize f(x) = x! Ax

subject to x € A

The objective function gives a measure of the
cohesiveness of a cluster.

The components of = provides a measure of the participation
of the corresponding data points in the cluster.

The similarity of an element j to a cluster can be directly computed
by the weighted similarity

[Pavan and Pelillo, 2003, 2007]



MIL with Instance Selection via Dominant Sets
(MILDS)

 Observation: No ambiguity in the negative bags
« Assumption: Negative instances form clusters
— may not be always valid(outliers, labeling noise, etc.)

Method Prototypes Classifier
Our Approach + one from each cluster extracted linear SVM
(MILDS) from the negative data

+ one from each pos. training bag
Dominant Set clusters



MILDS — Basic Notations

Bi = {Bil,---,Bij,---,Bini} i bag of instances
Yi E{"'l,_l} label of i bag

B = {‘Bir e B;”,‘Bl_ e Br;_’,} the set training bags

A
positiv'e bags  negative bags

N={li[I=1,...,M} the collection of neg. instances
= {Bi_j eB, [i=1,...m" } from all of the neg. training bags



MILDS - Instance Selection (1)

 Pairwise similarities

_d(li,1)? T -
A= [ajj ] aij:{(e)Xp( 207 ) )

otherwise
« Extract the dominant sets (clusters)
fromN={B; €B; [i=1,...m |
. . 15f
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C:{Cli,ck}kSm_ °l xx" :xxoo g)
“ x 00 §
of B °
o
-5t




MILDS - Instance Selection (2)

« Select one prototype from each clusterC;, C
z7 =lj. with j* = argmaxx;”
j ea(xCi)
The components of X' gives us a measure of the participation
of the corresponding instances in the cluster
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MILDS - Instance Selection (3)

« Ambiguity in positive bags
— clustering based selection strategy does not make sense!

« Select the most positive (least negative) instance from each
positive bagB;" = {Bi+1,...,B+ ?

in’

(ATXC); x| Cy

+ + . HEE - :
zi =Byj;. with ] "= argmin
ji=1,...n;
15

the most distant instance from
the extracted (negative) clusters
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Classification

Set of prototypes Z ={z; , ...,z , 2 ,..., 2}, }
A similarity measure of a bag to an instance prototype:
s(z,Bij) = max exp (— d@. B”)Z)
o Bij €B; 202
based on the distance betweenz and its nearest neighbor iB;

An embedding function:
#(B)= [s(z; ,B),...,s(z7,B),s(z} ,B),...,s(z"., ,B)]"

The classifier: linear SVM f (B:w) = w'¢(B) + b
y(B) = sign(f (B;w))



One-vs-rest Multli-Class MILDS

TrainC binary classifiers
— one for each class against all other classes.
Classification:
y(B) = arg max f;(B; wi)

..... c

A different instance-based embedding
for each binary subproblem
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milDS (1)

« A second multi-class extension of MILDS
« Construct an embedding space common for all classes
— the same selected set of instances for all classes
©(B) = [s(z1,B),s(z3,B),...,s(z} ,B),

miq?

s(z%,B),s(z5,B),...,s(z4,,B),

s(z3,B), s(z3, B.), ...,8(z,.,B) 1]

training data is kept the same for all binary sub-problems
(only the labels differ)

— makes the training phase much more efficient!
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milDS (2)

For each class Kk,
— Consider | *= {1X|i=1,...,My]

= {Bij eB; | for all B; EBWIth y(Bi): k}

— Extract the clusters in] ¥

— k Kk
c={CX,...,CK.
— Select one prototype from each extracted cluster C*
k
X; ! the degree of participation
z¢=1X with j* = ar
i ] g max

[ .\ the similarity to all the
. K. fB;
jeo(xCi) Bik() remaining classes

The most dissimilar instance to the other training data
from other classes

=1,....c Zc;p can .|C.£“|.
consider only the similarity to the most closest class




Experiments

* Two kinds of tasks
— Benchmark data sets (2-class)
— Image classification (multi-class)



Benchmark Data Sets

« 10 times 10-fold cross validation
[ except MIForest (over 5 runs) and MILIS and MIO (over 15 runs) |

Table 2. Classification accuracies of various MIL algorithms on standard benchmark data sets.
The best performances are indicated in bold typeface.

Algorithm Muskl Musk2 Elephant Fox Tiger
MILDS 90.9 86.1 848 64.3 815
MILD_B [13] 88.3  86.8 829 55.0 75.8
MILIS [8] 85.6  86.5 787 61.6 83.1
MILES [4] 83.3 91.6 84.1 63.0 80.7
DD-SVM [5] 858 91.3 835 56.6 77.2
MILD_I [13] 89.9 88.7 83.2 491 734
MIForest [10] 85.0 82.0 840 64.0 820
MIO [12] 88.3 87.7 n/a na nla

Ins-KI-SVM [14] 840 844 835 634 829
Bag-KI-SVM [14] 88.0 820 845 605 850

mi-SVM [1] 874  83.6 822 582 789
MI-SVM [1] 77.9 843 814 594 840
EM-DD [24] 848 849 783 561 721

« The performance of MILDS is competitive with all the state-of-
the-art MIL methods.



Benchmark Data Sets — The Dimensions of
the Embedding Spaces

 MILES has the highest embedding space
dimension.

« MILD_B has the lowest dimension but
Its performance is poor.

» As compared to MILIS and DD-SVM,

MILDS has dimensions ~6—23% smaller
(except for Musk2 and Fox)

Table 3. The dimensions of the embedding spaces averaged over 10 runs of 10-fold CV
Algorithm Muskl Musk2 Elephant Fox Tiger

MILDS 75.0 920 169.4 180.0 139.2
MILD_B 424  35.2 90.0 90.0 90.0
MILIS 83.0 920 180.0 180.0 180.0

MILES 429.4 5943.8 12519 1188.0 1098.0
DD-SVM 83.0 920 180.0 180.0 180.0

 The dimensions can be further reduced by employing 1-norm linear
SVM in the training step, or eliminating the dimensions with very small
weights.



Image Categorization

2000 images from 20 categories, each having 100 examples

Each image (bag) is segmented and then represented
with regions of interest (instances in the bag)

Two groups of experiments:
— 1000-Image — Only the first 10 categories
— 2000-Image — All the 20 categories

Two possible extensions: MILDS and milDS

Elephants (3 ) Flowers (4.46)

Foo d(7 24)

[Chen et aI %004]



Image Categorization

5 times 2-fold cross validation

Table 4. Classification accuracies of various MIL algorithms on COREL 1000-Image and 2000-
|mage data sets. The best performances are indicated in bold typeface.

Algorithm 1000-1mage 2000-Image

milDS 82.2 70.6
MILDS 83.0 69.4
MILD_B [13] 79.6 67.7
MILIS [8] 83.8 70.1
MILES [4] 82.6 68.7
DD-SVM [5] 81.5 67.5
MIForest [10] 59.0 66.0
MissSVM [26] 78.0 65.2
mi-SVM [1] 76.4 53.7
MI-SVM [1] 74.7 54.6

* The performance of MILDS and milDS are competitive.
« For 2000-Image, milDS gives the best result.



Image Categorization — Selected
Instance Prototypes (MILDS)

* In MILDS, each classifier is trained for distinguishing a specific
category from the rest.

— A different embedding space is built for each subproblem
— The set of selected prototypes varies in every subproblem

« Positive prototypes are mostly selected from the discriminative
regions for that class.
Fig. 3. Sample instance prototypes selected by the MILDS algorithm. For each image category,

the first row shows a sample training image from that category, and the bottom row illustrates the
selected prototype region (shown in white) on the corresponding segmentation map.
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Image Categorization — Selected
Instance Prototypes (milDS)

In MIIDS, the set of selected instance prototypes is the same
for all the subproblems

— provides a rich way to include context
resembles the vocabulary generation step of bag-of-words

23



Sensitivity to Labeling Noise

Historical buildings vs. Horses (2 class)
Noisy labels

— For each noise level, d% of - : :
pos. and d% of neg. images 0.95}-------- SRR A SR |
are randomly selected from . | = wx K
the training set and then their S | | | | |
labels are exchanged A . A
5 times 2-fold cross validation & °¢ e
iy ] eyt~ O R S
At low levels (d<5%), there is orf{STMLOBL L L LK
no considerable difference Iin L lmemies | 1 1 |
the performances ° ° pelrgentage%)? label ntz)?se % %

At high levels (d=25%), MILDS is the most robust one

— Dominant sets is quite robust to outliers
[Chen et al., Z006]



Summary and Future Directions

A new Instance selection strategy based on dominant
sets

ldentifies the most representative examples in the
positive and negative training bags

Competitive with state-of-the-art MIL methods

Quite robust to labeling noise

Future directions

— Multi-instance multi-label learning
[Zhou and Zhang, 2006, Zha et al., 2008]

— Non-i.i.d. samples
[Zhou et al., 2009, Warrell and Torr, 2011]



* Any questions?



