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Multiple-Instance Learning (MIL) 

• Traditional Supervised (single instance) learning 

 

 

 

• Multiple-instance learning [Dietterich et al. ’97] 

 

 

 
• Two MIL assumptions: 

– A bag is negative if all of its members are negative 

– A bag is positive if it contains at least one positive instance 

       learning with ambiguously labeled data   

 

Instances 

y = -1 y = +1 y = ? 

Bags of  

instances 

y = -1 y = +1 y = ? 
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Instance-Selection based MIL 

• Transform a MIL problem into a standard single-instance 

learning problem 

 

 

 

 

 

• How to form the embedding space?  
– Select a set of representative instances (prototypes) 

– A similarity-based representation 
 

 Which instances best model the data? How many prototypes are 
 needed? Robustness to outliers and labeling noise?  

y = ? 

Bags of  

instances 

y = -1 y = +1 

Bag level  

embedding 
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A comparison of Instance-Selection 

based MIL methods 

DD-SVM 
[Chen and Wang,  

2004] 

MILES 
[Chen et al., 2006] 

MILD 
[Li and Yeung,  

2010] 

MILIS 
[Fu et al., 2011] 

 

one from each 
training bag 

all the instances 
in the training bags 

one from each  
pos. training bag 

one from each  
training bag 

SVM + RBF 

1-norm SVM 

SVM + RBF 

linear SVM 

 

sensitive to labeling noise 

exponentially expensive as  
the volume of the training data  
increases  

no neg. prototype 

alternating instance selection 
and training (expensive) 

DD function 

A conditional prob.model 

A pdf for neg. 

instances based on KDE 

 

implicit instance 

selection 

Our suggestion: A clustering based approach  

                          (based on dominant sets [Pavan and Pelillo, 2003, 2007]) 

Method Prototypes Classifier Drawback 
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Dominant Sets 

• a pairwise clustering approach 

• makes no assumption on the underlying data 

representation  

• detects the proper number of clusters and is very robust to 

outliers 

• imposes no constraint on the structure of the similarity 

matrix, being able to naturally deal with asymmetric and 

negative similarities alike.  

• can handle unseen data in a principled way 

 

 

 

[Pavan and Pelillo, 2003, 2007] 5 



Dominant Sets 
• A generalization of a maximal clique to edge-weighted 

graphs  

 

 

 

 

 

 

 

 

 

• Dominant Sets ≡ Clusters 
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As expected, the main drawback of MILES stems from its way of constructing the em-

bedding space. Its computational load grows exponentially as the volume of the training

data increases.

In [13], an instance-selection mechanism based on a conditional probability model is

developed to identify the true positive instance in a positive bag. For each instance in a

positive bag, a decision function is formulated whose accuracy on predicting the labels

of the training bags is used to measure true positiveness of the corresponding instance.

The authors of [13] use this instance selection mechanism to devise two MIL methods,

MILD I and MILD B, for instance-level and for bag-level classification problems, re-

spectively. Here, MILD B is of our interest, which defines the instance-based feature

space by the most positive instances chosen accordingly from each positive bag, and

like DD-SVM, trains a standard SVM with the RBF kernel in that feature space.

In MILIS, instances in the negative bags are modeled as a probability distribution

function based on kernel density estimation. Initially, the most positive (i.e. the least

negative) instance and the most negative instance are selected respectively in each pos-

itive bag and each negative bag based on the distribution estimate. These instance pro-

totypes form the feature space for the bag-level embedding in which a linear SVM is

trained. To increase the robustness, once a classifier is learnt, MILIS employs an alter-

nating optimization scheme for instance selection and classifier training to update the

selected prototypes and the weights of the support vectors. As a final step, it includes

an additional feature pruning step which removes all features with small weights.

2.2 Clusteringwith Dominant Sets

Our instance selection strategy makes use of a pairwise clustering approach known as

dominant sets [18]. In a nut shell, the concept of a dominant set can be considered as

a generalization of a maximal clique to edge-weighted graphs. Suppose the data to be

clustered is represented in terms of their similarities by an undirected edge-weighted

graph with no self-loops G = (V, E, w), where V is the set of nodes, E ⊆ V × V is

the set of edges, and w : E → R+ is the positive weight (similarity) function. Further,

let A = [ai j ] denote the n×n adjacency matrix of G where ai j = w(i , j ) if (i , j ) ∈ E

and is 0 otherwise. A dominant set is formulated based on a recursive characterization

of the weight wS(i ) of element i w.r.t. to a set of elements S (A curious reader may

refer to [18] for more details), as:

Definition 1. Anonemptysubset of verticesS ⊆ V such that i∈T wT (i ) > 0 for any

nonemptyT ⊆ S, issaid to bedominant if:

1. wS(i ) > 0, for all i ∈ S,

2. wS∪{ i } (i ) < 0, for all i /∈ S.

The above definition of a dominant set also formalizes the notion of a cluster by ex-

pressing two basic properties: (i) elements within a cluster should be very similar (high

internal homogeneity), (ii) elements from different clusters should be highly dissimilar

(high external inhomogeneity).
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20                         90 

5 The set {1,2,3} is dominant 
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Dominant Sets 

 

 

 

 

 

 

• The objective function                           gives a measure of the 

cohesiveness of a cluster. 

• The components of     provides a measure of the participation  

of the corresponding data points in the cluster. 

• The similarity of an element j to a cluster can be directly computed  

by the weighted similarity           . 
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Consider the following generalization of the Motzkin-Straus program [17] to an

undirected edge-weighted graph G= (V, E, w):

maximize f (x) = xT Ax

subject to x ∈ ∆
(1)

where A is the weighted adjacencymatrix of graph G,∆ = { x ∈ Rn | x≥ 0 and eT x= 1}

is the standard simplex in Rn with e being a vector of ones of appropriate dimension.

The support of x is defined as the set of indices corresponding to its positive com-

ponents, i.e. σ(x) = { i∈V | xi > 0} . The following theorem (from [18]) provides a

one-to-one relation between dominant sets and strict local maximizers of (1).

Theorem1. If S isa dominant subset of vertices, then itsweighted characteristic vec-

tor x ∈ ∆ defined as:

xi =

wS ( i )

j ∈ S wS ( j )
if i ∈ S

0 otherwise
(2)

is a strict local solution of (1). Conversely, if x is a strict local solution of (1), then its

support S = σ(x) isa dominant set, provided that wS∪{ i } (i ) = 0 for all i /∈ S.

The cohesiveness of a dominant set (cluster) S can be measured by the value of the

objective function xT Ax . Moreover, the similarity of an element j to S can be directly

computed by (Ax)j where

(Ax)j
= xT Ax if j ∈σ(x)

≤ xT Ax if j /∈σ(x) .
(3)

As a final remark, it should be noted that the spectral methods in [20,11] maximize

the same quadratic function in Eq. (1). However, they differ from dominant sets in their

choice of the feasible region. The solutions obtained with these methods are constrained

to lie in the sphere defined by xT x = 1 instead of the standard simplex ∆ used in the

dominant sets framework. This subtle difference is crucial for our practical purposes.

First, the components of the weighted characteristic vector give us a measure of the

participation of the corresponding data points in the cluster. Second, this constraint

provides robustness against noise and outliers [18,15].

3 Proposed Method

In this section, we present a novel multiple-instance learning framework called MILDS,

which transforms a MIL problem into a SIL problem via instance selecting. Unlike the

similar approaches in [5,4,13,8], it makes use of the dominant sets clustering frame-

work [18] for instance selection to build a more effective embedding space. We first re-

strict ourselves to the two-classcase. However, as will be described later in Section 3.4,

extension to multi-classMIL problems is quite straightforward.
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MIL with Instance Selection via Dominant Sets 

(MILDS) 

MILIS 
[Fu et al., 2011] 

 

A pdf for neg. 

instances based on KDE 

 
Our Approach 

(MILDS) 

+ one from each cluster extracted 
from the negative data   
+ one from each pos. training bag 

linear SVM 

Dominant Set clusters 

• Observation: No ambiguity in the negative bags 

• Assumption: Negative instances form clusters  

– may not be always valid (outliers, labeling noise, etc.) 

DD-SVM 
[Chen and Wang, 2004] 

MILES 
[Chen et al., 2006] 

MILD 
[Li and Yeung, 2010] 

Method 

one from each training bag 

all the instances in the training bags 

one from each pos. training bag 

one from each training bag 

Prototypes 

SVM + RBF 

1-norm SVM 

SVM + RBF 

linear SVM 

 

Classifier 

DD function 

A conditional prob.model 

implicit instance selection 
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MILDS – Basic Notations 

ith bag of instances 

label of ith bag 

the set training bags 
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3.1 Notations

Let B i = { B i 1, . . . , B i j , . . . , B i n i
} denote a bag of instances where B i j denotes the

j th instance in the bag, and yi ∈ { + 1, −1} denote the label of bag i . For the sake of

simplicity, we will denote a positive bag as B+
i and a negative bag as B−

i . Further, let

B = B+
1 , . . . , B +

m + , B−
1 , . . . , B−

m − , denote the set of m+ positive and m− negative

training bags. Note that each bag may contain different number of instances, and each

instance may have a label which is not directly observable.

3.2 InstanceSelection with Dominant Sets

Recall the two assumptions of the classical MIL formulation that a bag is positive if

it contains at least one positive instance, and all negative bags contains only negative

instances [7]. This means that positive bags may contain some instances from the neg-

ative class but there is no such ambiguity in the negative bags (provided that there is no

labeling noise). Just like in [13,8], our instance selection strategy is heavily based on

this observation. However, unlike those approaches, to select the representative set of

instances we do not explicitly estimate either a probability density function or a condi-

tional probability. Instead, we try to model the negative data by clustering the instances

in the negative bags, and then making decisions according to the distances to the ex-

tracted clusters. As will be clear throughout the paper, the dominant sets framework

provides a natural scheme to carry out these tasks in an efficient way.

Denote N = { I i | i = 1, . . . , M } as the collection of negative instances from all of

the negative training bags, i.e. the set defined by B−
i j ∈ B−

i | i = 1, . . ., m− . Construct

the matrix A= [ai j ] composed of the similarities between the negative instances as:

ai j =
exp −

d( I i ,I j )2

2σ2 if i = j

0 otherwise
(4)

where d(·, ·) is a distance measure that depends on the application and σ is a scale

parameter. In the experiments, the Euclidean distance was used.

To extract the clusters in N , the iterative peeling-off strategy suggested in [18] is

employed. In specific, at each iteration, a dominant set (a cluster) is found by solving

the quadratic program in (1). Then, the instances in the cluster are removed from the

similarity graph, and this process is reiterated on the remaining instances. In theory, the

clustering process stops when all the instances are covered, but in dealing with large and

noisy data sets, this is not very practical. Hence, in our experiments, an upper bound

on the number of extracted clusters was introduced that at most m− (i.e. the number

of negative bags) most coherent dominant sets were selected according to internal co-

herency values measured by the corresponding values of the objective function. Notice

that, in this way, instancepruning is carried our in an early stage. This is another fun-

damental point which distinguishes our work from the approaches in [4,8] as these two

methods perform instance pruning implicitly in the SVM training step. Moreover, this

provides robustness to noise and outliers.

Suppose C= {C1, . . . , Ck } denotes the set of clusters extracted from the collection

of negative training instances N . A representative set for N is found by selecting one
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the quadratic program in (1). Then, the instances in the cluster are removed from the

similarity graph, and this process is reiterated on the remaining instances. In theory, the

clustering process stops when all the instances are covered, but in dealing with large and

noisy data sets, this is not very practical. Hence, in our experiments, an upper bound

on the number of extracted clusters was introduced that at most m− (i.e. the number

of negative bags) most coherent dominant sets were selected according to internal co-

herency values measured by the corresponding values of the objective function. Notice
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methods perform instance pruning implicitly in the SVM training step. Moreover, this

provides robustness to noise and outliers.

Suppose C= {C1, . . . , Ck } denotes the set of clusters extracted from the collection

of negative training instances N . A representative set for N is found by selecting one
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Algorithm1. Summary of the proposed MILDS framework.

Input : Training bags B +
1 , . . . , B +

m + , B −
1 , . . . , B −

m −

1 Apply dominant sets to cluster all the instances in the negative training bags

2 Select k (≤ m− ) instance prototypes from the extracted k negative clusters via Eq. (5)

3 Select m+ instance prototypes from the positive bags via Eq. (6)

4 Form the instance-based embedding in Eq. (8) using the selected prototypes

5 Train a linear SVM classifier based on the constructed feature space

Output: The set of selected instance prototypes Z and the SVM classifier f (B ; w) with

weight w

3.4 Extension toMulti-classMIL

The proposed approach can be straightforwardly extended to solve multi-class MIL

problems by employing a one-vs-rest strategy. In particular, one can train c binary clas-

sifiers, one for each class against all other classes. Then, a test bag can be classified

according to the classifier with the highest decision value. Note that an implementation

of this idea forms a different instance-based embedding for each binary subproblem.

Here, we propose a second type of embedding which results from using a set of repre-

sentative instances common for all classes, as:

φ(B ) = [s(z1
1, B ), s(z1

2 , B ), . . . , s(z1
m 1

, B ),

s(z2
1, B ), s(z2

2 , B ), . . . , s(z2
m 2

, B ),
...

s(zc
1, B ), s(zc

2, B ), . . . , s(zc
m c

, B ) ]

(11)

where zk
i is the i th instance prototype selected from class k (note that the number of

prototypes may differ from class to class). In this case, training data is kept the same for

all binary subproblems, only the labels differ, and this makes the training phase much

more efficient. This second approach is denoted with milDS to distinguish it with the

naive multi-class extension of MILDS.

In milDS, instance selection is performed as follows. Let I k = I k
i | i = 1, . . . , Mk

denote the collection of instances in bags belonging to class k, i.e. the set defined by

{ B i j ∈B i | for all B i∈B with y(B i )= k} . First, for each class k, the pairwise similarity

matrixAk of instances I k is formed, andaccordinglyasetofclustersCk= Ck
1 , . . . ,Ck

m k

is extractedvia dominant sets framework3. Then, an instanceprototypefromeachcluster

Ck
i is identified according to:

zk
i = I k

j ∗ with j ∗ = arg max

j ∈σ(x
C k

i )

x
C k

i

j / βi k (j ) (12)

where the function βi k (j ) measures the similarity of j th instance in Ck
i to all the re-

maining classes. The basic idea is to select the most representative element in Ck
i which

is also quite dissimilar to the remaining training data from other classes. However, here

we make a simplification and estimate βi k (j ) by consideringonly the most closest class:

3 In the experiments, for each class k, we extract at most mk clusters that is equal to the number

of training bags belonging to class k.
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MILDS – Instance Selection (2) 

• Select one prototype from each cluster  

 

 

 The components of         gives us a measure of the participation  

 of the corresponding instances in the cluster 
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prototype from each cluster Ci ∈ C. Recall that each cluster Ci is associated with a char-

acteristic vector xC i whose components give us a measure of the participation of the

corresponding instances in the cluster [18]. Hence, the instance prototype z−
i represent-

ing the cluster Ci is identified based on the corresponding characteristic vector xC i as:

z−
i = I j ∗ with j ∗ = arg max

j ∈σ(x C i )

xC i

j . (5)

In selecting the representative instances for the positive class, however, the suggested

clustering-based selection strategy makes no sense on the collection of positive bags

because the bags may contain some negative instances which may collectively form one

or more clusters, thus if applied, the procedure may result in some instance prototypes

belonging to the negative class. Hence, for selecting prototypes for the positive class, a

different strategy is employed. In particular, the most positive instance in each positive

bag is identified according to its relationship to the negative training data.

For a positive bag B+
i = B+

i 1, . . . , B+

i n +
i

, let A† be an n+
i × |N | matrix composed

of the similarities between the instances in B+
i and the negative training instances in N ,

computed like in (4). The truepositive (i.e. the least negative) instance in B+
i , denoted

with z+
i , is picked as the instance which is the most distant from the extracted negative

clusters in Cas follows:

z+
i = B+

i j ∗ with j ∗= arg min
j = 1,...,n +

i

= 1,...,k (A†xC )j × |C |

= 1,...,k |C |
(6)

where the term (A†xC )j is the weighted similarity of the instance B+
i j to the cluster

C , and |·| denotes the cardinality of the set1. Intuitively, in (6), larger clusters have

more significance in the final decision than the smaller ones.

To illustrate the proposed selection process, consider the two-dimensional synthetic

data given in Fig. 1(a). It contains 8 positive bags and 8 negative bags, each having at

least 8 and at most 10 instances. Each instance is randomly drawn from one of the five

normal distributions: N ([4, 8]T , I ), N ([0, 4]T , I ), N ([− 1, 12]T , I ), N ([− 4, − 2]T , I )

and N ([6, 2]T , I ) with I denoting the identity matrix. A bag is labeled positive if it

contains at least one instance from the first two distributions. In Fig. 1(a), positive and

negative instances are respectively represented by crosses and circles, and drawn with

colors showing the labels of the bags they belong: blue for positive and red for nega-

tive bags. The result of the proposed instance selection method is given in Fig. 1(b).

The extracted negative clusters are shown in different colors, and the selected instance

prototypes are indicated by squares. Notice that the dominant sets framework correctly

captured the multi-modality of the negative class, and the prototypes selected from the

extracted clusters are all close to the centers of the given negative distributions. More-

over, the true positive instances in the positive bags were successfully identified.

1 Note that since the zero-components of xC have no effect on estimating z+
i s, in practice

highly reduced versions of A†s are utilized in the computations.
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MILDS – Instance Selection (3) 

• Ambiguity in positive bags 

 → clustering based selection strategy does not make sense! 

• Select the most positive (least negative) instance from each  

positive bag 
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Classification 

• Set of prototypes 

• A similarity measure of a bag to an instance prototype: 

 

 

• An embedding function: 

 

• The classifier: linear SVM 
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Fig.1. Synthetic data set (best viewed in color). (a) Raw data. (b) The instance selection process.

See text for details.

3.3 Classification

Wecannowdescribeourclassificationscheme.SupposeZ = z−
1 , . . . , z−

k , z+
1 , . . . , z+

m +

denote the set of selected instance prototypes, where k is the number of extracted nega-

tive clusters, m+ is the number of positive training bags2. A similarity measure s(z, B i )

between a bag B i and an instance prototype z is defined by

s(z, B i ) = max
B i j ∈B i

exp −
d(z, B i j )2

2σ2
(7)

which calculates the similarity between z and its nearest neighbor in B i . Then, we

define an embedding function ϕ which maps a bag B to a (k+ m+ )-dimensional vector

space by considering the similarities to the instance prototypes:

ϕ(B )= s(z−
1 , B ), . . . , s(z−

k , B ), s(z+
1 , B ), . . . , s(z+

m + , B )
T

(8)

For classification, the embedding in (8) can be used to convert the MIL problem into a

SIL problem. In solving the SIL counterpart, we choose to train a standard linear SVM

which has a single regularization parameter C needed to be tuned. In the end, we come

up with a linear classifier to classify a test bag B as:

f (B ; w) = wT ϕ(B ) + b (9)

where w ∈ R|Z | is the weight vector, b is the bias term. The label of a test bag B is

simply estimated by:

y(B ) = sign(f (B ; w)) (10)

The outline of the proposed MIL framework is summarized in Algorithm 1.

2 Note that one can always select more than one instance from each cluster or each positive bag.

A detailed analysis of this issue on the performance will be reported in a longer version.
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denote the set of selected instance prototypes, where k is the number of extracted nega-
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between a bag B i and an instance prototype z is defined by
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(7)

which calculates the similarity between z and its nearest neighbor in B i . Then, we
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For classification, the embedding in (8) can be used to convert the MIL problem into a

SIL problem. In solving the SIL counterpart, we choose to train a standard linear SVM

which has a single regularization parameter C needed to be tuned. In the end, we come

up with a linear classifier to classify a test bag B as:

f (B ; w) = wT ϕ(B ) + b (9)

where w ∈ R|Z | is the weight vector, b is the bias term. The label of a test bag B is

simply estimated by:

y(B ) = sign(f (B ; w)) (10)

The outline of the proposed MIL framework is summarized in Algorithm 1.

2 Note that one can always select more than one instance from each cluster or each positive bag.
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Algorithm 1. Summary of the proposed MILDS framework.

I nput : Training bags B +
1 , . . . , B +

m + , B −
1 , . . . , B −

m −

1 Apply dominant sets to cluster all the instances in the negative training bags

2 Select k (≤ m − ) instance prototypes from the extracted k negative clusters via Eq. (5)

3 Select m + instance prototypes from the positive bags via Eq. (6)

4 Form the instance-based embedding in Eq. (8) using the selected prototypes

5 Train a linear SVM classifier based on the constructed feature space

Output: The set of selected instance prototypes Z and the SVM classifier f (B ; w ) with

weight w

3.4 Extension to M ulti-classM IL

The proposed approach can be straightforwardly extended to solve multi-class MIL

problems by employing a one-vs-rest strategy. In particular, one can train c binary clas-

sifiers, one for each class against all other classes. Then, a test bag can be classified

according to the classifier with the highest decision value. Note that an implementation

of this idea forms a different instance-based embedding for each binary subproblem.

Here, we propose a second type of embedding which results from using a set of repre-

sentative instances common for all classes, as:

φ(B ) = [s(z1
1 , B ), s(z1

2 , B ), . . . , s(z1
m 1

, B ),

s(z2
1 , B ), s(z2

2 , B ), . . . , s(z2
m 2

, B ),
...

s(zc
1 , B ), s(zc

2 , B ), . . . , s(zc
m c

, B ) ]

(11)

where zk
i is the i th instance prototype selected from class k (note that the number of

prototypes may differ from class to class). In this case, training data is kept the same for

all binary subproblems, only the labels differ, and this makes the training phase much

more efficient. This second approach is denoted with milDS to distinguish it with the

naive multi-class extension of MILDS.

In milDS, instance selection is performed as follows. Let I k = I k
i | i = 1, . . . , M k

denote the collection of instances in bags belonging to class k , i .e. the set defined by

{ B i j ∈B i | for all B i ∈B with y(B i )= k} . First, for each class k , the pairwise similarity

matrix A k of instances I k is formed, and accordingly a set of clusters Ck= C k
1 , . . . ,C k

m k

is extracted via dominant sets framework3. Then, an instance prototype from each cluster

C k
i is identified according to:

zk
i = I k

j ∗ with j ∗ = arg max

j ∈ σ ( x
C k

i )

x
C k

i

j / βi k ( j ) (12)

where the function βi k ( j ) measures the similarity of j th instance in C k
i to all the re-

maining classes. The basic idea is to select the most representative element in C k
i which

is also quite dissimilar to the remaining training data from other classes. However, here

we make a simplification and estimate βi k ( j ) by considering only the most closest class:

3 In the experiments, for each class k , we extract at most m k clusters that is equal to the number

of training bags belonging to class k .
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more efficient. This second approach is denoted with milDS to distinguish it with the

naive multi-class extension of MILDS.

In milDS, instance selection is performed as follows. Let I k = I k
i | i = 1, . . . , M k

denote the collection of instances in bags belonging to class k, i.e. the set defined by

{ B i j ∈B i | for all B i∈B with y(B i )= k} . First, for each class k, the pairwise similarity

matrix Ak of instances I k is formed, and accordingly a set of clusters Ck= Ck
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is extracted via dominant sets framework3. Then, an instance prototype from each cluster
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i is identified according to:

zk
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j ∗ with j ∗ = arg max
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j / βi k (j ) (12)

where the function βi k (j ) measures the similarity of j th instance in Ck
i to all the re-

maining classes. The basic idea is to select the most representative element in Ck
i which

is also quite dissimilar to the remaining training data from other classes. However, here

we make a simplification and estimate βi k (j ) by considering only the most closest class:

3 In the experiments, for each class k, we extract at most mk clusters that is equal to the number

of training bags belonging to class k.
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βi k (j )= max
m = 1,...,c
m = k

C m ∈Cm (Akm xC m

) j × |Cm |

C m ∈Cm |Cm |
(13)

with Akm denoting the M k×M m matrix of similarities between the instances in I k

and the instances in I m .

The embedding procedure described above gives rise to a feature space whose di-

mensionality is at most k mk , i.e. the sum of the total number of clusters extracted

for each class.

3.5 Computational Complexity

From a computational point of view, the most time consuming step of the proposed

MILDS method and its multi-class extensions is the calculation of pairwise distances,

which is also the case for [4,13,8]. In addition, there is the cost of clustering negative

data with dominant sets. In this matter, a dominant set can be computed in quadratic

time using the approach in [19]. An important point here is that the size of the input

graphs becomes smaller and smaller at each iteration of the employed peeling off strat-

egy, and this further introduces an increase in the efficiency of the clustering step.

4 Experimental Results

In this section, we present two groups of experiments to evaluate the proposed MILDS

algorithm. First, we carry out a thorough analysis on some standard MIL benchmark

data sets. Following that, we investigate image classification by casting it as a multi-

class MIL problem. In the experiments, LIBSVM [3] package was used for training

linear SVMs. In addition to the SVM regularization parameter C, our algorithm has

only a single scale parameter σ that needs to be tuned. The best values for C and σ

are selected by using n-fold cross validation from the sets { 2− 10, 2− 9, . . . , 210} and

l i nspace(0.05µ, µ,20), respectively, with µ being the mean distance between pair of

instances in the training data and l i nspace(a, b, n) denoting the set n linearly spaced

numbers between and including a and b.

4.1 Benchmark Data Sets

We evaluate our MILDS method on five popular MIL benchmark data sets used in many

multiple-instance learning studies, namely Musk1, Musk2, Elephant, Fox and Tiger. In

Musk1 and Musk2, the task is to predict drug activity from structural information. Each

drug molecule is considered as a bag in which the instances represents different struc-

tural configurations of the molecule. In Elephant, Fox and Tiger, the goal is to differen-

tiate images containing elephants, tigers and foxes from those that do not, respectively.

Each image is considered as a bag, and each region of interest within the image as an

instance. The details of the data sets are given in Table 1.

For experimental evaluation, we use the most common setting, 10 times 10-fold cross

validation (CV). That is, we report the classification accuracies averaged over 10 runs
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m + , B −
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m −

1 Apply dominant sets to cluster all the instances in the negative training bags

2 Select k (≤ m− ) instance prototypes from the extracted k negative clusters via Eq. (5)

3 Select m+ instance prototypes from the positive bags via Eq. (6)

4 Form the instance-based embedding in Eq. (8) using the selected prototypes

5 Train a linear SVM classifier based on the constructed feature space

Output: The set of selected instance prototypes Z and the SVM classifier f (B ; w) with

weight w

3.4 Extension toMulti-classMIL

The proposed approach can be straightforwardly extended to solve multi-class MIL

problems by employing a one-vs-rest strategy. In particular, one can train cbinary clas-

sifiers, one for each class against all other classes. Then, a test bag can be classified

according to the classifier with the highest decision value. Note that an implementation

of this idea forms a different instance-based embedding for each binary subproblem.

Here, we propose a second type of embedding which results from using a set of repre-

sentative instances common for all classes, as:

φ(B) = [s(z1
1, B), s(z1

2 , B), . . . , s(z1
m 1

, B),

s(z2
1, B), s(z2

2 , B), . . . , s(z2
m 2

, B),
...

s(zc
1, B ), s(zc

2, B ), . . . , s(zc
m c

, B ) ]

(11)

where zk
i is the i th instance prototype selected from class k (note that the number of

prototypes may differ from class to class). In this case, training data is kept the same for

all binary subproblems, only the labels differ, and this makes the training phase much

more efficient. This second approach is denoted with milDS to distinguish it with the

naive multi-class extension of MILDS.

In milDS, instance selection is performed as follows. Let I k= I k
i | i = 1, . . . , Mk

denote the collection of instances in bags belonging to class k, i.e. the set defined by

{ B i j ∈B i | for all B i∈B with y(B i )= k} . First, for each class k, the pairwise similarity

matrixAk of instances I k is formed, andaccordinglyasetofclustersCk= Ck
1 , . . . ,Ck

m k

is extractedvia dominant sets framework3. Then, an instanceprototypefromeachcluster

Ck
i is identified according to:

zk
i = I k

j ∗ with j ∗ = arg max

j ∈σ(x
C k

i )

x
C k

i

j / βi k (j ) (12)

where the function βi k (j ) measures the similarity of j th instance in Ck
i to all the re-

maining classes. The basic idea is to select the most representative element in Ck
i which

is also quite dissimilar to the remaining training data from other classes. However, here

we make a simplification and estimate βi k (j ) by consideringonly the most closest class:

3 In the experiments, for each class k, we extract at most mk clusters that is equal to the number

of training bags belonging to class k.
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βi k (j )= max
m = 1,...,c
m = k

C m ∈Cm (Akm xC m

) j × |Cm |

C m ∈Cm |Cm |
(13)

with Akm denoting the M k×M m matrix of similarities between the instances in I k

and the instances in I m .

The embedding procedure described above gives rise to a feature space whose di-

mensionality is at most k mk , i.e. the sum of the total number of clusters extracted

for each class.

3.5 Computational Complexity

From a computational point of view, the most time consuming step of the proposed

MILDS method and its multi-class extensions is the calculation of pairwise distances,

which is also the case for [4,13,8]. In addition, there is the cost of clustering negative

data with dominant sets. In this matter, a dominant set can be computed in quadratic

time using the approach in [19]. An important point here is that the size of the input

graphs becomes smaller and smaller at each iteration of the employed peeling off strat-

egy, and this further introduces an increase in the efficiency of the clustering step.

4 Experimental Results

In this section, we present two groups of experiments to evaluate the proposed MILDS

algorithm. First, we carry out a thorough analysis on some standard MIL benchmark

data sets. Following that, we investigate image classification by casting it as a multi-

class MIL problem. In the experiments, LIBSVM [3] package was used for training

linear SVMs. In addition to the SVM regularization parameter C, our algorithm has

only a single scale parameter σ that needs to be tuned. The best values for C and σ

are selected by using n-fold cross validation from the sets { 2− 10, 2− 9, . . . , 210} and

l i nspace(0.05µ, µ,20), respectively, with µ being the mean distance between pair of

instances in the training data and l i nspace(a, b, n) denoting the set n linearly spaced

numbers between and including a and b.

4.1 Benchmark Data Sets

We evaluate our MILDS method on five popular MIL benchmark data sets used in many

multiple-instance learning studies, namely Musk1, Musk2, Elephant, Fox and Tiger. In

Musk1 and Musk2, the task is to predict drug activity from structural information. Each

drug molecule is considered as a bag in which the instances represents different struc-

tural configurations of the molecule. In Elephant, Fox and Tiger, the goal is to differen-

tiate images containing elephants, tigers and foxes from those that do not, respectively.

Each image is considered as a bag, and each region of interest within the image as an

instance. The details of the data sets are given in Table 1.

For experimental evaluation, we use the most common setting, 10 times 10-fold cross

validation (CV). That is, we report the classification accuracies averaged over 10 runs
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Table 1. Information about the MIL benchmark data sets

bags avg.

data set pos./neg. inst./bag dim

Musk1 47/45 5.17 166

Musk2 39/63 64.69 166

Elephant 100/100 6.96 230

Fox 100/100 6.60 230

Tiger 100/100 6.10 230

where the parameter selection is carried our by using 10-fold cross validation. Our

results are shown in Table 2 together with those of 12 other MIL algorithms in the

literature [13,8,4,5,10,12,14,1,24]. All reported results are also based on 10-fold CV

averaged over 10 runs4, with the exception of MIForest, which is over 5 runs, and

MILIS and MIO, which are over 15 runs. The results demonstrate that our proposed

approach is competitive with and often better than the state-of-the-art MIL methods.

In three out of five MIL benchmark data sets, it outperforms several MIL approaches.

However, it is more important to note that it gives the best performance among the

instance-selection based MIL approaches.

Table 2. Classification accuracies of various MIL algorithms on standard benchmark data sets.

The best performances are indicated in bold typeface.

Algorithm Musk1 Musk2 Elephant Fox Tiger

MILDS 90.9 86.1 84.8 64.3 81.5

MILD B [13] 88.3 86.8 82.9 55.0 75.8

MILIS [8] 88.6 91.1 n/a n/a n/a

MILES [4] 83.3 91.6 84.1 63.0 80.7

DD-SVM [5] 85.8 91.3 83.5 56.6 77.2

MILD I [13] 89.9 88.7 83.2 49.1 73.4

MIForest [10] 85.0 82.0 84.0 64.0 82.0

MIO [12] 88.3 87.7 n/a n/a n/a

Ins-KI-SVM [14] 84.0 84.4 83.5 63.4 82.9

Bag-KI-SVM [14] 88.0 82.0 84.5 60.5 85.0

mi-SVM [1] 87.4 83.6 82.2 58.2 78.9

MI-SVM [1] 77.9 84.3 81.4 59.4 84.0

EM-DD [24] 84.8 84.9 78.3 56.1 72.1

In Table 3, for each instance-selection based MIL approach, we report the average

dimensions of the corresponding embedding spaces. MILES has the highest dimension

since it utilizes all the training instances in the mapping. On Musk2 and Fox, our MILDS

approach does not offer any advantage in terms of dimension reduction, but for the

other data sets, it decreases the dimension ∼ 6− 23%, as compared to MILIS and DD-

SVM. Among all, MILD B has the lowest dimension as it only uses positive instance

4 Note that the results of MILD B and MILD I on Musk1 and Musk2 are different than re-

ported in [13]. This is because, for a complete comparison, we downloaded the source codes

of MILD B and MILD I available at the authors’ webpage and repeated the experiments on

all the five data sets with our setting of 10 times 10-fold CV.
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Table3. The dimensions of the embedding spaces averaged over 10 runs of 10-fold CV

Algorithm Musk1 Musk2 Elephant Fox Tiger

MILDS 75.0 92.0 169.4 180.0 139.2

MILD B 42.4 35.2 90.0 90.0 90.0

MILIS 83.0 92.0 180.0 180.0 180.0

MILES 429.4 5943.8 1251.9 1188.0 1098.0

DD-SVM 83.0 92.0 180.0 180.0 180.0

prototypes in its embedding scheme. However, as can be seen in Table 2, neglecting the

negative prototypes results in a poor performance compared to the other approaches.

4.2 ImageClassification

The multi-class extensions of our approach have been investigated on image classifica-

tion problems. In specific, we used the COREL data set which contains 2000 natural

images from 20 diverse categories, each having 100 examples. Each image is considered

as a bag of instances with instances corresponding to regions of interest obtained via

segmentation. Each region is represented by a 9-dimensional feature vector describing

shape and local image characteristics (refer to [5,4] for details). Some example images

from the data set are given in Fig. 2.

In our evaluation, we used the same experimental setup described in [4], and per-

formed two groups of experiments, which are referred to as 1000-Image and 2000-

Image, respectively. In 1000-Image, only the first ten categories are considered whereas

in 2000-Image, all the twenty categories in the data set are employed. On both exper-

iments, five times two-fold CV is performed. The average categorization accuracies

are presented in Table 4. As can be seen from the results, the performance of MILDS

and milDSare competitive with the state-of-the-art MIL approaches. Especially for the

larger 2000-Imagedata set, our milDS method gives the best result.

Africa (4.84) Beach (3.54) Historical building (3.10) Buses (7.59) Dinosaurs (2.00)

Elephants (3.02) Flowers (4.46) Horses (3.89) Mountains (3.38) Food (7.24)

Dogs (3.80) Lizards (2.80) Fashion models (5.19) Sunset scenes (3.52) Cars (4.93)

Waterfalls (2.56) Antique furniture (2.30) Battle ships (4.32) Skiing (3.34) Desserts (3.65)

Fig. 2. Example images randomly drawn from the COREL data set. For each category, the average

number of regions per image is given inside the parentheses.
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Table 2. Classification accuracies of various MIL algorithms on standard benchmark data sets.

The best performances are indicated in bold typeface.

Algorithm Musk1 Musk2 Elephant Fox Tiger

MILDS 90.9 86.1 84.8 64.3 81.5

MILD B [13] 88.3 86.8 82.9 55.0 75.8

MILIS [8] 88.6 91.1 n/a n/a n/a

MILES [4] 83.3 91.6 84.1 63.0 80.7

DD-SVM [5] 85.8 91.3 83.5 56.6 77.2

MILD I [13] 89.9 88.7 83.2 49.1 73.4

MIForest [10] 85.0 82.0 84.0 64.0 82.0

MIO [12] 88.3 87.7 n/a n/a n/a

Ins-KI-SVM [14] 84.0 84.4 83.5 63.4 82.9

Bag-KI-SVM [14] 88.0 82.0 84.5 60.5 85.0

mi-SVM [1] 87.4 83.6 82.2 58.2 78.9

MI-SVM [1] 77.9 84.3 81.4 59.4 84.0

EM-DD [24] 84.8 84.9 78.3 56.1 72.1

In Table 3, for each instance-selection based MIL approach, we report the average

dimensions of the corresponding embedding spaces. MILES has the highest dimension

since it utilizes all the training instances in the mapping. On Musk2 and Fox, our MILDS

approach does not offer any advantage in terms of dimension reduction, but for the

other data sets, it decreases the dimension ∼ 6− 23%, as compared to MILIS and DD-

SVM. Among all, MILD B has the lowest dimension as it only uses positive instance

4 Note that the results of MILD B and MILD I on Musk1 and Musk2 are different than re-

ported in [13]. This is because, for a complete comparison, we downloaded the source codes

of MILD B and MILD I available at the authors’ webpage and repeated the experiments on

all the five data sets with our setting of 10 times 10-fold CV.
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Image Categorization 

• 2000 images from 20 categories, each having 100 examples 

• Each image (bag) is segmented and then represented  

with regions of interest (instances in the bag) 

• Two groups of experiments: 
– 1000-Image → Only the first 10 categories 

– 2000-Image → All the 20 categories 

• Two possible extensions: MILDS and milDS 

[Chen et al., 2004] 
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Table 3. The dimensions of the embedding spaces averaged over 10 runs of 10-fold CV

Algorithm Musk1 Musk2 Elephant Fox Tiger

MILDS 75.0 92.0 169.4 180.0 139.2

MILD B 42.4 35.2 90.0 90.0 90.0

MILIS 83.0 92.0 180.0 180.0 180.0

MILES 429.4 5943.8 1251.9 1188.0 1098.0

DD-SVM 83.0 92.0 180.0 180.0 180.0

prototypes in its embedding scheme. However, as can be seen in Table 2, neglecting the

negative prototypes results in a poor performance compared to the other approaches.

4.2 ImageClassification

The multi-class extensions of our approach have been investigated on image classifica-

tion problems. In specific, we used the COREL data set which contains 2000 natural

images from 20 diverse categories, each having 100 examples. Each image is considered

as a bag of instances with instances corresponding to regions of interest obtained via

segmentation. Each region is represented by a 9-dimensional feature vector describing

shape and local image characteristics (refer to [5,4] for details). Some example images

from the data set are given in Fig. 2.

In our evaluation, we used the same experimental setup described in [4], and per-

formed two groups of experiments, which are referred to as 1000-Image and 2000-

Image, respectively. In 1000-Image, only the first ten categories are considered whereas

in 2000-Image, all the twenty categories in the data set are employed. On both exper-

iments, five times two-fold CV is performed. The average categorization accuracies

are presented in Table 4. As can be seen from the results, the performance of MILDS

and milDSare competitive with the state-of-the-art MIL approaches. Especially for the

larger 2000-Imagedata set, our milDS method gives the best result.

Africa (4.84) Beach (3.54) Historical building (3.10) Buses (7.59) Dinosaurs (2.00)

Elephants (3.02) Flowers (4.46) Horses (3.89) Mountains (3.38) Food (7.24)

Dogs (3.80) Lizards (2.80) Fashion models (5.19) Sunset scenes (3.52) Cars (4.93)

Waterfalls (2.56) Antique furniture (2.30) Battle ships (4.32) Skiing (3.34) Desserts (3.65)

Fig. 2. Example images randomly drawn from the COREL data set. For each category, the average

number of regions per image is given inside the parentheses.
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Image Categorization 
• 5 times 2-fold cross validation 

 

 

 

 

 

 

 

 

 
• The performance of MILDS and milDS are competitive. 

• For 2000-Image, milDS gives the best result.  
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Table 4. Classification accuracies of various MIL algorithms on COREL 1000-Image and 2000-

Image data sets. The best performances are indicated in bold typeface.

Algorithm 1000-Image 2000-Image

milDS 82.2 70.6

MILDS 83.0 69.4

MILD B [13] 79.6 67.7

MILIS [8] 83.8 70.1

MILES [4] 82.6 68.7

DD-SVM [5] 81.5 67.5

MIForest [10] 59.0 66.0

MissSVM [26] 78.0 65.2

mi-SVM [1] 76.4 53.7

MI-SVM [1] 74.7 54.6

Recall that in MILDS, each classifier trained for distinguishing a specific category

from the rest is built upon a different embedding space, or in other words, the set of

selected prototypes varies in every subproblem. For each subproblem in 1000-Image,

Fig. 3 shows the instance prototype identified in one of the training images from the tar-

get class. Notice that the prototypes are selected from the discriminative regions for that

class. On the other hand, in milDS, the set of selected instance prototypes is the same

for all the subproblems. This second selection strategy provides a rich way to include

contextual relationships in representing visual categories. In some respects, it resembles

the vocabulary generation step of the bag-of-wordsapproach [6]. The subtle difference

is that a similarity-based mapping is employed here instead of a frequency-based one.

Fig. 4 shows five prototypes among the full set of representative instances selected for

the Horse and Battle ships categories. Observe that for the Horse category, selected

prototypes include not just horses but also the regions corresponding to grass regions.

Likewise, for the Battleshipscategory, there are additional prototypes representing sky

and sea regions.

4.3 Sensitivity to Labeling Noise

Lastly, we analyzed the sensitivity to labeling noise. For that purpose, we repeated the

experiment in [4] which involves distinguishing Historical buildings from Horses in

COREL data set. In this experiment, we compared our method with MILES, MILIS,

MILD B with varying degrees of noise levels where the results are based on five times

2-fold CV. For each noise level, d% of positive and d% of negative images are randomly

selected from the training set, and then their labels are changed to form the noisy labels.

Fig. 5 shows the average classification accuracies. When the level of labeling noise

is low (d≤ 5%), there is no considerable difference in the performances. As the noise

level increases, the performance of MILIS degrades. MILES gives comparable results

to MILDS and MILD B for the noise levels up to d≤ 25%, but gives relatively poor

outcomes afterwards. Overall, MILDS is the most robust MIL algorithm to labeling

noise among all the tested MIL algorithms. Its performance remains almost the same

over all levels of the labeling noise. This is expected, since dominant sets is known to

be quite robust to outliers [18,15].
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Image Categorization – Selected 

Instance Prototypes (MILDS) 
• In MILDS, each classifier is trained for distinguishing a specific 

category from the rest. 

→ A different embedding space is built for each subproblem 

→ The set of selected prototypes varies in every subproblem  
 

• Positive prototypes are mostly selected from the discriminative 

regions for that class.  
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Africa Beach Historical building Buses Dinosaurs

Elephants Flowers Horses Mountains Food

Fig. 3. Sample instance prototypes selected by the MILDSalgorithm. For each image category,

the first row shows a sample training image from that category, and the bottom row illustrates the

selected prototype region (shown in white) on the corresponding segmentation map.

Fig. 4. Sample instance prototypes selected by the milDSalgorithm for the Horse and the Battle

ships categories. The leftmost columns are the prototypes. The rightmost three columns show

other sample regions from the corresponding extracted clusters. The regions in each cluster share

similar visual characteristics.
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Image Categorization – Selected 

Instance Prototypes (milDS) 
• In milDS, the set of selected instance prototypes is the same 

for all the subproblems 

 → provides a rich way to include context  

   resembles the vocabulary generation step of bag-of-words 
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Fig.3. Sample instance prototypes selected by the MILDS algorithm. For each image category,

the first row shows a sample training image from that category, and the bottom row illustrates the

selected prototype region (shown in white) on the corresponding segmentation map.

Fig.4. Sample instance prototypes selected by the milDSalgorithm for the Horse and the Battle

ships categories. The leftmost columns are the prototypes. The rightmost three columns show

other sample regions from the corresponding extracted clusters. The regions in each cluster share

similar visual characteristics.
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Sensitivity to Labeling Noise 

• Historical buildings vs. Horses (2 class) 

• Noisy labels 

– For each noise level, d% of  

pos. and d% of neg. images  

are randomly selected from  

the training set and then their  

labels are exchanged 

• 5 times 2-fold cross validation 
 

• At low levels (d≤5%), there is  

no considerable difference in  

the performances 

• At high levels (d≥25%), MILDS is the most robust one 

→ Dominant sets is quite robust to outliers  
[Chen et al., 2006] 
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Summary and Future Directions 

• A new instance selection strategy based on dominant 

sets 
 

• Identifies the most representative examples in the 
positive and negative training bags 
 

 

• Competitive with state-of-the-art MIL methods  
 

• Quite robust to labeling noise 
 

• Future directions 

– Multi-instance multi-label learning  

[Zhou and Zhang, 2006, Zha et al., 2008] 

– Non-i.i.d. samples  

[Zhou et al., 2009, Warrell and Torr, 2011] 
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• Any questions? 
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