A Generative Dyadic Model for Evidence Accumulation Clustering

André Lourenço*, Ana Fred $^{\dagger},$ and Mário Figueiredo †

* † Instituto Superior Técnico

* Instituto Superior de Engenharia de Lisboa 🛛 * † Instituto de Telecomunicações

Lisboa, Portugal

First International Workshop on Similarity-Based Pattern Analysis and Recognition

Introduction 0000	Generative Model	Experimental Results	Conclusions and Future Work
Outline			

Introduction

- Clustering Ensembles and Evidence Accumulation
- Dyadic Data Analysis
- 2 Probabilistic Ensemble Clustering Algorithm (PEnCA)
 - Generative Mixture Model
 - Estimation
- 3 Experimental Results
 - Experimental Setup
 - Examples and Discussion

4 Conclusions and Future Work

• Notation: $\mathcal{X} = \{1, \dots, N\}$: set of N objects to be clustered;

 $\mathcal{E} = \{\mathcal{P}^1, \dots, \mathcal{P}^M\}$: ensemble of clusterings,

 $\mathcal{P}^i = \{\mathcal{C}^i_1, \dots, \mathcal{C}^i_{K_i}\}$: clustering with K_i clusters

$$\mathcal{C}^i_j \subseteq \mathcal{X}, \qquad \bigcup_{j=1}^{K_i} \mathcal{C}^i_j = \mathcal{X}, \qquad j \neq l \Rightarrow \mathcal{C}^i_j \cap \mathcal{C}^i_l = \emptyset$$

- Different clustering algorithms: different pattern organization.
- Clustering combination methods aim at "better" / "more robust" partitioning by combining an ensemble of clusterings.

Introduction 0000 Generative Model

Experimental Results

Conclusions and Future Work

Clustering Ensembles and Evidence Accumulation

Evidence Accumulation Clustering (EAC)

- EAC: [Fred and Jain, 2001, 2005]
 - clustering ensemble method
 - each clustering provides evidence of pair-wise relationships
- Major Steps:
 - (i) construction of the clustering ensemble;
 - (ii) evidence accumulation of pair-wise associations;
 - (iii) extraction of the final consensus partition.
- $\bullet\,$ The combination step (ii) yields the co-occurrence matrix C:

 $C_{i,j} =$ "number of times objects i and j co-occurred"

Introduction 0000	Generative Model 00000000	Experimental Results 000	Conclusions and Future Work
Dyadic Data Analysis			
Dyadic Data	Analysis		
Dyadic Data Analysis	Analysis		

- Dyadic data: each datum is a dyad (a pair of objects) [Hofmann, Puzicha, Jordan, 1998, 1999].
- The **co-occurrence matrix** can be seen as a summary of the information in an observed set of pairs of objects: a **dyadic dataset**.

Introduction
Generative Model
Experimental Results
Conclusions and Future Work

000
0000000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000</

Dyadic Data and Co-Occurrence Matrix

- S sequence of all pairs of objects co-occurring in a common cluster over the clustering ensemble \mathcal{E}
- A co-occurrence pair $\mathbf{s} \in \mathcal{S}$ is defined as:

$$\begin{split} \mathbf{s}_m &= (y_m, z_m) \in \mathcal{X} \times \mathcal{X}, \text{ for } m = 1, ..., |\mathcal{S}| \\ \text{where } y_m \neq z_m, \ y_m \in \mathcal{C}_k^i \text{ and } z_m \in \mathcal{C}_k^i. \end{split}$$

• The co-occurrence matrix, $\mathbf{C} = [C_{y,z}]$, is a $(N \times N)$ matrix which collects a statistical summary of S:

$$C_{y,z} = \sum_{m=1}^{|\mathcal{S}|} \mathbb{I}\big((y_m, z_m) = (y, z)\big), \text{ for } y, z \in \mathcal{X}$$

Introduction 0000	Generative Model ●0000000	Experimental Results	Conclusions and Future Work
Generative Mixture Model			
Generative M	Nodel		

- Hypothesis:
 - $\bullet\,$ Underlying clusters revealed by the observations ${\cal S}$

- Generative model for \mathcal{S} :
 - Interpret $\mathcal S$ as i.i.d. samples of a pair of r.v. $(Y,Z)\in \mathcal X\times \mathcal X$
 - Introduce $R \in \{1, ..., L\}$: a multinomial latent class variable.
 - Y and Z are i.i.d. given R:

$$\mathbb{P}(Y=y,Z=z|R=r)=\mathbb{P}(Y=y|R=r)\,\mathbb{P}(Z=z|R=r)$$

and

$$\mathbb{P}(Z=z|R=r)=\mathbb{P}(Y=z|R=r),$$

Introduction 0000	Generative Model	Experimental Results	Conclusions and Future Work
Generative Mixture Mo	odel		
Mixture M	lodel		

• The joint distribution of (Y, Z),

$$\mathbb{P}(Y=y,\,Z=z)=\sum_{r=1}^{L}\mathbb{P}(Y=y|R=r)\;\mathbb{P}(Y=z|R=r)\,\mathbb{P}(R=r),$$

is parameterized by:

- $\mathbb{P}(R=r)$, for any r=1,...,L: the distribution of the latent variables R;
- $\mathbb{P}(Y = y | R = r) = \mathbb{P}(Z = y | R = r)$, for y = 1, ..., N and r = 1, ..., L: the conditional distributions of Y and Z given the latent variables R.

Introduction 0000	Generative Model 00●00000	Experimental Results	Conclusions and Future Work
Generative Mixture	Model		
Mixture I	Model		

• We write these distributions compactly as:

•
$$\mathbf{p} = (p_1, ..., p_L)$$
: an *L*-vector, where $p_r = \mathbb{P}(R = r)$

• $\mathbf{B} = [B_{r,j}]$: an $L \times N$ matrix, where

$$B_{r,j} = \mathbb{P}(Y = j | R = r) = P(Z = j | R = r);$$

of course, **B** is a stochastic matrix: $\sum_{j} B_{r,j} = 1$.

• With this notation,

$$\mathbb{P}(Y = y, Z = z, R = r) = p_r B_{r,y} B_{r,z},$$

and

$$\mathbb{P}(Y = y, Z = z) = \sum_{r=1}^{L} p_r B_{r,y} B_{r,z}.$$

Introduction 0000	Generative Model	Experimental Results 000	Conclusions and Future Work
Generative Mixture Model			
Mixture Mod	del		

• Assuming $S = \{(y_m, z_m), m = 1, ..., |S|\}$ contains |S| i.i.d. samples of (Y, Z),

$$\mathbb{P}(\mathcal{S}|\mathbf{p},\mathbf{B}) = \prod_{m=1}^{|\mathcal{S}|} \sum_{r=1}^{L} p_r \ B_{r,y_m} \ B_{r,z_m}.$$

• The complete likelihood (if $\mathcal{R} = (r_1,...,r_{|\mathcal{S}|})$ was observed) is

$$\mathbb{P}(\mathcal{S}, \mathcal{R} | \mathbf{p}, \mathbf{B}) = \prod_{m=1}^{|\mathcal{S}|} p_{r_m} B_{r_m, y_m} B_{r_m, z_m}$$
$$\log \mathbb{P}(\mathcal{S}, \mathcal{R} | \mathbf{p}, \mathbf{B}) = \sum_{m=1}^{|\mathcal{S}|} \sum_{r=1}^{L} \mathbb{I}(r_m = r) \log(p_r B_{r, y_m} B_{r, z_m}).$$

Maximum Likelihood Estimate

• The EM algorithm yields maximum marginal likelihood estimates of **p** and **B**:

$$(\widehat{\mathbf{p}}, \widehat{\mathbf{B}}) = \arg \max_{\mathbf{p}, \mathbf{B}} \mathbb{P}(\mathcal{S} | \mathbf{p}, \mathbf{B})$$

• (E-Step) Compute

$$Q(\mathbf{p}, \mathbf{B}; \widehat{\mathbf{p}}, \widehat{\mathbf{B}}) = \mathbb{E}_{\mathcal{R}}\left[\log \mathbb{P}(\mathcal{S}, \mathcal{R} | \mathbf{p}, \mathbf{B}) | \widehat{\mathbf{p}}, \widehat{\mathbf{B}}\right]$$

• (M-Step) updated the estimates by maximizing the $\mathit{Q}\text{-function}$ w.r.t. \mathbf{p} and $\mathbf{B}.$

Introduction 0000	Generative Model ○○○○○●○○	Experimental Results 000	Conclusions and Future Work
Estimation			
E-Step			

• The Q-function is given by

$$Q(\mathbf{p}, \mathbf{B}; \widehat{\mathbf{p}}, \widehat{\mathbf{B}}) = \sum_{m=1}^{|\mathcal{S}|} \sum_{r=1}^{L} \widehat{R}_{m,r} \log(p_r B_{r,y_m} B_{r,z_m})$$

where

$$\widehat{R}_{m,r} \equiv \mathbb{E}\left[\mathbb{I}(R_m = r) \left| \mathcal{S}, \widehat{\mathbf{p}}, \widehat{\mathbf{B}} \right] = \mathbb{P}\left[R_m = r \left| (y_m, z_m), \widehat{\mathbf{p}}, \widehat{\mathbf{B}} \right],\right.$$

is the conditional probability that the pair $\left(y_m,z_m\right)$ was generated by cluster r, that is,

$$\widehat{R}_{m,r} = \frac{\widehat{p}_r \, \widehat{B}_{r,y_m} \, \widehat{B}_{r,z_m}}{\sum_{s=1}^{L} \widehat{p}_s \, \widehat{B}_{s,y_m} \, \widehat{B}_{s,z_m}}$$

Introduction 0000	Generative Model ○○○○○○●○	Experimental Results 000	Conclusions and Future Work
Estimation			
M-Step			

• maximizing the Q-function, w.r.t. \mathbf{p} leads to:

$$\widehat{p}_r^{\text{new}} = \frac{1}{|\mathcal{S}|} \sum_{m=1}^{|\mathcal{S}|} \widehat{R}_{m,r} \quad \text{for } r = 1, ..., L.$$

 \bullet ...with respect to ${\bf B},$ yields

$$\widehat{B}_{r,y}^{\text{new}} = \sum_{z=1}^{N} \widehat{C}_{y,z}^{r} \left(\sum_{t=1}^{N} \sum_{z=1}^{N} \widehat{C}_{t,z}^{r} \right)^{-1},$$

where

$$\widehat{C}_{y,z}^r = \sum_{i=1}^{|\mathcal{S}|} \widehat{R}_{m,r} \mathbb{I}\left((y_m, z_m) = (y, z)\right)$$

is a weighted version of the co-association matrix.

Introduction	Generative Model	Experimental Results	Conclusions and Future Work
0000	○○○○○○○●	000	
Estimation			

Interpretation of the estimates

- The parameter estimates returned by the algorithm have clear interpretations:
 - $\widehat{p}_1, ..., \widehat{p}_L$ are the cluster probabilities;
 - $\widehat{B}_{r,y}$ is the "degrees of ownership" of object y by cluster r.
- The estimate of probability that object y belongs to cluster r (denoted as $\hat{V}_{y,r}$), can be obtained by applying Bayes law:

$$\widehat{\mathbb{P}}(R=r|Y=y) = \frac{\widehat{\mathbb{P}}(R=r,Y=y)}{\widehat{\mathbb{P}}(Y=y)} = \frac{\widehat{B}_{r,y}\,\widehat{p}_r}{\sum_{s=1}^L \widehat{B}_{s,y}\,\widehat{p}_s}$$

- We evaluate PEnCA on several UCI benchmark datasets.
- The synthetic two-dimensional datasets used for this study are

• Clustering ensembles obtained by *K*-means clustering with different numbers of clusters and initializations.

Introduction 0000	Generative Model	Experimental Results ○●○	Conclusions and Future Work
Examples and Discussion			
Example			

Figure: Example of co-occurrence matrix matrix and soft assignments $\widehat{\mathbb{P}}(R = r | Y = y)$ obtained by PEnCA for the *Iris* dataset (with L = 3).

Introduction 0000	Generative Model 0000000	Experimental Results ○○●	Conclusions and Future Work
Examples and Discussi	on		
Results			

Comparison with baseline [Topchy, Jain, Punch, 2004], another mixture model (MM) for clustering ensembles

Data Set	N	K	PEnCA	MM
stars	114	2	0.921	0.737
cigar-data	250	4	0.712	0.812
bars	400	2	0.985	0.812
halfrings	400	2	1.000	0.797
iris-r	150	3	0.920	0.693
wine-normalized	178	3	0.949	0.590
house-votes-84-normalized	232	2	0.905	0.784
ionosphere	351	2	0.724	0.829
std-yeast-cellcycle	384	5	0.729	0.578
pima-normalized	768	2	0.681	0.615
Breast-cancers	683	2	0.947	0.764
optdigits-r-tra-1000	1000	10	0.876	0.581

Introduction 0000	Generative Model 00000000	Experimental Results	Conclusions and Future Work
Conclusion	e		

- A probabilistic generative model for consensus clustering, based on a dyadic aspect model of evidence accumulation clustering.
- The consensus partition is extracted by solving a maximum likelihood estimation problem via EM.
- The method yields probabilistic assignments of each sample to each cluster.
- Experiments show that the proposed method outperforms another recent probabilistic formulation of ensemble clustering.
- Future work: the probabilistic/generative nature of the approach opens the door to dealing with the model selection problem (L = ?): MDL, BIC, non-parametric approaches.

Introduction	Generative Model	Experimental Results	Conclusions and Future Work
0000	00000000	000	
Acknowle	dgements		

- Fundação para a Ciência e Tecnologia (FCT) under the grants SFRH/PROTEC/49512/2009 and PTDC/EIACCO/103230/2008 (Project EvaClue)
- Open Scheme (FET-Open) of the Seventh Framework Programme of the European Commission, under the SIMBAD project (contract 213250)

Questions? Comments?