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Clustering Ensembles and Evidence Accumulation

Clustering Ensembles

Notation: X = {1, . . . , N}: set of N objects to be clustered;

E = {P1, . . . ,PM} : ensemble of clusterings,

P i = {Ci1, . . . , CiKi
} : clustering with Ki clusters

Cij ⊆ X ,
Ki⋃
j=1

Cij = X , j 6= l⇒ Cij ∩ Cil = ∅

Different clustering algorithms: different pattern organization.

Clustering combination methods aim at “better”/“more
robust” partitioning by combining an ensemble of clusterings.
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Clustering Ensembles and Evidence Accumulation

Evidence Accumulation Clustering (EAC)

EAC: [Fred and Jain, 2001, 2005]

clustering ensemble method
each clustering provides evidence of pair-wise relationships

Major Steps:

(i) construction of the clustering ensemble;

(ii) evidence accumulation of pair-wise associations;

(iii) extraction of the final consensus partition.

The combination step (ii) yields the co-occurrence matrix C:

Ci,j = “number of times objects i and j co-occurred”
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Dyadic Data Analysis

Dyadic Data Analysis

Dyadic data: each datum is a dyad (a pair of objects)
[Hofmann, Puzicha, Jordan, 1998, 1999].

The co-occurrence matrix can be seen as a summary of the
information in an observed set of pairs of objects:
a dyadic dataset.



Introduction Generative Model Experimental Results Conclusions and Future Work

Dyadic Data Analysis

Dyadic Data and Co-Occurrence Matrix

S – sequence of all pairs of objects co-occurring in a common
cluster over the clustering ensemble E
A co-occurrence pair s ∈ S is defined as:

sm = (ym, zm) ∈ X × X , for m = 1, ..., |S|
where ym 6= zm, ym ∈ Cik and zm ∈ Cik.

The co-occurrence matrix, C = [Cy,z], is a (N ×N) matrix
which collects a statistical summary of S:

Cy,z =

|S|∑
m=1

I
(
(ym, zm) = (y, z)

)
, for y, z ∈ X
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Generative Mixture Model

Generative Model

Hypothesis:

Underlying clusters revealed by the observations S

Generative model for S:

Interpret S as i.i.d. samples of a pair of r.v. (Y,Z) ∈ X × X
Introduce R ∈ {1, ..., L}: a multinomial latent class variable.
Y and Z are i.i.d. given R:

P(Y = y, Z = z|R = r) = P(Y = y|R = r)P(Z = z|R = r)

and
P(Z = z|R = r) = P(Y = z|R = r),
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Generative Mixture Model

Mixture Model

The joint distribution of (Y,Z),

P(Y = y, Z = z) =

L∑
r=1

P(Y = y|R = r) P(Y = z|R = r)P(R = r),

is parameterized by:

P(R = r), for any r = 1, ..., L: the distribution of the latent
variables R;

P(Y = y|R = r) = P(Z = y|R = r), for y = 1, ..., N and
r = 1, ..., L: the conditional distributions of Y and Z given the
latent variables R.
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Generative Mixture Model

Mixture Model

We write these distributions compactly as:

p = (p1, ..., pL): an L-vector,where pr = P(R = r)

B = [Br,j ]: an L×N matrix, where

Br,j = P(Y = j|R = r) = P (Z = j|R = r);

of course, B is a stochastic matrix:
∑

j Br,j = 1.

With this notation,

P(Y = y, Z = z,R = r) = pr Br,y Br,z,

and

P(Y = y, Z = z) =

L∑
r=1

pr Br,y Br,z.
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Generative Mixture Model

Mixture Model

Assuming S = {(ym, zm), m = 1, ..., |S|} contains |S| i.i.d.
samples of (Y,Z),

P(S|p,B) =

|S|∏
m=1

L∑
r=1

pr Br,ym Br,zm .

The complete likelihood (if R = (r1, ..., r|S|) was observed) is

P(S,R|p,B) =

|S|∏
m=1

prmBrm,ymBrm,zm

logP(S,R|p,B) =

|S|∑
m=1

L∑
r=1

I(rm = r) log
(
pr Br,ym Br,zm

)
.
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Estimation

Maximum Likelihood Estimate

The EM algorithm yields maximum marginal likelihood
estimates of p and B:

(p̂, B̂) = argmax
p,B

P(S|p,B)

(E-Step) Compute

Q(p,B; p̂, B̂) = ER

[
logP(S,R|p,B)|p̂, B̂

]

(M-Step) updated the estimates by maximizing the Q-function
w.r.t. p and B.
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Estimation

E-Step

The Q-function is given by

Q(p,B; p̂, B̂) =

|S|∑
m=1

L∑
r=1

R̂m,r log
(
pr Br,ym Br,zm

)
where

R̂m,r ≡ E
[
I(Rm = r)

∣∣∣S, p̂, B̂] = P
[
Rm = r

∣∣∣(ym, zm), p̂, B̂
]
,

is the conditional probability that the pair (ym, zm) was
generated by cluster r, that is,

R̂m,r =
p̂r B̂r,ym B̂r,zm

L∑
s=1

p̂s B̂s,ym B̂s,zm
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Estimation

M-Step

maximizing the Q-function, w.r.t. p leads to:

p̂ new
r =

1

|S|

|S|∑
m=1

R̂m,r for r = 1, ..., L.

...with respect to B, yields

B̂ new
r,y =

N∑
z=1

Ĉ r
y,z

(
N∑
t=1

N∑
z=1

Ĉ r
t,z

)−1
,

where

Ĉ r
y,z =

|S|∑
i=1

R̂m,r I ((ym, zm) = (y, z))

is a weighted version of the co-association matrix.
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Estimation

Interpretation of the estimates

The parameter estimates returned by the algorithm have clear
interpretations:

p̂1, ..., p̂L are the cluster probabilities;

B̂r,y is the “degrees of ownership” of object y by cluster r.

The estimate of probability that object y belongs to cluster r
(denoted as V̂y,r), can be obtained by applying Bayes law:

P̂(R = r|Y = y) =
P̂(R = r, Y = y)

P̂(Y = y)
=

B̂r,y p̂r
L∑

s=1

B̂s,y p̂s

.
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Experimental Setup

Experimental Setup

We evaluate PEnCA on several UCI benchmark datasets.

The synthetic two-dimensional datasets used for this study are

(a) Cigar data. (b) Bars. (c) Half Rings. (d) Stars.

Clustering ensembles obtained by K-means clustering with
different numbers of clusters and initializations.
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Examples and Discussion

Example

(e) Co-Occurence Matrix (f) Soft assignments

Figure: Example of co-occurrence matrix matrix and soft assignments
P̂(R = r|Y = y) obtained by PEnCA for the Iris dataset (with L = 3).
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Examples and Discussion

Results

Comparison with baseline [Topchy, Jain, Punch, 2004], another
mixture model (MM) for clustering ensembles

Data Set N K PEnCA MM

stars 114 2 0.921 0.737
cigar-data 250 4 0.712 0.812
bars 400 2 0.985 0.812
halfrings 400 2 1.000 0.797

iris-r 150 3 0.920 0.693
wine-normalized 178 3 0.949 0.590
house-votes-84-normalized 232 2 0.905 0.784
ionosphere 351 2 0.724 0.829
std-yeast-cellcycle 384 5 0.729 0.578
pima-normalized 768 2 0.681 0.615
Breast-cancers 683 2 0.947 0.764
optdigits-r-tra-1000 1000 10 0.876 0.581
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Conclusions

A probabilistic generative model for consensus clustering,
based on a dyadic aspect model of evidence accumulation
clustering.

The consensus partition is extracted by solving a maximum
likelihood estimation problem via EM.

The method yields probabilistic assignments of each sample to
each cluster.

Experiments show that the proposed method outperforms
another recent probabilistic formulation of ensemble
clustering.

Future work: the probabilistic/generative nature of the
approach opens the door to dealing with the model selection
problem (L =?) : MDL, BIC, non-parametric approaches.
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