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Graph representations 

 Advantages: can capture object or scene 

structure in a manner that is invariant to 

changes in viewpoint. Abstract scene 

contents in an efficient way.  

 

 Disadvantages: can be fragile (sensitive to 

noise and segmentation error). Available 

pattern recognition/machine learning 

methodology limited.  



  Graph Representations from images 



Learning with graphs 

 Cluster similar objects, and represent them 

using a class prototype (e.g. median) using 

(dis) similarities.  

 

 Extract features and perform central clustering. 

 

 Construct a generative model to capture 

distribution of structural variations using 

probability distributions. 

 

 



….. is difficult because 

 Graphs are not vectors:  There is no natural ordering 

of nodes and edges. Correspondences must be 

used to establish order.  

 

 Structural  variations:  Numbers of nodes and edges 

are not fixed. They can vary due to segmentation 

error. 

 

 Not easily summarized: Since they do  not reside in 

a vector space, mean and covariance hard to 

characterise. 



Generative Models   

 Structural domain: define probability distribution over  

prototype structure. Prototype together with parameters 

of distribution minimise description length  (Torsello and 

Hancock, PAMI 2007) . 

 

 Spectral domain: embed nodes of  graphs into vector-

space using spectral decomposition. Construct point 

distribution model over embedded positions of nodes  

(Bai, Wilson and Hancock, CVIU 2009). 

 



Deep learning 

 Deep belief networks (Hinton 2006, Bengio 2007). 

 

 Compositional networks (Amit+Geman 1999, Fergus 
2010). 

 

 Markov models (Leonardis 200 

 

 Stochastic image grammars (Zhu, Mumford, Yuille) 

 

 Taxonomy/category learning (Todorovic+Ahuja, 
2006-2008). 

 



Aim 

 Combine spectral and structural methods. 

 

 Use description length criterion. 

 

 Apply to graphs rather than trees. 



Prior work 

 IJCV 2007 (Torsello, Robles-Kelly, Hancock) –shape 
classes from edit distance using pairwise clustering. 

 

 PAMI 06 and Pattern Recognition 05 (Wilson, Luo and 
Hancock) – graph clustering using spectral features and 
polynomials. 

 

 PAMI 07 (Torsello and Hancock) – generative model for 
variations in tree structure using description length. 

 

 CVIU09 (Xiao, Wilson and Hancock) – generative model 
from heat-kernel embedding of graphs. 



Structural learning   

Using description length 



Description length 

 Wallace+Freeman: minimum message 
length. 

 

 Rissanen: minimum description length.  
Use log-posterior probability to locate model that is 
optimal with respect to code-length. 



Similarities/differences 

 MDL: selection of model is aim; model 
parameters are simply a means to this 
end. Parameters usually maximum 
likelihood. Prior on parameters is flat. 

 

 MML: Recovery of model parameters is 
central. Parameter prior may be more 
complex. 



Coding scheme 

 Usually assumed to follow an exponential 
distribution. 

 

 Alternatives are universal codes and predictive 
codes. 

 

 MML has two part codes (model+parameters). In 
MDL the codes may be one or two-part. 



Method 

 Model is  supergraph (i.e. Graph prototypes) formed by graph 
union. 
 

 Sample data observation model: Bernoulli distribution over 
nodes and edges. 
 

 Mode: complexity: Von-Neumann entropy of supergraphs. 
 

 Fitting criterion: 
             MDL-like-make ML estimates of the Bernoulli parameters 
             MML-like: two-part code for data-model fit +  supergraph   

complexity. 



Model overview 
 Description length criterion 

 
           code-length=negative        +  model code-length 

                               log-likelihood       (entropy) 

 

Data-set: set of graphs G 

 

Model: prototype graph+correspondences with it 

 

Updates by expectation maximisation:  

               Model graph adjacency matrix (M-step)  

            + correspondence indicators      (E-step). 
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Learn supergraph using MDL 

 

 Follow Torsello and Hancock and pose the problem of learning 
generative model for graphs as that of learning a supergraph 
representation.  

 

 Required probability distributions is an extension of model developed 
by Luo and Hancock.  

 

 Use von Neumann entropy to control supergraph’s complexity. 

 

 Develop an EM algorithm in which the node correspondences and 
the supergraph edge probability matrix are treated as missing data. 

 



Probabilistic Framework 
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Here  the structure of the sample graphs and the supergraph are 

represented by their Adjacency matrices 



 

  Given a sample graph                     and a supergraph 

 

 

   along with their assignment matrix, 

 

 

      

     the a posteriori probabilities of the sample graphs given the 

structure of the supergraph and the node correspondences is 

defined as 

 

 

 

Observation model  



Data code-length 
 

 For the sample graph-set                                 and the supergraph    , 

the set of assignment is                               . Under the assumption 

that the graphs in    are independent samples from the distribution, 

the likelihood of the sample graphs can be  written 

 
 

 

 

 Code length of observed data 

 

 

 
 

 

 



Information theory 

 Entropic measures of complexity:  
Shannon , Erdos-Renyi, Von-Neumann. 

 

 Description length: fitting of models to 
data, entropy (model cost) tensioned 
against log-likelihood (goodness of fit). 

 

 Kernels: Use entropy to 
computeJensen-Shannon divergence 

 



Von-Neumann Entropy 

 Derived from normalised Laplacian 
spectrum 

 

 

 

 

 Comes from quantum mechanics and is 
entropy associated with density matrix. 
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Approximation 

 Quadratic entropy 

 

 

 

 

 In terms of matrix traces 
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Computing Traces 

 Normalised Laplacian 

 

 

 

 Normalised Laplacian squared 
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Simplified entropy 
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Collect terms together, von Neumann 
entropy reduces to  



Uses 

 Complexity-based clustering (especially 
protein-protein interaction networks). 

 

 Defining information  theoretic (Jensen-
Shannon) kernels. 

 

 Controlling complexity of generative 
models of graphs. 

 



Overall code-length 

 According to  Rissanen and Grunwald’s minimum description length 

criterion, we encode and transmit the sample graphs and the 

supergraph structure. This leads to a two-part message whose total 

length is  given 

 

 

 

 

 

 

 We  consider both the node correspondence information between 

graphs S and the structure of the supergraph M as missing data and 

locate M by minimizing the overall code-length using EM algorithm. 

 

 



EM – code-length criterion 



Expectation + Maximization 
 M-step :   

      Recover correspondence matrices:  Take partial derivative of the weighted log-
likelihood function  and soft assign. 

 

 

 

 

 

    

       Modify supergraph structure : 

 

 

 

 

 
 

 

 E-step:  Compute  the a posteriori probability of the nodes in the sample graphs 
being matching to those of the supergraph. 
 
 



Experiments 
 

 Delaunay graphs from images of different objects. 

 

 

 

 

 

 

 

 

 

          

                   COIL dataset                                        Toys dataset 



Experiments---validation 
 COIL dataset: model complexity increase, graph data log-likelihood 

increase, overall code length decrease during iterations. 

 

 

 

 

 

 

 

 

 Toys  dataset: model complexity decrease,  graph data log-likelihood 

increase, overall code length decrease during iterations. 

 

 

 

 

 

 

 

 



Experiments---classification task 

     We compare the performance of our learned 

supergraph on classification task with  two alternative 

constructions , the median graph and the supergraph 

learned without using MDL. The table below shows 

the average classification rates from 10-fold cross 

validation, which are followed by their standard errors.  
 
 

 

 

 

 

 

      



Experiments---graph embedding 

Pairwise graph distance based on the 

Jensen-Shannon divergence and the von 

Neumann entropy of graphs 



Experiments---graph embedding 

 

                   Edit distance                      JSD distance 



Experiments---generate new samples  



Conclusion 

 We  have shown how a supergraph or generative 
model of graph structure can be learned under 
minimum description length. 

 

 We  propose a variant of EM algorithm to locate the 
structure of the supergraph . 

 

  In our experiments, we demonstrate that our 
supergraph learning method is valid and  the 
supergraph learned is effective for classification. 
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Thanks !    And   Questions ? 


