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Graph representations 

 Advantages: can capture object or scene 

structure in a manner that is invariant to 

changes in viewpoint. Abstract scene 

contents in an efficient way.  

 

 Disadvantages: can be fragile (sensitive to 

noise and segmentation error). Available 

pattern recognition/machine learning 

methodology limited.  



  Graph Representations from images 



Learning with graphs 

 Cluster similar objects, and represent them 

using a class prototype (e.g. median) using 

(dis) similarities.  

 

 Extract features and perform central clustering. 

 

 Construct a generative model to capture 

distribution of structural variations using 

probability distributions. 

 

 



….. is difficult because 

 Graphs are not vectors:  There is no natural ordering 

of nodes and edges. Correspondences must be 

used to establish order.  

 

 Structural  variations:  Numbers of nodes and edges 

are not fixed. They can vary due to segmentation 

error. 

 

 Not easily summarized: Since they do  not reside in 

a vector space, mean and covariance hard to 

characterise. 



Generative Models   

 Structural domain: define probability distribution over  

prototype structure. Prototype together with parameters 

of distribution minimise description length  (Torsello and 

Hancock, PAMI 2007) . 

 

 Spectral domain: embed nodes of  graphs into vector-

space using spectral decomposition. Construct point 

distribution model over embedded positions of nodes  

(Bai, Wilson and Hancock, CVIU 2009). 

 



Deep learning 

 Deep belief networks (Hinton 2006, Bengio 2007). 

 

 Compositional networks (Amit+Geman 1999, Fergus 
2010). 

 

 Markov models (Leonardis 200 

 

 Stochastic image grammars (Zhu, Mumford, Yuille) 

 

 Taxonomy/category learning (Todorovic+Ahuja, 
2006-2008). 

 



Aim 

 Combine spectral and structural methods. 

 

 Use description length criterion. 

 

 Apply to graphs rather than trees. 



Prior work 

 IJCV 2007 (Torsello, Robles-Kelly, Hancock) –shape 
classes from edit distance using pairwise clustering. 

 

 PAMI 06 and Pattern Recognition 05 (Wilson, Luo and 
Hancock) – graph clustering using spectral features and 
polynomials. 

 

 PAMI 07 (Torsello and Hancock) – generative model for 
variations in tree structure using description length. 

 

 CVIU09 (Xiao, Wilson and Hancock) – generative model 
from heat-kernel embedding of graphs. 



Structural learning   

Using description length 



Description length 

 Wallace+Freeman: minimum message 
length. 

 

 Rissanen: minimum description length.  
Use log-posterior probability to locate model that is 
optimal with respect to code-length. 



Similarities/differences 

 MDL: selection of model is aim; model 
parameters are simply a means to this 
end. Parameters usually maximum 
likelihood. Prior on parameters is flat. 

 

 MML: Recovery of model parameters is 
central. Parameter prior may be more 
complex. 



Coding scheme 

 Usually assumed to follow an exponential 
distribution. 

 

 Alternatives are universal codes and predictive 
codes. 

 

 MML has two part codes (model+parameters). In 
MDL the codes may be one or two-part. 



Method 

 Model is  supergraph (i.e. Graph prototypes) formed by graph 
union. 
 

 Sample data observation model: Bernoulli distribution over 
nodes and edges. 
 

 Mode: complexity: Von-Neumann entropy of supergraphs. 
 

 Fitting criterion: 
             MDL-like-make ML estimates of the Bernoulli parameters 
             MML-like: two-part code for data-model fit +  supergraph   

complexity. 



Model overview 
 Description length criterion 

 
           code-length=negative        +  model code-length 

                               log-likelihood       (entropy) 

 

Data-set: set of graphs G 

 

Model: prototype graph+correspondences with it 

 

Updates by expectation maximisation:  

               Model graph adjacency matrix (M-step)  

            + correspondence indicators      (E-step). 
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Learn supergraph using MDL 

 

 Follow Torsello and Hancock and pose the problem of learning 
generative model for graphs as that of learning a supergraph 
representation.  

 

 Required probability distributions is an extension of model developed 
by Luo and Hancock.  

 

 Use von Neumann entropy to control supergraph’s complexity. 

 

 Develop an EM algorithm in which the node correspondences and 
the supergraph edge probability matrix are treated as missing data. 

 



Probabilistic Framework 
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Here  the structure of the sample graphs and the supergraph are 

represented by their Adjacency matrices 



 

  Given a sample graph                     and a supergraph 

 

 

   along with their assignment matrix, 

 

 

      

     the a posteriori probabilities of the sample graphs given the 

structure of the supergraph and the node correspondences is 

defined as 

 

 

 

Observation model  



Data code-length 
 

 For the sample graph-set                                 and the supergraph    , 

the set of assignment is                               . Under the assumption 

that the graphs in    are independent samples from the distribution, 

the likelihood of the sample graphs can be  written 

 
 

 

 

 Code length of observed data 

 

 

 
 

 

 



Information theory 

 Entropic measures of complexity:  
Shannon , Erdos-Renyi, Von-Neumann. 

 

 Description length: fitting of models to 
data, entropy (model cost) tensioned 
against log-likelihood (goodness of fit). 

 

 Kernels: Use entropy to 
computeJensen-Shannon divergence 

 



Von-Neumann Entropy 

 Derived from normalised Laplacian 
spectrum 

 

 

 

 

 Comes from quantum mechanics and is 
entropy associated with density matrix. 
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Approximation 

 Quadratic entropy 

 

 

 

 

 In terms of matrix traces 














||

1

2
||

1

||

1

ˆ
4

1ˆ
2

1

2

ˆ
1

2

ˆ V

i

i

V

i

i
i

V

i

i
VNH 



]ˆ[
4

1
]ˆ[

2

1 2LTrLTrHVN 



Computing Traces 

 Normalised Laplacian 

 

 

 

 Normalised Laplacian squared 
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Simplified entropy 
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Collect terms together, von Neumann 
entropy reduces to  



Uses 

 Complexity-based clustering (especially 
protein-protein interaction networks). 

 

 Defining information  theoretic (Jensen-
Shannon) kernels. 

 

 Controlling complexity of generative 
models of graphs. 

 



Overall code-length 

 According to  Rissanen and Grunwald’s minimum description length 

criterion, we encode and transmit the sample graphs and the 

supergraph structure. This leads to a two-part message whose total 

length is  given 

 

 

 

 

 

 

 We  consider both the node correspondence information between 

graphs S and the structure of the supergraph M as missing data and 

locate M by minimizing the overall code-length using EM algorithm. 

 

 



EM – code-length criterion 



Expectation + Maximization 
 M-step :   

      Recover correspondence matrices:  Take partial derivative of the weighted log-
likelihood function  and soft assign. 

 

 

 

 

 

    

       Modify supergraph structure : 

 

 

 

 

 
 

 

 E-step:  Compute  the a posteriori probability of the nodes in the sample graphs 
being matching to those of the supergraph. 
 
 



Experiments 
 

 Delaunay graphs from images of different objects. 

 

 

 

 

 

 

 

 

 

          

                   COIL dataset                                        Toys dataset 



Experiments---validation 
 COIL dataset: model complexity increase, graph data log-likelihood 

increase, overall code length decrease during iterations. 

 

 

 

 

 

 

 

 

 Toys  dataset: model complexity decrease,  graph data log-likelihood 

increase, overall code length decrease during iterations. 

 

 

 

 

 

 

 

 



Experiments---classification task 

     We compare the performance of our learned 

supergraph on classification task with  two alternative 

constructions , the median graph and the supergraph 

learned without using MDL. The table below shows 

the average classification rates from 10-fold cross 

validation, which are followed by their standard errors.  
 
 

 

 

 

 

 

      



Experiments---graph embedding 

Pairwise graph distance based on the 

Jensen-Shannon divergence and the von 

Neumann entropy of graphs 



Experiments---graph embedding 

 

                   Edit distance                      JSD distance 



Experiments---generate new samples  



Conclusion 

 We  have shown how a supergraph or generative 
model of graph structure can be learned under 
minimum description length. 

 

 We  propose a variant of EM algorithm to locate the 
structure of the supergraph . 

 

  In our experiments, we demonstrate that our 
supergraph learning method is valid and  the 
supergraph learned is effective for classification. 
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Thanks !    And   Questions ? 


