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Graph representations

= Advantages: can capture object or scene
structure in a manner that is invariant to
changes in viewpoint. Abstract scene
contents in an efficient way.

= Disadvantages: can be fragile (sensitive to
noise and segmentation error). Available
pattern recognition/machine learning
methodology limited.



Graph Representations from images




Learning with graphs

= Cluster similar objects, and represent them
using a class prototype (e.g. median) using
(dis) similarities.

= Extract features and perform central clustering.

= Construct a generative model to capture
distribution of structural variations using
probability distributions.



..... I1s difficult because

= Graphs are not vectors: There is no natural ordering
of nodes and edges. Correspondences must be
used to establish order.

= Structural variations: Numbers of nodes and edges
are not fixed. They can vary due to segmentation
error.

= Not easily summarized: Since they do not reside in
a vector space, mean and covariance hard to
characterise.



Generative Models

= Structural domain: define probability distribution over
prototype structure. Prototype together with parameters
of distribution minimise description length (Torsello and
Hancock, PAMI 2007) .

= Spectral domain: embed nodes of graphs into vector-
space using spectral decomposition. Construct point
distribution model over embedded positions of nodes
(Bai, Wilson and Hancock, CVIU 2009).



Deep learning

= Deep belief networks (Hinton 2006, Bengio 2007).

= Compositional networks (Amit+Geman 1999, Fergus
2010).

= Markov models (Leonardis 200
= Stochastic image grammars (Zhu, Mumford, Yuille)

= Taxonomy/category learning (Todorovic+Ahuja,
2006-2008).



Alm
= Combine spectral and structural methods.

= Use description length criterion.

= Apply to graphs rather than trees.



Prior work

= [JCV 2007 (Torsello, Robles-Kelly, Hancock) —shape
classes from edit distance using pairwise clustering.

= PAMI 06 and Pattern Recognition 05 (Wilson, Luo and
Hancock) — graph clustering using spectral features and
polynomials.

= PAMI 07 (Torsello and Hancock) — generative model for
variations in tree structure using description length.

= CVIUO9 (Xiao, Wilson and Hancock) — generative model
from heat-kernel embedding of graphs.



Structural learning

Using description length



Description length

= Wallace+Freeman: minimum message
length.

= Rissanen: minimum description length.
Use log-posterior probability to locate model that is
optirnal witth respect to code-length.



Similarities/differences

= MDL: selection of model is aim; model
parameters are simply a means to this
end. Parameters usually maximum
likelihood. Prior on parameters is flat.

= MML: Recovery of model parameters is
central. Parameter prior may be more
complex.



Coding scheme

= Usually assumed to follow an exponential
distribution.

= Alternatives are universal codes and predictive
codes.

= MML has two part codes (model+parameters). In
MDL the codes may be one or two-part.



Method

Model is supergraph (i.e. Graph prototypes) formed by graph
union.

Sample data observation model: Bernoulli distribution over
nodes and edges.

Mode: complexity: Von-Neumann entropy of supergraphs.

Fitting criterion:
MDL-like-make ML estimates of the Bernoulli parameters

MML-like: two-part code for data-model fit + supergraph
complexity.



Model overview

= Description length criterion
L(G,T) = LL(G|T) + H(T)
code-length=negative + model code-length
log-likelihood (entropy)

Data-set: set of graphs G
Model: prototype graph+correspondences with it
Updates by expectation maximisation:

Model graph adjacency matrix (M-step)
+ correspondence indicators (E-step).



Learn supergraph using MDL

= Follow Torsello and Hancock and pose the problem of learning
generative model for graphs as that of learning a supergraph
representation.

= Required probability distributions is an extension of model developed
by Luo and Hancock.

= Use von Neumann entropy to control supergraph’s complexity.

= Develop an EM algorithm in which the node correspondences and
the supergraph edge probability matrix are treated as missing data.



Probabilistic Framework

Here the structure of the sample graphs and the supergraph are
represented by their Adjacency matrices

V1 V2 V3 V4
Vil
V2 V3 0 1 0 O V1
1 0 1 1 V2
0 1 0 1 V3
\/ 0 1 1 0 V4
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Observation model

Given a sample graph ¢, = (V;. E;) and a supergraph I = (Vr. Er)

D 1 if (a,b) € E; Vo 1 if (a,3) € Ep
ab = Y 0 otherwise AP T Y 0 otherwise

along with their assignment matrix,
. Jlita—«
| 0 otherwise

the a posteriori probabilities of the sample graphs given the
structure of the supergraph and the node correspondences is

defined as
_ H Z I&uexp ,u,z Z Dab”&f%a

P(G,
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Data code-length

For the sample graph-seté = { G1...Gi...Gv } and the supergraph r,
the set of assignmentis s = {s',...s: ..sV} . Under the assumption

that the graphs in g are independent samples from the distribution,

the likelihood of the sample graphs can be written

P@GIr.S) =[] P@GIrs)y =[] T] D Kiexplnd Y Di,Missi)

( Eg G Eg a’EVE QEVF bevz BEVF

Code length of observed data

LGIT) = —11 Xor.eg log P(GL|T, S7)



Information theory

= Entropic measures of complexity:
Shannon , Erdos-Renyi, Von-Neumann.

= Description length: fitting of models to
data, entropy (model cost) tensioned
against log-likelihood (goodness of fit).

= Kernels: Use entropy to
computelensen-Shannon divergence



Von-Neumann Entropy

= Derived from normalised Laplacian
spectrum

L=TY2(D- AT V2 =0OAD'

= Comes from quantum mechanics and is
entropy associated with density matrix.



Approximation

= Quadratic entropy

s In terms of matrix traces
1 1 .

H, ==Tr[L]-=Tr[L?

VN 2 [ ] 4 [ ]



Computing Traces

= Normalised Laplacian

TrL]=V |

= Normalised Laplacian squared

A 1
Tr[L* ] =V |+
[ ] ‘ ‘ (U,VZ)EE 4TuTv




SimtEIified entrop

Collect terms together, von' Neumann
entropy reduces to

1 1
Ho == |V |
" 4 | | (U,VZ)EE 4TuTv



Uses

= Complexity-based clustering (especially
protein-protein interaction networks).

= Defining information theoretic (Jensen-
Shannon) kernels.

= Controlling complexity of generative
models of graphs.



Overall code-length

According to Rissanen and Grunwald’s minimum description length
criterion, we encode and transmit the sample graphs and the

supergraph structure. This leads to a two-part message whose total
length is given

L(G.I") = LL(G|I") + Hyn =

LT SV I b S RYARI SN g
G,eG acV; aeVr beV, peVp (a,B)EET r

We consider both the node correspondence information between
graphs S and the structure of the supergraph M as missing data and
locate M by minimizing the overall code-length using EM algorithm.



EM — code-length criterion
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Expectation + Maximization

M-step :
Recover correspondence matrices: Take partial derivative of the weighted log-
likelihood function and soft assign.
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E-step: Compute the a posteriori probability of the nodes in the sample graphs
being matching to those of the supergraph.
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Experiments

Delaunay graphs from images of different objects.
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Experiments---validation

= COIL dataset: model complexity increase, graph data log-likelihood
Increase, overall code length decrease during iterations.
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= Toys dataset: model complexity decrease, graph data log-likelihood
Increase, overall code length decrease during iterations.

1085 T T T 150 v ¥ v | v 400 v
i i =#=gar supergraph : H : H i : : =e=gcar graphs
P i . |==lobster supergraph ) i i S ST S, SR ABOL e Fe e S e | ==lObSTET graphs
A0Qplpt e e buman supergraph 100 ! I B e S ' - : ] =+=human1 graphs
- A 1 =—human2 supergraph -8 . il | ! | BOOL oo T e e == humand graphs)
8‘ asl. : S SR E——— - sor- o ';"';_';'_;-'-.'-u'.l.'o'_'a_"oa.'-i'..;-: £ ' 1 I | | I
= % -t : mzﬁn},.
c \ E or- : c .
@ g0 T ] ] |
c RN . T 200045
& eV - : : T 50 1 @ .
T 85 R e s S = =] g 150/
E : L S : o =100+~ 4 O
= T et w
’ L T, @ I = 100
@ gol- . L =
= @ -150} s 4 s b - -
] i B [i 1] 501 - R T .
@ [ =1 H TR g ol
S 75 . N : .
o & -200f- o o . = i i
4 e—car graphs P B A e aanas
T0p : - _ e =——lobster graphs E F H b
L 2804 i —a=humani graphs B R B B B
; H H i : : ; —=—human2 graphs i : i i
65 =200 -100!
0 5 10 15 0 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30

iteration number iteration number iteration number



Experiments---classification task

We compare the performance of our learned
supergraph on classification task with two alternative
constructions , the median graph and the supergraph
learned without using MDL. The table below shows
the average classification rates from 10-fold cross
validation, which are followed by their standard errors.

Classification Rate cat & pig |bottlel & bottle2|four objects (Toys)
learned supergraph(by MDL) 10.824 £ 0.033| 0.780 £ 0.023 | 0.763 £ 0.026
median graph/concatenated graph|0.669 + 0.052| 0.651 + 0.023 [ 0.575+ 0.020
learned supergraph 0.807 £ 0.056] 0.699 £ 0.029 | 0.725 + 0.022




Experiments---graph embedding

Pairwise graph distance based on the
Jensen-Shannon divergence and the von
Neumann entropy of graphs

H(G;) + H(G;)

JSD(G:,G;) = H(G; ® G;) .



Experiments---graph embedding

150

100

50

=100

=150

=200

150

100

S0

=100

—200

=100

o 100
Tl " “ gt
BE e "
¥ **!w *
-
*&*ET* *
= 4m**i;
-

200

Edit distance

al "
* *
L T ?&
= * =y "
*®
‘+ E 3 *’_.#*
r . oy ORI
% FayET L3 -
=
or B **.'?*..; e i%. L * *_- -
* " e W EE -1
£ o Wamy % @
- * x*
=-1F . *:it &1 * o wEk
* * * *
: i
—_at " o
* s
* E 3
-3 * *
—4 *
- -3 -2 =1 o 1 2
5_
ak
ar 2
* - i
2t - i L
S e . i
1r w - ) .
_**- w . F o
- > - = ey
oF .1‘*. *. - o » . .._ -
- ﬂ;*‘ﬁe : "L * e . " .
-1F * * - - - &
k. - R
. £ o ® & S
-2+ .“!— # . o
4l ® o
*
—4r L

JSD distance



generate new samples

Iments---
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(d) Generated sample graph that has low likelihood

(c) Median graph



Conclusion

= We have shown how a supergraph or generative
model of graph structure can be learned under
minimum description length.

= We propose a variant of EM algorithm to locate the
structure of the supergraph .

= [n our experiments, we demonstrate that our
supergraph learning method is valid and the
supergraph learned is effective for classification.
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Thanks! And Questions ?



