One-Shot-Similarity Metric Learning for Action Recognition

Orit Kliper-Gross, Tal Hassner, and Lior Wolf

Weizmann Institute of Science

The Open University of Israel

Tel Aviv University

SIMBAD, Sept. 2011

Outline

Original Space

- No Labels
- Similar/Not-similar constraints
- Distance metric
 - Not relevant
 - Not meaningful

Original Space

Projected Space

- Similar/Not-similar constraints
- Distance metric
 - Not relevant
 - Not meaningful

- Meaningful distance
- Consistent with constraints
- Easier to perform:
 - Classification
 - Clustering
 - Retrieval tasks
 - Pattern recognition
 - And more...

Most Common Approach: *Euclidian Distance*

- RCA Bar-Hillel et al. ICML'03
- SDP Xing el al. NIPS'03
- NCA Goldberger et al. NIPS'05
- LMNN Weinberger et al. NIPS'06
- ITML Davis et al. ICML'07

OASIS Chechick et al. JMLR'10

and More...

Recently (Nguyen & Bai'10): Cosine Similarity

- Euclidian Distance
- Cosine Similarity
- One-Shot-Similarity

In This Work: One-Shot-Similarity Metric Learning (OSSML)

Wolf, Hassner, Taigman, ICCV'09A

• What:

A measure of the similarity between two vectors

- Input:
 - The two vectors **I**,**J** A set of "Background samples" **N**
- How:
 - Use "One-Shot Learning"
 - (i.e. classification with one positive example)

Wolf, Hassner, Taigman, ICCV'09A

OSS Score:

Wolf, Hassner, Taigman, ICCV'09A

OSS Score:

Model1 = train (I, N) Score1 = classify(J, Model1)

One-Shot-Similarity (OSS) Wolf, Hassner, Taigman, ICCV'09A OSS Score:

Model1 = train (I, N) Score1 = classify(J, Model1)

Model2 = train (J, N) Score2 = classify(I, Model1)

One-Shot-Similarity (OSS) Wolf , Hassner, Taigman, ICCV'09A

OSS Score:

Model1 = train (I, N) Score1 = classify(J, Model1)

Model2 = train (J, N) Score2 = classify(I, Model1)

OSS(I,J,N) = (score1 + score2)/2

Wolf, Hassner, Taigman, ICCV'09A

Properties:

Meta-Similarity Can use any underlying classifier

Unlabeled training data Do not know class labels

Efficiently computed Statistical properties of set N computed once for all pairs I,J

One-Shot-Similarity (OSS) Face Recognition \bigcirc Documents Analysis \bigcirc

Wolf et-al'10

Wolf et-al'09 Action Recognition

OSS Using Free-Scale Linear Discriminant Analysis (FS-LDA) Variance between classes

LDA separator:
$$S = \frac{\sigma_b^2}{\sigma_w^2}$$

OSS Using *Free-Scale Linear Discriminant Analysis (FS-LDA)*

- $OSS_{FS-LDA}(I,J,N) = (I (\mu_N))^T (S_N^{-1}) (J \frac{I + (\mu_N)}{2}) + (J (\mu_N))^T (S_N^{-1}) (I \frac{J + (\mu_N)}{2})$
- μ_N mean of the set N
- s_N^{-1} inverse of set N covariance matrix

OSSML is simply OSS in the projected space

 $OSS_{ML}(I, J, N, A) = OSS(AI, AJ, AN)$

$$= (AI - (\mu_{AN}))^{T} (S_{AN}^{-1} (AJ - \frac{AI + (\mu_{AN})}{2}) + (AJ - (\mu_{AN}))^{T} (S_{AN}^{-1} (AI - \frac{AJ + (\mu_{AN})}{2}))$$

Gradient has Closed-Form Solution!

We perform the optimization using *gradient descent*

See our paper for more details

OSSML for Action Recognition

- New action recognition database
- > 400 complex action classes
- Web videos: unconstrained, realistic, uncontrolled setting
- Action pair matching

* The Action Similarity Labeling Challenge, Kliper-Gross, Hassner, Wolf, To Appear TPAMI'11

Action pair matching

Input: Video pair

Same / Not-Same action ?

Challenges

Large variability

Others

High-dimensional, complicated space

The ASLAN benchmark - Setting 6000 Video pairs

Mutoklyrosslvalveationsetcheme

Baseline Tests ASLAN. To appear TPAMI'11

Baseline Tests ASLAN. To appear TPAMI'11

multiple descriptors \ similarities

Baseline Results on the ASLAN set ASLAN. To appear TPAMI'11

Pipeline

STIP: On Space-Time Interest Points Laptev IJCV'05

Software available on: http://www.irisa.fr/vista/Equipe/People/Laptev/ download.html#stip

Pipeline

Using:

• HOG, HOF and HNF With Bag of Words (BOW)

Learning realistic human actions from movies Laptev et.al. CVPR'08

Descriptor Size: 5000 features

and Dimensionality Reduction: $5000 \rightarrow 100 \rightarrow 50$

+ Multiple Similarities+ Multiple Descriptors

OSSML Results

State-of-the-art results on the ASLAN benchmark

OSSML Results (AUC)

		HOG	HOF	HNF	ALL Descriptors
PCA initialization	CS	63.9	60.1	64.2	65.2
	OSS	63.1	59.4	63.0	64.9
	CS+OSS				65.4
CSML after PCA	CS	64.2	61.8	64.3	67.4
	OSS	63.8	62.4	63.3	67.6
	CS+OSS				68.0
OSSML after PCA	CS	64.1	60.5	64.3	65.7
	OSS	63.8	60.7	64.0	66.7
	CS+OSS				66.6
OSSML after CSML	CS	65.0	63.6	65.1	68.0
	OSS	64.3	63.8	64.1	68.9
	CS+OSS				69.1
38% above a random classifier					

Same classified as Same (TP) 🙂

Not-Same classified as Not-Same (TN) 😳

Same classified as Not-Same (FN) 😣

Not-Same classified as Same (FP) 😣

Summary

- OSSML
 - A metric learning method geared towards improved
 One-Shot-Similarity (OSS) performance
 - Formulate a cost function using same/not-same labels
 - Gradient descent solution
- Application to Action Recognition
 - Action pair-matching
 - Best reported results on the ASLAN set

Thank You !

SIMBAD, Sept. 2011