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Introduction and Motivation

Labeled
 Web Images 

Sample
Learning Model

Images classification : Is there a “Person” ?

Available labeled data : Images from a Web corpus

• Supervised Classification task

I Test data : Images from the same Web corpus

⇒ Low-error classifier on test data coming from the same corpus

• Domain Adaptation task

I New test data : Images from a different Video corpus

⇒ The classifier quality is no more guaranteed
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A Transfer Learning Task: Domain Adaptation
Formalisation

Notations

• X input space, Y = {−1, 1} label set

• PS source domain : distribution over X × Y
DS marginal distribution over X

• PT target domain : different distribution over X × Y
DT marginal distribution over X

Expected error of an hypothesis h : X → Y

• errS(h) = E(x,y)∼PS

[
h(x) 6= y

]
source domain error

• errT (h) = E(x,y)∼PT

[
h(x) 6= y

]
target domain error

Domain Adaptation objective

• h ∈ H with a low errT (h)
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A Transfer Learning Task: Domain Adaptation
Studied case

• Source domain

LS = {(xi , yi )}dli=1 Labeled Source sample drawn i.i.d. from PS

• Target domain

TS = {xj}dtj=1 unlabeled Target Sample drawn i.i.d. from DT

If h is learned on source domain, how does it perform on target domain ?
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A Transfer Learning Task: Domain Adaptation
S. Ben-David et al. results

Theorem [Ben-David et al., 2010]

Let H be an hypothesis space. If DS and DT are respectively the
marginal distributions of source and target instances, then for all
δ ∈ ]0, 1], with probability at least 1− δ :

∀h ∈ H, errT (h) ≤ errS(h) +
1

2
dH∆H(DS ,DT ) + ν
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A Transfer Learning Task: Domain Adaptation
S. Ben-David et al. results

Theorem [Ben-David et al., 2010]

Let H be an hypothesis space. If DS and DT are respectively the
marginal distributions of source and target instances, then for all
δ ∈ ]0, 1], with probability at least 1− δ :

∀h ∈ H, errT (h) ≤ errS(h) +
1

2
dH∆H(DS ,DT ) + ν

What is dH∆H(DS ,DT ) the H∆H-distance ?
Intuitively
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A Transfer Learning Task: Domain Adaptation
S. Ben-David et al. results

Theorem [Ben-David et al., 2010]

Let H be an hypothesis space. If DS and DT are respectively the
marginal distributions of source and target instances, then for all
δ ∈ ]0, 1], with probability at least 1− δ :

∀h ∈ H, errT (h) ≤ errS(h) +
1

2
dH∆H(DS ,DT ) + ν

What is ν ?

• ν = infh∈H
(

errS(h) + errT (h)
)

error of the joint optimal classifier
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A Transfer Learning Task: Domain Adaptation
S. Ben-David et al. results

Theorem [Ben-David et al., 2010]

Let H be an hypothesis space. If DS and DT are respectively the
marginal distributions of source and target instances, then for all
δ ∈ ]0, 1], with probability at least 1− δ :

∀h ∈ H, errT (h) ≤ errS(h) +
1

2
dH∆H(DS ,DT ) + ν

Idea : Minimizing the bound for building a new projection space

⇒ Explicit projection space defined by a good similarity function

⇒ H hypothesis space of good similarity functions based classifiers
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Learning with Good Similarity Functions
(ε, γ, τ)-Good Similarity Functions [Balcan et al., 2008a, Balcan et al., 2008b]

K : X × X → [−1; 1] is an (ε, γ, τ)-good similarity function for a
binary classification problem P if

(i) A 1− ε probability mass of examples (x, y) satisfy

E(x′,y′)∼P

[
yy ′K(x, x′)|R(x′)

]
≥ γ

(ii) Prx′ [R(x′)] ≥ τ
(Notation: R set of reasonable points)

Intuitively
For a point (x1, y1) ∼ P, then on average for (x′2, y

′
2) ∈ R

if y1 = y ′2 if y1 6= y ′2
x1 is similar to x2 x1 is dissimilar to x2

K(x1, x
′
2) ≥ γ K(x1, x

′
2) ≤ −γ
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Learning with Good Similarity Functions
Properties [Balcan et al., 2008a, Balcan et al., 2008b]

• R = {x′j}duj=1 defines an explicit projection space

φR :

{
X → Rdu

x 7→ 〈K(x, x′1), . . . ,K(x, x′du )〉

• h is learned in this space such as

h(x) = sign

[
du∑
j=1

αjK(x, x′j)

]

I by solving a linear program
I with good generalization guarantees

• Generalization of kernels
I K may be not symmetric and not positive semi-definite
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Modifying the Projection Space for Domain Adaptation
An Heuristic Normalization of a Similarity Function

Recall:

• For a DA task, we want to be performing on the target domain TS

• A SF K must be good on LS relatively to the reasonable points R

Idea: “Insert” target information in K

⇒ Build a new KN by normalizing a given K relatively to LS ∪ TS

Heuristic: Given N = LS ∪ TS , for each x′ ∈ R, KN must have a
mean 0 and a standard deviation 1 on x ∈ N, i.e. KN is defined by:

∀x′j ∈ R, KN(., x′j) =



K(., x′j)− µx′j

σx′j

if −1≤
K(.,x′j )−µ̂x′

j

σ̂x′
j

≤ 1,

−1 if
K(.,x′j )−µ̂x′

j

σ̂x′
j

≤−1,

1 if 1 ≤
K(.,x′j )−µ̂x′

j

σ̂x′
j

,
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Modifying the Projection Space for Domain Adaptation
An Additional Regularization Term For Moving Closer the Two Distributions

Recall: Minimizing errT (h) with the help of the bound

errT (h) ≤ errS(h) +
1

2
dH∆H(DS ,DT ) + ν

Minimizing errS(h) via Balcan optimisation problem for SF

with LS = {(xi , yi )}dli=1 and R ′ = {x′j}
d′u
j=1

min
α1,...,αdu

dl∑
i=1

1− yi

d′u∑
j=1

αjK(xi , x
′
j)


+

+ λ‖α‖1

[1−a]+ = max(1−a; 0) is the hinge loss

‖α‖1 =
∑d′u

j=1 |αj |

errT (h) ≤ errS (h) + 1
2 dH∆H(DS ,DT ) + ν
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Modifying the Projection Space for Domain Adaptation
An Additional Regularization Term For Moving Closer the Two Distributions

Minimizing dH∆H(US ,UT ) (US ∼ DS and UT ∼ DT )

⇒ CST a pair set (xs , xt) ∈ US × UT

Building a new projection φR′
new

s.t. xs and xt be not separable

s.t. with the result that |h(xs)− h(xt)| ≈ 0∣∣∣∣∣∣
d′u∑
j=1

αjK(xs ,x
′
j)−

d′u∑
j=1

αjK(xt ,x
′
j)

∣∣∣∣∣∣ ≤
∥∥∥(tφR′(xs)−tφR′(xt))diag(α)

∥∥∥
1

⇒ φR′
new (.) = 〈 α1K(., x ′1)︸ ︷︷ ︸

Knew (., x ′1)

, . . . , αduK(., x ′du )︸ ︷︷ ︸
Knew (., x ′du )

〉

⇒ New regularization term

errT (h) ≤ errS (h) + 1
2 dH∆H(DS ,DT ) + ν
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Modifying the Projection Space for Domain Adaptation
An Additional Regularization Term For Moving Closer the Two Distributions

With LS = {(xi , yi )}dli=1 (i.i.d. from PS) and R ′ = {x′j}
d′u
j=1

Building the φR′
new space with the help of α infered by

min
α

dl∑
i=1

1− yi

d′u∑
j=1

αjK(xi , x
′
j)


+

+ λ‖α‖1

+ β
∑

(xs ,xt )∈CST

‖(tφR′(xs)− tφR′(xt)) diag(α)‖1

• Validation of hyperparameters, of reweighting, of CST ?

errT (h) ≤ errS (h) + 1
2 dH∆H(DS ,DT ) + ν
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Modifying the Projection Space for Domain Adaptation
Reverse Classifier hr and Validation

Problem: No label on target domain

Solution: Kind of “reverse” validation [Zhong et al., 2010]
With the reverse classifier hr

• Two domains are related ⇒ hr performs well on the source domain

[Bruzzone and Marconcini, 2010]
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Reverse Classifier hr and Validation

Problem: No label on target domain

Solution: Kind of “reverse” validation [Zhong et al., 2010]
With the reverse classifier hr
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+
++
-- ---

LS TS

• Two domains are related ⇒ hr performs well on the source domain

[Bruzzone and Marconcini, 2010]
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Reverse Classifier hr and Validation

Problem: No label on target domain

Solution: Kind of “reverse” validation [Zhong et al., 2010]
With the reverse classifier hr

+++++
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2 Auto Labeling 

h from LS U TS

of TS with h
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+
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-- ---

LS TS TS
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• Two domains are related ⇒ hr performs well on the source domain

[Bruzzone and Marconcini, 2010]
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Reverse Classifier hr and Validation

Problem: No label on target domain

Solution: Kind of “reverse” validation [Zhong et al., 2010]
With the reverse classifier hr
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2 Auto Labeling 
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• Two domains are related ⇒ hr performs well on the source domain
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Reverse Classifier hr and Validation

Problem: No label on target domain

Solution: Kind of “reverse” validation [Zhong et al., 2010]
With the reverse classifier hr

+++++

h

hr

1 Learning of 

2 Auto Labeling 

3 Learning of

h from LS U TS

of TS with h

h  from TS auto labeledr

4 Evaluation
of h  on LS

by cross-validation

r
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+
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+
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-- ---

• Two domains are related ⇒ hr performs well on the source domain

[Bruzzone and Marconcini, 2010]
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Experimentations
Experimental Setup

• Similarity function:
I K Gaussian kernel
I KST Normalization of K according to LS ∪ TS

• Comparison of performances of K and KST

I with the new regularization and without

1. Toy problem “inter-twinning moons”
-3
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3

-3 -1.5 0 1.5 3

+1
-1

-3

-1.5

0

1.5

3

-3 -1.5 0 1.5 3

+1
-1

I 1 source domain
I 8 different target domains according to 8 rotation angles
I 10 draws for each angle
I Performances on a test set of 1500 target instances

2. Image annotation
I Source domain: PascalVOC 2007
I Target domain: TrecVid 2007
I F-measures on target domain
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Experimentations
Inter-twinning moons: results
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Experimentations
Inter-twinning moons: estimation of the similarity function goodness on TS

ε on TS as a function of γ
i.e. for a given γ, ε is the
proportion of x∈TS s.t.:∑
x′
j
∈R′

yi y
′
j K(xi , x

′
j ) < γ

(a) For a 20◦ task. (b) For a 30◦ task.

(c) For a 40◦ task. (d) For a 50◦ task. (e) For a 60◦ task.

(f ) For a 70◦ task. (g) For a 80◦ task. (h) For a 90◦ task.
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Experimentations
Images corpus: results

Conc. boat bus car monitor person plane Avg.

SF without distance regularization
K 0.0279 0.1806 0.5214 0.2477 0.4971 0.5522 0.3378

KST 0.4731 0.4632 0.5316 0.3664 0.3776 0.5635 0.4626

SF with distance regularization
K 0.2006 0.1739 0.5125 0.2744 0.5037 0.5192 0.3640

KST 0.4857 0.4891 0.5452 0.3989 0.5353 0.6375 0.5153

(a) For the concept boat (b) For the concept plane.
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Extended Work: A little Bit of Theory
Sparsity Analysis

Recall:
minα

∑dl
i=1

[
1−yi

∑d′u
j=1 αjK(xi ,x

′
j )

]
+
+λ‖α‖1+β

∑
(xs ,xt )∈CST

(tφR′(xs )−tφR′(xt )) diag(α)‖1

Lemma
Let BR = min

x′j∈R

{
max

(xs ,xt )∈CST
|K(xs , x

′
j)− K(xt , x

′
j)|
}
> 0.

If α∗ is the optimal solution of our problem, then,

‖α∗‖1 ≤
1

βBR + λ
.

⇒ The sparsity depends on the hyperparameters and BR

⇒ The domains are far ⇒ The difference between coordinates is high

→ BR tends to be high

→ increase of the sparsity
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Extended Work: A little Bit of Theory
Generalization Bounds

• Investigation of algorithmic robustness [Xu and Mannor, 2010]

I Idea: “if a testing sample is similar to a training sample then the
testing error is close to the training error” (in a classical ML setting)

⇒ Our method is robust on the source domain

⇒ Generalization bound:

errT (h) ≤ êrrS(h) +
Nη

βBR + λ
+

√
4Mη ln 2 + 2 ln 1

δ

dl
+

1

2
dH∆H(DS ,DT ) + ν,
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Conclusion and Perspectives

Conclusion

• Domain Adaptation exploiting a similarity based projection space
1. Normalization of a SF according to the target domain
2. Addition of a new regularization term for moving closer the domains

With a “reverse” validation
With generalization guarantees
Infers sparse classifiers related to the task difficulty

Remark Extended work (ICDM’11): an iterative method improves the results

⇒ The SF helps to build a relevant projection space for adaptation

Perspectives

• Influence of target labels

• Design SF for Domain Adaptation

• Other applications
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Thank you for your attention.
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Appendix
Hypothesis

Recall: We solve

min
α

dl∑
i=1

1− yi

d′u∑
j=1

αjK(xi , x
′
j)


+

+ λ‖α‖1

+ β
∑

(xs ,xt )∈CST

(tφR′(xs)− tφR′(xt)) diag(α)‖1

Hypothesis:

• ∀x′j ∈ R ′, max
(xs ,xt )∈CST

|K(xs , x
′
j)− K(xt , x

′
j)| > 0

• (X , ρ) is a compact metric space

• K is a continuous similarity function on its first argument
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Appendix
A Little Bit of Theory: Sparsity Analysis

Lemma
For any λ>0, β>0 and any pair set CST verifying the previous
hypothesis, let BR = min

x′j∈R

{
max

(xs ,xt )∈CST
|K(xs , x

′
j)− K(xt , x

′
j)|
}

.

If α∗ is the optimal solution of our problem, then,

‖α∗‖1 ≤
1

βBR + λ
.

⇒ The sparsity depends on the hyperparameters and BR

⇒ The domains are far ⇒ The difference between coordinates is high

→ BR tends to be high

→ increase of the sparsity
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Appendix
Robustness Property

• Algorithmic robustness [Xu and Mannor, 2010]

I Idea: “if a testing sample is similar to a training sample then the
testing error is close to the training error” (in a classical ML setting)

I xs ∈ LS and xt ∈ TS are close (according to a metric)

⇒
∣∣L(h, xs)− L(h, xt)

∣∣ ≤ ε
⇒ Generalization bounds

• Even if the robustness property is fulfilled for only a subpart of LS
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Appendix
Algorithmic robustness

Definition of algorithmic robustness [Xu and Mannor, 2010]
Given a learning sample LS , an algorithm A is (M, ε(LS)) robust if
X × Y can be partitioned into M disjoint sets, denoted as {Ci}Mi=1, such
that ∀s ∈ LS ,

s, u ∈ Ci ⇒
∣∣L(h, s)− L(h, u)

∣∣ ≤ ε(LS),

with h the model learned from LS , L the loss function ofA.

Theorem [Xu and Mannor, 2010]
If LS ={(xi , yi )}dli=1 is drawn i.i.d. from a distribution P and if the
algorithm A is (M,ε(LS)) robust, then for any δ>0, with probability at
least 1-δ,

errP(ALS) ≤ êrrP(ALS) + ε(LS)+

LUP

√
2M ln 2 + 2 ln(1/δ)

dl
,

where errP and êrrP are respectively the expected and the empirical
errors over P, L being upper bounded by LUP .
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Generalization Bounds

Theorem
If LS ={(xi , yi )}dli=1 is drawn i.i.d. from PS , then our method is

(2Mη,
Nη

βBR+λ
) robust on the source domain PS, where

Nη= max
xa,xb∼DS
ρ(xa,xb)≤η

‖tφR(xa)−tφR(xb)‖∞ with η>0 and Mη is the η-covering

number of X . Thus for every h in the hypothesis class H of SF
classifiers, for any δ > 0, with probability at least 1− δ,

errS(h) ≤ êrrS(h) +
Nη

βBR + λ
+

√
4Mη ln 2 + 2 ln 1

δ

dl
.

Thus,

errT (h) ≤ êrrS(h) +
Nη

βBR + λ
+

√
4Mη ln 2 + 2 ln 1

δ

dl
+

dH∆H(DS ,DT ) + ν,

where ν is the joint error over the domains, dH∆H(DS ,DT ) is the
H∆H-distance between the marginal distributions.
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Appendix
A Way to Lighten the Search of the Projection Space

Recall: φR′
init(.) = 〈 Kinit(., x

′
1) , . . . , Kinit(., x

′
du ) 〉

↪→ Learning α thanks to the regularization term∑
(xs ,xt )∈CST

∥∥∥(tφR′
init(xs)− tφR′

init(xt))diag(α)
∥∥∥

1︸ ︷︷ ︸
‖tφR′

new (xs )−tφR′
new (xt )‖

1

⇒ φR′
new (.) = 〈 α1Kinit(., x

′
1)︸ ︷︷ ︸

Knew (., x ′1)

, . . . , αduKinit(., x
′
du )︸ ︷︷ ︸

Knew (., x ′du )

〉

Problem: Testing all the possible pair set CST is clearly intractable.

Solution: We iterate the learning process in the new φR′
new -space

↪→ Stopping criterion ?



On the Usefulness
of Similarity based
Projection Spaces

for Transfer
Learning

E.Morvant, A.Habrard,
S.Ayache

Introduction and
Motivation

A Transfer Learning
Task: Domain
Adaptation (DA)

Learning with Good
Similarity Functions
(SF)

Modifying the
Projection Space for
Domain Adaptation

Experimentations

Extended Work: A
Little Bit of Theory

Conclusion and
Perspectives

Appendix
A Way to Lighten the Search of the Projection Space

Recall : DA Bound: errT (h) ≤ errS(h) +
1

2
dH∆H(DS ,DT ) + ν

Joint error ν = infh∈H
(

errS(h) + errT (h)
)
⇔ Adaptation ability

⇒ Stopping criterion

Problem: No label on the target domain

Solution: At each iteration l , we empirically estimate ν

ν̂l = êrrS(hr
l ) + êrrT (hr

l )

where êrrT (hr
l ) is the error of hr

l on TS auto-labeled by hl

We select parameters associated with the minimal ν̂l

⇒ Stop at iteration l , if ν̂l+1 increases or converges comparing to ν̂l

Return hl(.) with the minimal ν̂l
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Appendix
A Way to Lighten the Search of the Projection Space

Recall : DA Bound: errT (h) ≤ errS(h) +
1

2
dH∆H(DS ,DT ) + ν

Joint error ν = infh∈H
(

errS(h) + errT (h)
)
⇔ Adaptation ability
⇒ Stopping criterion

Problem: No label on the target domain

Solution: At each iteration l , we empirically estimate ν

ν̂l = êrrS(hr
l ) + êrrT (hr

l )

where êrrT (hr
l ) is the error of hr

l on TS auto-labeled by hl

We select parameters associated with the minimal ν̂l

⇒ Stop at iteration l , if ν̂l+1 increases or converges comparing to ν̂l

Return hl(.) with the minimal ν̂l
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Appendix
Experimental Setup

• Similarity function:
I K Gaussian kernel
I KST Normalization of K according to LS ∪ TS

• Comparison with SVM, TSVM, DASVM and SF
I Performances and model sizes

1. Toy problem “inter-twinning moons”
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I 1 source domain
I 8 different target domains according to 8 rotation angles
I 10 draws for each angle
I Performances on a test set of 1500 target instances

2. Image annotation

I Source domain: PascalVOC 2007 with ratio +/− de 1/3
I Two target domains:

Different ratio +/−: PascalVOC 2007 Test
Same ratio +/−: TrecVid 2007

I F-measures on target domain
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Inter-twinning moons: an execution example
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Images corpus: results

VOC vs VOC: Reasonable points for the concept Person

Results

SVM SF TSVM DASVM DASF

VOC vs VOC
Avg. on F-meas. 0.22 0.19 0.17 0.20 0.25
20 conc. Size 642 210 705 622 200

VOC vs Trec
boat F-meas 0.56 0.49 0.56 0.52 0.57

Size 351 214 498 202 120
car F-meas. 0.43 0.50 0.52 0.55 0.55

Size 1096 176 631 627 254
monitor F-meas. 0.19 0.34 0.37 0.30 0.42

Size 698 246 741 523 151
person F-meas. 0.52 0.45 0.46 0.54 0.57

Size 951 226 1024 274 19
plane F-meas. 0.32 0.54 0.61 0.52 0.66

Size 428 178 259 450 7
Avg. on F-meas. 0.40 0.47 0.50 0.49 0.55

the 5 conc. Size 705 208 631 415 110
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