On the Usefulness of Similarity based Projection Spaces for Transfer Learning

1

Emilie Morvant¹ Amaury Habrard²

Stéphane Avache¹

Laboratoire d'Informatique Fondamentale **QARMA** Team Aix-Marseille University, France {emilie.morvant.stephane.avache}@lif.univ-mrs.fr

Laboratoire Hubert Curien Saint-Étienne University, France amaury.habrard@univ-st-etienne.fr

SIMBAD Workshop 2011, Venice, Italy 28th September 2011

Introduction and Motivation

Images classification : Is there a "Person" ?

Available labeled data : Images from a Web corpus

- Supervised Classification task
 - Test data : Images from the same Web corpus
 - \Rightarrow Low-error classifier on test data coming from the same corpus
- Domain Adaptation task
 - New test data : Images from a different Video corpus
 - \Rightarrow The classifier quality is no more guaranteed

On the Usefulness of Similarity based Projection Spaces for Transfer Learning

E.Morvant, A.Habrard, S.Ayache

Introduction and Motivation

A Transfer Learning Task: Domain Adaptation (DA)

Learning with Good Similarity Functions (SF)

Modifying the Projection Space for Domain Adaptation

Experimentations

Extended Work: A Little Bit of Theory

Outline

A Transfer Learning Task: Domain Adaptation (DA)

Learning with Good Similarity Functions (SF)

Modifying the Projection Space for Domain Adaptation An Heuristic Normalization An Additional Regularization Term

Experimentations

Extended Work: A Little Bit of Theory

Conclusion and Perspectives

On the Usefulness of Similarity based Projection Spaces for Transfer Learning

E.Morvant, A.Habrard, S.Ayache

Introduction and Motivation

A Transfer Learning Task: Domain Adaptation (DA)

earning with Good Similarity Functions SF)

Modifying the Projection Space for Domain Adaptation

Experimentations

Extended Work: A Little Bit of Theory

Outline

A Transfer Learning Task: Domain Adaptation (DA)

Learning with Good Similarity Functions (SF)

Modifying the Projection Space for Domain Adaptation An Heuristic Normalization An Additional Regularization Term

Experimentations

Extended Work: A Little Bit of Theory

Conclusion and Perspectives

On the Usefulness of Similarity based Projection Spaces for Transfer Learning

E.Morvant, A.Habrard, S.Ayache

Introduction and Motivation

A Transfer Learning Task: Domain Adaptation (DA)

Learning with Good Similarity Functions [SF)

Modifying the Projection Space for Domain Adaptation

Experimentations

Extended Work: A Little Bit of Theory

Notations

- X input space, $Y = \{-1, 1\}$ label set
- *P_S* source domain : distribution over *X* × *Y D_S* marginal distribution over *X*
- *P_T* target domain : different distribution over *X* × *Y D_T* marginal distribution over *X*

Expected error of an hypothesis $h: X \to Y$

- $\operatorname{err}_{\mathcal{S}}(h) = \mathbb{E}_{(\mathbf{x},y) \sim P_{\mathcal{S}}} [h(\mathbf{x}) \neq y]$ source domain error
- $\operatorname{err}_{T}(h) = \mathbb{E}_{(\mathbf{x},y) \sim P_{T}} \left[h(\mathbf{x}) \neq y \right]$ target domain error

Domain Adaptation objective

• $h \in \mathcal{H}$ with a low $\operatorname{err}_{\mathcal{T}}(h)$

On the Usefulness of Similarity based Projection Spaces for Transfer Learning

E.Morvant, A.Habrard, S.Ayache

Introduction and Motivation

A Transfer Learning Task: Domain Adaptation (DA)

Learning with Good Similarity Functions (SF)

Modifying the Projection Space for Domain Adaptation

Experimentations

Extended Work: A Little Bit of Theory

A Transfer Learning Task: Domain Adaptation Studied case

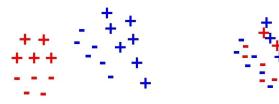
Source domain

 $LS = \{(\mathbf{x}_i, y_i)\}_{i=1}^{d_i}$ Labeled Source sample drawn i.i.d. from P_S

Target domain

 $TS = {\mathbf{x}_j}_{i=1}^{d_t}$ unlabeled Target Sample drawn i.i.d. from D_T

If *h* is learned on **source** domain, how does it perform on **target** domain ?



On the Usefulness of Similarity based Projection Spaces for Transfer Learning

E.Morvant, A.Habrard, S.Ayache

Introduction and Motivation

A Transfer Learning Task: Domain Adaptation (DA)

Learning with Good Similarity Functions (SF)

Modifying the Projection Space for Domain Adaptation

Experimentations

Extended Work: A Little Bit of Theory

A Transfer Learning Task: Domain Adaptation Studied case

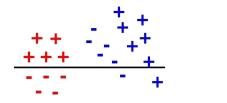
Source domain

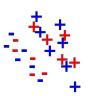
 $LS = \{(\mathbf{x}_i, y_i)\}_{i=1}^{d_i}$ Labeled Source sample drawn i.i.d. from P_S

Target domain

 $TS = {\mathbf{x}_j}_{i=1}^{d_t}$ unlabeled Target Sample drawn i.i.d. from D_T

If *h* is learned on **source** domain, how does it perform on **target** domain ?





On the Usefulness of Similarity based Projection Spaces for Transfer Learning

E.Morvant, A.Habrard, S.Ayache

Introduction and Motivation

A Transfer Learning Task: Domain Adaptation (DA)

Learning with Good Similarity Functions (SF)

Modifying the Projection Space for Domain Adaptation

Experimentations

Extended Work: A Little Bit of Theory

A Transfer Learning Task: Domain Adaptation Studied case

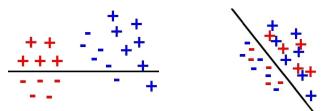
Source domain

 $LS = \{(\mathbf{x}_i, y_i)\}_{i=1}^{d_i}$ Labeled Source sample drawn i.i.d. from P_S

Target domain

 $TS = {\mathbf{x}_j}_{i=1}^{d_t}$ unlabeled Target Sample drawn i.i.d. from D_T

If *h* is learned on **source** domain, how does it perform on **target** domain ?



On the Usefulness of Similarity based Projection Spaces for Transfer Learning

E.Morvant, A.Habrard, S.Ayache

Introduction and Motivation

A Transfer Learning Task: Domain Adaptation (DA)

Learning with Good Similarity Functions (SF)

Modifying the Projection Space for Domain Adaptation

Experimentations

Extended Work: A Little Bit of Theory

S. Ben-David et al. results

Theorem [Ben-David et al., 2010]

Let \mathcal{H} be an hypothesis space. If D_S and D_T are respectively the marginal distributions of source and target instances, then for all $\delta \in [0, 1]$, with probability at least $1 - \delta$:

$$\forall h \in \mathcal{H}, \quad \operatorname{err}_{\mathcal{T}}(h) \leq \operatorname{err}_{\mathcal{S}}(h) + \frac{1}{2}d_{\mathcal{H}\Delta\mathcal{H}}(D_{\mathcal{S}}, D_{\mathcal{T}}) + \nu$$

On the Usefulness of Similarity based Projection Spaces for Transfer Learning

E.Morvant, A.Habrard, S.Ayache

Introduction and Motivation

A Transfer Learning Task: Domain Adaptation (DA)

Learning with Good Similarity Functions [SF)

Modifying the Projection Space for Domain Adaptation

Experimentations

Extended Work: A Little Bit of Theory

S. Ben-David et al. results

Theorem [Ben-David et al., 2010]

Let \mathcal{H} be an hypothesis space. If D_S and D_T are respectively the marginal distributions of source and target instances, then for all $\delta \in [0, 1]$, with probability at least $1 - \delta$:

$$\forall h \in \mathcal{H}, \quad \operatorname{err}_{\mathcal{T}}(h) \leq \operatorname{err}_{\mathcal{S}}(h) + \frac{1}{2} d_{\mathcal{H}\Delta\mathcal{H}}(D_{\mathcal{S}}, D_{\mathcal{T}}) + \nu$$

On the Usefulness of Similarity based Projection Spaces for Transfer Learning

E.Morvant, A.Habrard, S.Ayache

Introduction and Motivation

A Transfer Learning Task: Domain Adaptation (DA)

Learning with Good Similarity Functions [SF)

Modifying the Projection Space for Domain Adaptation

Experimentations

Extended Work: A Little Bit of Theory

S. Ben-David et al. results

Theorem [Ben-David et al., 2010]

Let \mathcal{H} be an hypothesis space. If D_S and D_T are respectively the marginal distributions of source and target instances, then for all $\delta \in [0, 1]$, with probability at least $1 - \delta$:

$$\forall h \in \mathcal{H}, \quad \operatorname{err}_{\mathcal{T}}(h) \leq \operatorname{err}_{\mathcal{S}}(h) + \frac{1}{2} d_{\mathcal{H}\Delta\mathcal{H}}(D_{\mathcal{S}}, D_{\mathcal{T}}) + \nu$$

What is $d_{\mathcal{H}\Delta\mathcal{H}}(D_S, D_T)$ the $\mathcal{H}\Delta\mathcal{H}$ -distance ? *Intuitively*



On the Usefulness of Similarity based Projection Spaces for Transfer Learning

E.Morvant, A.Habrard, S.Ayache

Introduction and Motivation

A Transfer Learning Task: Domain Adaptation (DA)

earning with Good Similarity Functions SF)

Modifying the Projection Space for Domain Adaptation

Experimentations

Extended Work: A Little Bit of Theory

S. Ben-David et al. results

Theorem [Ben-David et al., 2010]

Let \mathcal{H} be an hypothesis space. If D_S and D_T are respectively the marginal distributions of source and target instances, then for all $\delta \in [0, 1]$, with probability at least $1 - \delta$:

$$\forall h \in \mathcal{H}, \quad \operatorname{err}_{T}(h) \leq \operatorname{err}_{S}(h) + \frac{1}{2}d_{\mathcal{H}\Delta\mathcal{H}}(D_{S}, D_{T}) + \nu$$

What is ν ?

ν = inf_{h∈H} (err_S(h) + err_T(h)) error of the joint optimal classifier

On the Usefulness of Similarity based Projection Spaces for Transfer Learning

E.Morvant, A.Habrard, S.Ayache

Introduction and Motivation

A Transfer Learning Task: Domain Adaptation (DA)

Learning with Good Similarity Functions [SF)

Modifying the Projection Space for Domain Adaptation

Experimentations

Extended Work: A Little Bit of Theory

S. Ben-David et al. results

Theorem [Ben-David et al., 2010]

Let \mathcal{H} be an hypothesis space. If D_S and D_T are respectively the marginal distributions of source and target instances, then for all $\delta \in [0, 1]$, with probability at least $1 - \delta$:

$$\forall h \in \mathcal{H}, \quad \operatorname{err}_{\mathcal{T}}(h) \leq \operatorname{err}_{\mathcal{S}}(h) + \frac{1}{2}d_{\mathcal{H}\Delta\mathcal{H}}(D_{\mathcal{S}}, D_{\mathcal{T}}) + \nu$$

Idea : Minimizing the bound for building a new projection space

- \Rightarrow Explicit projection space defined by a good similarity function
- \Rightarrow $\mathcal H$ hypothesis space of good similarity functions based classifiers

On the Usefulness of Similarity based Projection Spaces for Transfer Learning

E.Morvant, A.Habrard, S.Ayache

Introduction and Motivation

A Transfer Learning Task: Domain Adaptation (DA)

Learning with Good Similarity Functions [SF]

Modifying the Projection Space for Domain Adaptation

Experimentations

Extended Work: A Little Bit of Theory

Outline

A Transfer Learning Task: Domain Adaptation (DA)

Learning with Good Similarity Functions (SF)

Modifying the Projection Space for Domain Adaptation An Heuristic Normalization An Additional Regularization Term

Experimentations

Extended Work: A Little Bit of Theory

Conclusion and Perspectives

On the Usefulness of Similarity based Projection Spaces for Transfer Learning

E.Morvant, A.Habrard, S.Ayache

Introduction and Motivation

A Transfer Learning Task: Domain Adaptation (DA)

Learning with Good Similarity Functions (SF)

Modifying the Projection Space for Domain Adaptation

Experimentations

Extended Work: A Little Bit of Theory

Learning with Good Similarity Functions (ϵ, γ, τ)-Good Similarity Functions [Balcan et al., 2008a, Balcan et al., 2008b]

 $K: X \times X \rightarrow [-1; 1]$ is an (ϵ, γ, τ) -good similarity function for a binary classification problem P if

(i) A $1 - \epsilon$ probability mass of examples (\mathbf{x}, y) satisfy

$$\mathbb{E}_{(\mathbf{x}',y')\sim P}[yy'K(\mathbf{x},\mathbf{x}')|R(\mathbf{x}')] \geq \gamma$$

(ii) $Pr_{\mathbf{x}'}[R(\mathbf{x}')] \ge \tau$ (*Notation:* R set of reasonable points)

Intuitively

For a point $(\mathbf{x}_1, y_1) \sim P$, then **on average** for $(\mathbf{x}'_2, y'_2) \in R$

$$\begin{array}{l} \text{if } y_1 = y_2' \\ \mathbf{x}_1 \text{ is similar to } \mathbf{x}_2 \\ \mathcal{K}(\mathbf{x}_1, \mathbf{x}_2') \geq \gamma \end{array}$$

 $\begin{array}{l} \text{if } y_1 \neq y_2' \\ \textbf{x}_1 \text{ is dissimilar to } \textbf{x}_2 \\ \mathcal{K}(\textbf{x}_1, \textbf{x}_2') \leq -\gamma \end{array}$

On the Usefulness of Similarity based Projection Spaces for Transfer Learning

E.Morvant, A.Habrard, S.Ayache

Introduction and Motivation

A Transfer Learning Task: Domain Adaptation (DA)

Learning with Good Similarity Functions (SF)

Modifying the Projection Space for Domain Adaptation

Experimentations

Extended Work: A Little Bit of Theory

Learning with Good Similarity Functions Properties [Balcan et al., 2008a, Balcan et al., 2008b]

• $R = {\{\mathbf{x}'_j\}_{j=1}^{d_u}}$ defines an explicit projection space

$$\phi^R : \left\{ egin{array}{ccc} X & o & \mathbb{R}^{d_u} \ x & \mapsto & \langle K(\mathbf{x},\mathbf{x}_1'),\ldots,K(\mathbf{x},\mathbf{x}_{d_u}')
angle
ight.$$

• h is learned in this space such as

$$h(\mathbf{x}) = \operatorname{sign}\left[\sum_{j=1}^{d_u} \alpha_j \mathcal{K}(\mathbf{x}, \mathbf{x}'_j)\right]$$

- by solving a linear program
- with good generalization guarantees
- Generalization of kernels
 - K may be not symmetric and not positive semi-definite

On the Usefulness of Similarity based Projection Spaces for Transfer Learning

E.Morvant, A.Habrard, S.Ayache

Introduction and Motivation

A Transfer Learning Task: Domain Adaptation (DA)

Learning with Good Similarity Functions (SF)

Modifying the Projection Space for Domain Adaptation

Experimentations

Extended Work: A Little Bit of Theory

Outline

A Transfer Learning Task: Domain Adaptation (DA)

Learning with Good Similarity Functions (SF)

Modifying the Projection Space for Domain Adaptation

An Heuristic Normalization An Additional Regularization Term

Experimentations

Extended Work: A Little Bit of Theory

Conclusion and Perspectives

On the Usefulness of Similarity based Projection Spaces for Transfer Learning

E.Morvant, A.Habrard, S.Ayache

Introduction and Motivation

A Transfer Learning Task: Domain Adaptation (DA)

Learning with Good Similarity Functions [SF)

Modifying the Projection Space for Domain Adaptation

Experimentations

Extended Work: A Little Bit of Theory

Outline

A Transfer Learning Task: Domain Adaptation (DA)

Learning with Good Similarity Functions (SF)

Modifying the Projection Space for Domain Adaptation An Heuristic Normalization

Experimentations

Extended Work: A Little Bit of Theory

Conclusion and Perspectives

On the Usefulness of Similarity based Projection Spaces for Transfer Learning

E.Morvant, A.Habrard, S.Ayache

Introduction and Motivation

A Transfer Learning Task: Domain Adaptation (DA)

Learning with Good Similarity Functions (SF)

Modifying the Projection Space for Domain Adaptation

Experimentations

Extended Work: A Little Bit of Theory

Modifying the Projection Space for Domain Adaptation An Heuristic Normalization of a Similarity Function

Recall:

- For a DA task, we want to be performing on the target domain TS
- A SF K must be good on LS relatively to the reasonable points R

Idea: "Insert" target information in K

⇒ Build a new K_N by normalizing a given K relatively to $LS \cup TS$ *Heuristic:* Given $N = LS \cup TS$, for each $\mathbf{x}' \in R$, K_N must have a mean 0 and a standard deviation 1 on $\mathbf{x} \in N$, *i.e.* K_N is defined by:

$$\forall \mathbf{x}'_j \in R, \ \mathbf{K}_{\mathbf{N}}(.,\mathbf{x}'_j) = \begin{cases} \frac{\mathbf{K}(.,\mathbf{x}'_j) - \mu_{\mathbf{x}'_j}}{\sigma_{\mathbf{x}'_j}} & \text{if} & -1 \le & \frac{\mathbf{K}(.,\mathbf{x}'_j) - \hat{\mu}_{\mathbf{x}'_j}}{\widehat{\sigma}_{\mathbf{x}'_j}} & \le 1, \\ \\ -1 & \text{if} & \frac{\mathbf{K}(.,\mathbf{x}'_j) - \hat{\mu}_{\mathbf{x}'_j}}{\widehat{\sigma}_{\mathbf{x}'_j}} & \le -1, \\ \\ 1 & \text{if} & 1 \le & \frac{\mathbf{K}(.,\mathbf{x}'_j) - \hat{\mu}_{\mathbf{x}'_j}}{\widehat{\sigma}_{\mathbf{x}'_j}} & , \end{cases}$$

On the Usefulness of Similarity based Projection Spaces for Transfer Learning

E.Morvant, A.Habrard, S.Ayache

Introduction and Motivation

A Transfer Learning Task: Domain Adaptation (DA)

Learning with Good Similarity Functions (SF)

Modifying the Projection Space for Domain Adaptation

Experimentations

Extended Work: A Little Bit of Theory

Outline

A Transfer Learning Task: Domain Adaptation (DA)

Learning with Good Similarity Functions (SF)

Modifying the Projection Space for Domain Adaptation An Heuristic Normalization An Additional Regularization Term

Experimentations

Extended Work: A Little Bit of Theory

Conclusion and Perspectives

On the Usefulness of Similarity based Projection Spaces for Transfer Learning

E.Morvant, A.Habrard, S.Ayache

Introduction and Motivation

A Transfer Learning Task: Domain Adaptation (DA)

Learning with Good Similarity Functions (SF)

Modifying the Projection Space for Domain Adaptation

Experimentations

Extended Work: A Little Bit of Theory

Recall: Minimizing $err_T(h)$ with the help of the bound

$$\operatorname{err}_{T}(h) \leq \operatorname{err}_{S}(h) + \frac{1}{2}d_{\mathcal{H}\Delta\mathcal{H}}(D_{S}, D_{T}) + \nu$$

On the Usefulness of Similarity based Projection Spaces for Transfer Learning

E.Morvant, A.Habrard, S.Ayache

Introduction and Motivation

A Transfer Learning Task: Domain Adaptation (DA)

Learning with Good Similarity Functions (SF)

Modifying the Projection Space for Domain Adaptation

Experimentations

Extended Work: A Little Bit of Theory

Recall: Minimizing $err_T(h)$ with the help of the bound

$$\operatorname{err}_{T}(h) \leq \operatorname{err}_{S}(h) + \frac{1}{2}d_{\mathcal{H}\Delta\mathcal{H}}(D_{S}, D_{T}) + \nu$$

Minimizing err_S(h) via Balcan optimisation problem for SF with $LS = \{(\mathbf{x}_i, y_i)\}_{i=1}^{d_i}$ and $R' = \{\mathbf{x}'_j\}_{j=1}^{d'_u}$

$$\min_{\alpha_1,\ldots,\alpha_{d_u}} \sum_{i=1}^{d_l} \left[1 - y_i \sum_{j=1}^{d'_u} \alpha_j \mathcal{K}(\mathbf{x}_i,\mathbf{x}'_j) \right]_+ + \lambda \|\boldsymbol{\alpha}\|_1$$

 $egin{aligned} & [1\!-\!a]_+ = \max(1\!-\!a;0) ext{ is the hinge loss } \ & \| m{lpha} \|_1 = \sum_{j=1}^{d'_u} |lpha_j| \end{aligned}$

 $\operatorname{err}_{T}(h) \leq \operatorname{err}_{S}(h) + \frac{1}{2}d_{\mathcal{H}\Delta\mathcal{H}}(D_{S}, D_{T}) + \nu$

On the Usefulness of Similarity based Projection Spaces for Transfer Learning

E.Morvant, A.Habrard, S.Ayache

Introduction and Motivation

A Transfer Learning Task: Domain Adaptation (DA)

Learning with Good Similarity Functions (SF)

Modifying the Projection Space for Domain Adaptation

Experimentations

Extended Work: A Little Bit of Theory

 $\begin{array}{l} \text{Minimizing } d_{\mathcal{H}\Delta\mathcal{H}}(U_{S}, U_{T}) \ (U_{S} \sim D_{S} \ \text{and} \ U_{T} \sim D_{T}) \\ \Rightarrow \mathcal{C}_{ST} \ \text{a pair set} \ (\mathbf{x}_{s}, \mathbf{x}_{t}) \in U_{S} \times U_{T} \end{array}$

Building a new projection $\phi_{new}^{R'}$

- s.t. \mathbf{x}_s and \mathbf{x}_t be not separable
- s.t. with the result that $|h(\mathbf{x}_s) h(\mathbf{x}_t)| \approx 0$

$$\left|\sum_{j=1}^{d'_u} \alpha_j \mathcal{K}(\mathbf{x}_s, \mathbf{x}'_j) - \sum_{j=1}^{d'_u} \alpha_j \mathcal{K}(\mathbf{x}_t, \mathbf{x}'_j)\right| \leq \left\| \binom{t \phi^{R'}(\mathbf{x}_s) - t \phi^{R'}(\mathbf{x}_t)}{\phi^{R'}(\mathbf{x}_t)} \right\|$$

On the Usefulness of Similarity based Projection Spaces for Transfer Learning

E.Morvant, A.Habrard, S.Ayache

Introduction and Motivation

A Transfer Learning Task: Domain Adaptation (DA)

Learning with Good Similarity Functions (SF)

Modifying the Projection Space for Domain Adaptation

Experimentations

Extended Work: A Little Bit of Theory

Conclusion and Perspectives

 $\operatorname{err}_{T}(h) \leq \operatorname{err}_{S}(h) + \frac{1}{2}d_{\mathcal{H}\Delta\mathcal{H}}(D_{S}, D_{T}) + \nu$

 $\begin{array}{l} \text{Minimizing } d_{\mathcal{H}\Delta\mathcal{H}}(U_{S}, U_{T}) \; (U_{S} \sim D_{S} \; \text{and} \; U_{T} \sim D_{T}) \\ \Rightarrow \mathcal{C}_{ST} \; \text{a pair set} \; (\mathbf{x}_{s}, \mathbf{x}_{t}) \in U_{S} \times U_{T} \end{array}$

Building a new projection $\phi_{new}^{R'}$

- s.t. \mathbf{x}_s and \mathbf{x}_t be not separable
- s.t. with the result that $|h(\mathbf{x}_s) h(\mathbf{x}_t)| \approx 0$

$$\left|\sum_{j=1}^{d'_{u}} \alpha_{j} \mathcal{K}(\mathbf{x}_{s}, \mathbf{x}'_{j}) - \sum_{j=1}^{d'_{u}} \alpha_{j} \mathcal{K}(\mathbf{x}_{t}, \mathbf{x}'_{j})\right| \leq \underbrace{\left\|\left({}^{t} \phi^{R'}(\mathbf{x}_{s}) - {}^{t} \phi^{R'}(\mathbf{x}_{t})\right) \operatorname{diag}(\alpha)\right\|}_{\left\|{}^{t} \phi^{R'}_{new}(\mathbf{x}_{s}) - {}^{t} \phi^{R'}_{new}(\mathbf{x}_{t})\right\|_{1}}$$

$$\Rightarrow \phi^{R'}_{new}(.) = \left\langle \underbrace{\alpha_{1} \mathcal{K}(., \mathbf{x}'_{1})}_{\mathcal{K}_{new}(., \mathbf{x}'_{1})}, \ldots, \underbrace{\alpha_{d_{u}} \mathcal{K}(., \mathbf{x}'_{d_{u}})}_{\mathcal{K}_{new}(., \mathbf{x}'_{d_{u}})} \right\rangle$$

 $\operatorname{err}_{\mathcal{T}}(h) \leq \operatorname{err}_{\mathcal{S}}(h) + \frac{1}{2} d_{\mathcal{H}\Delta \mathcal{H}}(D_{\mathcal{S}}, D_{\mathcal{T}}) + \nu$

On the Usefulness of Similarity based Projection Spaces for Transfer Learning

E.Morvant, A.Habrard, S.Ayache

Introduction and Motivation

A Transfer Learning Task: Domain Adaptation (DA)

Learning with Good Similarity Functions (SF)

Modifying the Projection Space for Domain Adaptation

Experimentations

Extended Work: A Little Bit of Theory

 $\begin{array}{l} \text{Minimizing } d_{\mathcal{H}\Delta\mathcal{H}}(U_{S}, U_{T}) \; (U_{S} \sim D_{S} \; \text{and} \; U_{T} \sim D_{T}) \\ \Rightarrow \mathcal{C}_{ST} \; \text{a pair set} \; (\mathbf{x}_{s}, \mathbf{x}_{t}) \in U_{S} \times U_{T} \end{array}$

Building a new projection $\phi_{new}^{R'}$

- s.t. \mathbf{x}_s and \mathbf{x}_t be not separable
- s.t. with the result that $|h(\mathbf{x}_s) h(\mathbf{x}_t)| \approx 0$

$$\left|\sum_{j=1}^{d'_{u}} \alpha_{j} \mathcal{K}(\mathbf{x}_{s}, \mathbf{x}'_{j}) - \sum_{j=1}^{d'_{u}} \alpha_{j} \mathcal{K}(\mathbf{x}_{t}, \mathbf{x}'_{j})\right| \leq \underbrace{\left\|\binom{t \phi^{R'}(\mathbf{x}_{s}) - t \phi^{R'}(\mathbf{x}_{t})\right\|_{diag}(\alpha)\right|}_{\left\|t \phi^{R'}_{new}(\mathbf{x}_{s}) - t \phi^{R'}_{new}(\mathbf{x}_{t})\right\|_{1}}$$

$$\Rightarrow \phi^{R'}_{new}(.) = \langle \underbrace{\alpha_{1} \mathcal{K}(., \mathbf{x}'_{1})}_{\mathcal{K}_{new}(., \mathbf{x}'_{1})}, \ldots, \underbrace{\alpha_{d_{u}} \mathcal{K}(., \mathbf{x}'_{d_{u}})}_{\mathcal{K}_{new}(., \mathbf{x}'_{d_{u}})} \rangle$$

⇒ New regularization term

 $\operatorname{err}_{\mathcal{T}}(h) \leq \operatorname{err}_{\mathcal{S}}(h) + \frac{1}{2} d_{\mathcal{H}\Delta\mathcal{H}}(D_{\mathcal{S}}, D_{\mathcal{T}}) + \nu$

On the Usefulness of Similarity based Projection Spaces for Transfer Learning

E.Morvant, A.Habrard, S.Ayache

Introduction and Motivation

A Transfer Learning Task: Domain Adaptation (DA)

Learning with Good Similarity Functions (SF)

Modifying the Projection Space for Domain Adaptation

Experimentations

Extended Work: A Little Bit of Theory

With
$$LS = \{(\mathbf{x}_i, y_i)\}_{i=1}^{d_i}$$
 (i.i.d. from P_S) and $R' = \{\mathbf{x}'_j\}_{j=1}^{d'_u}$

Building the $\phi_{\textit{new}}^{R'}$ space with the help of α infered by

$$\begin{split} \min_{\boldsymbol{\alpha}} \sum_{i=1}^{d_l} \left[1 - y_i \sum_{j=1}^{d'_u} \alpha_j \mathcal{K}(\mathbf{x}_i, \mathbf{x}'_j) \right]_+ + \lambda \|\boldsymbol{\alpha}\|_1 \\ + \beta \sum_{(\mathbf{x}_s, \mathbf{x}_t) \in \mathcal{C}_{ST}} \|({}^t \phi^{R'}(\mathbf{x}_s) - {}^t \phi^{R'}(\mathbf{x}_t)) \operatorname{diag}(\boldsymbol{\alpha})\|_1 \end{split}$$

On the Usefulness of Similarity based Projection Spaces for Transfer Learning

E.Morvant, A.Habrard, S.Ayache

Introduction and Motivation

A Transfer Learning Task: Domain Adaptation (DA)

Learning with Good Similarity Functions (SF)

Modifying the Projection Space for Domain Adaptation

Experimentations

Extended Work: A Little Bit of Theory

Conclusion and Perspectives

 $\operatorname{err}_{T}(h) \leq \operatorname{err}_{S}(h) + \frac{1}{2}d_{\mathcal{H}\Delta\mathcal{H}}(D_{S}, D_{T}) + \nu$

With
$$LS = \{(\mathbf{x}_i, y_i)\}_{i=1}^{d_i}$$
 (i.i.d. from P_S) and $R' = \{\mathbf{x}'_j\}_{j=1}^{d'_u}$

Building the $\phi_{\textit{new}}^{R'}$ space with the help of α infered by

$$\begin{split} \min_{\boldsymbol{\alpha}} \sum_{i=1}^{d_l} \left[1 - y_i \sum_{j=1}^{d'_u} \alpha_j K(\mathbf{x}_i, \mathbf{x}'_j) \right]_+ + \lambda \|\boldsymbol{\alpha}\|_1 \\ + \beta \sum_{(\mathbf{x}_s, \mathbf{x}_t) \in \mathcal{C}_{ST}} \| ({}^t \boldsymbol{\phi}^{R'}(\mathbf{x}_s) - {}^t \boldsymbol{\phi}^{R'}(\mathbf{x}_t)) \operatorname{diag}(\boldsymbol{\alpha}) \|_1 \end{split}$$

• Validation of hyperparameters, of reweighting, of C_{ST} ?

 $\operatorname{err}_{T}(h) \leq \operatorname{err}_{S}(h) + \frac{1}{2}d_{\mathcal{H}\Delta\mathcal{H}}(D_{S}, D_{T}) + \nu$

On the Usefulness of Similarity based Projection Spaces for Transfer Learning

E.Morvant, A.Habrard, S.Ayache

Introduction and Motivation

A Transfer Learning Task: Domain Adaptation (DA)

Learning with Good Similarity Functions (SF)

Modifying the Projection Space for Domain Adaptation

Experimentations

Extended Work: A Little Bit of Theory

Problem: No label on target domain

Solution: Kind of "reverse" validation [Zhong et al., 2010] With the reverse classifier h^r On the Usefulness of Similarity based Projection Spaces for Transfer Learning

E.Morvant, A.Habrard, S.Ayache

Introduction and Motivation

A Transfer Learning Task: Domain Adaptation (DA)

Learning with Good Similarity Functions (SF)

Modifying the Projection Space for Domain Adaptation

Experimentations

Extended Work: A Little Bit of Theory

Problem: No label on target domain

Solution: Kind of "reverse" validation [Zhong et al., 2010] With the reverse classifier h^r

On the Usefulness of Similarity based Projection Spaces for Transfer Learning

E.Morvant, A.Habrard, S.Ayache

Introduction and Motivation

A Transfer Learning Task: Domain Adaptation (DA)

Learning with Good Similarity Functions (SF)

Modifying the Projection Space for Domain Adaptation

Experimentations

Extended Work: A Little Bit of Theory

Problem: No label on target domain

Solution: Kind of "reverse" validation [Zhong et al., 2010] With the reverse classifier h^r

On the Usefulness of Similarity based Projection Spaces for Transfer Learning

E.Morvant, A.Habrard, S.Ayache

Introduction and Motivation

A Transfer Learning Task: Domain Adaptation (DA)

Learning with Good Similarity Functions (SF)

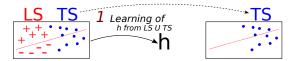
Modifying the Projection Space for Domain Adaptation

Experimentations

Extended Work: A Little Bit of Theory

Problem: No label on target domain

Solution: Kind of "reverse" validation [Zhong et al., 2010] With the reverse classifier h^r



On the Usefulness of Similarity based Projection Spaces for Transfer Learning

E.Morvant, A.Habrard, S.Ayache

Introduction and Motivation

A Transfer Learning Task: Domain Adaptation (DA)

Learning with Good Similarity Functions (SF)

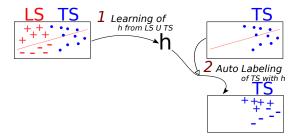
Modifying the Projection Space for Domain Adaptation

Experimentations

Extended Work: A Little Bit of Theory

Problem: No label on target domain

Solution: Kind of "reverse" validation [Zhong et al., 2010] With the reverse classifier h^r



On the Usefulness of Similarity based Projection Spaces for Transfer Learning

E.Morvant, A.Habrard, S.Ayache

Introduction and Motivation

A Transfer Learning Task: Domain Adaptation (DA)

Learning with Good Similarity Functions (SF)

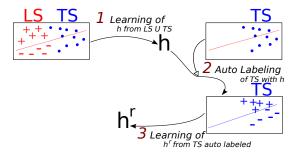
Modifying the Projection Space for Domain Adaptation

Experimentations

Extended Work: A Little Bit of Theory

Problem: No label on target domain

Solution: Kind of "reverse" validation [Zhong et al., 2010] With the reverse classifier h^r



On the Usefulness of Similarity based Projection Spaces for Transfer Learning

E.Morvant, A.Habrard, S.Ayache

Introduction and Motivation

A Transfer Learning Task: Domain Adaptation (DA)

Learning with Good Similarity Functions (SF)

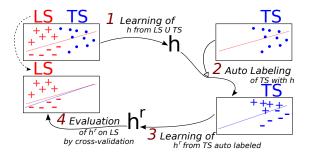
Modifying the Projection Space for Domain Adaptation

Experimentations

Extended Work: A Little Bit of Theory

Problem: No label on target domain

Solution: Kind of "reverse" validation [Zhong et al., 2010] With the reverse classifier h^r



• Two domains are related $\Rightarrow h^r$ performs well on the source domain [Bruzzone and Marconcini, 2010] On the Usefulness of Similarity based Projection Spaces for Transfer Learning

E.Morvant, A.Habrard, S.Ayache

Introduction and Motivation

A Transfer Learning Task: Domain Adaptation (DA)

Learning with Good Similarity Functions (SF)

Modifying the Projection Space for Domain Adaptation

Experimentations

Extended Work: A Little Bit of Theory

Outline

A Transfer Learning Task: Domain Adaptation (DA)

Learning with Good Similarity Functions (SF)

Modifying the Projection Space for Domain Adaptation An Heuristic Normalization An Additional Regularization Term

Experimentations

Extended Work: A Little Bit of Theory

Conclusion and Perspectives

On the Usefulness of Similarity based Projection Spaces for Transfer Learning

E.Morvant, A.Habrard, S.Ayache

Introduction and Motivation

A Transfer Learning Task: Domain Adaptation (DA)

earning with Good Similarity Functions SF)

Modifying the Projection Space for Domain Adaptation

Experimentations

Extended Work: A Little Bit of Theory

Experimentations

Experimental Setup

- Similarity function:
 - K Gaussian kernel
 - K_{ST} Normalization of K according to $LS \cup TS$
- Comparison of performances of K and K_{ST}
 - with the new regularization and without
- 1. Toy problem "inter-twinning moons"

- 8 different target domains according to 8 rotation angles
- 10 draws for each angle
- Performances on a test set of 1500 target instances
- 2. Image annotation
 - Source domain: PascalVOC 2007
 - Target domain: TrecVid 2007
 - F-measures on target domain

On the Usefulness of Similarity based Projection Spaces for Transfer Learning

E.Morvant, A.Habrard, S.Ayache

Introduction and Motivation

A Transfer Learning Task: Domain Adaptation (DA)

Learning with Good Similarity Functions (SF)

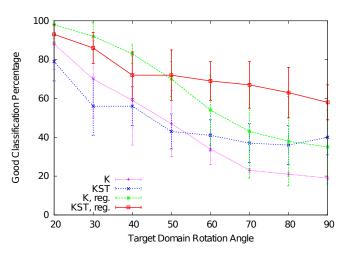
Modifying the Projection Space for Domain Adaptation

Experimentations

Extended Work: A Little Bit of Theory

Experimentations

Inter-twinning moons: results



On the Usefulness of Similarity based Projection Spaces for Transfer Learning

E.Morvant, A.Habrard, S.Ayache

Introduction and Motivation

A Transfer Learning Fask: Domain Adaptation (DA)

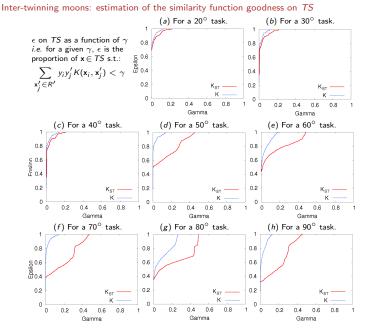
Learning with Good Similarity Functions [SF)

Modifying the Projection Space for Domain Adaptation

Experimentations

Extended Work: A Little Bit of Theory

Experimentations



On the Usefulness of Similarity based Projection Spaces for Transfer Learning

E.Morvant, A.Habrard, S.Ayache

Introduction and Motivation

A Transfer Learning Task: Domain Adaptation (DA)

Learning with Good Similarity Functions (SF)

Modifying the Projection Space for Domain Adaptation

Experimentations

Extended Work: A Little Bit of Theory

Experimentations

Images corpus: results

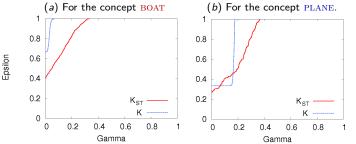
Conc. BOAT BUS	CAR	MONITOR	PERSON	PLANE	Avg.	1
----------------	-----	---------	--------	-------	------	---

SF without distance regularization

				0.2477			
K _{ST}	0.4731	0.4632	0.5316	0.3664	0.3776	0.5635	0.4626

SF with distance regularization

K	0.2006	0.1739	0.5125	0.2744	0.5037	0.5192	0.3640
K _{ST}	0.4857	0.4891	0.5452	0.3989	0.5353	0.6375	0.5153



On the Usefulness of Similarity based **Projection Spaces** for Transfer Learning

E.Morvant, A.Habrard, S.Avache

Experimentations

Outline

A Transfer Learning Task: Domain Adaptation (DA)

Learning with Good Similarity Functions (SF)

Modifying the Projection Space for Domain Adaptation An Heuristic Normalization An Additional Regularization Term

Experimentations

Extended Work: A Little Bit of Theory

Conclusion and Perspectives

On the Usefulness of Similarity based Projection Spaces for Transfer Learning

E.Morvant, A.Habrard, S.Ayache

Introduction and Motivation

A Transfer Learning Fask: Domain Adaptation (DA)

earning with Good Similarity Functions SF)

Modifying the Projection Space for Domain Adaptation

Experimentations

Extended Work: A Little Bit of Theory

Extended Work: A little Bit of Theory Sparsity Analysis

 $\begin{array}{l} \textbf{Recall:} \\ \min_{\boldsymbol{\alpha}} \sum_{i=1}^{d_{i}} \left[1 - y_{i} \sum_{j=1}^{d_{u}'} \alpha_{j} \mathcal{K}(\mathbf{x}_{i}, \mathbf{x}_{j}') \right]_{+} + \lambda \|\boldsymbol{\alpha}\|_{1} + \beta \sum_{(\mathbf{x}_{s}, \mathbf{x}_{t}) \in \mathcal{C}_{ST}} ({}^{t} \phi^{R'}(\mathbf{x}_{s}) - {}^{t} \phi^{R'}(\mathbf{x}_{t})) \operatorname{diag}(\boldsymbol{\alpha})\|_{1} \end{array}$

Lemma

Let
$$\mathbf{B}_{R} = \min_{\mathbf{x}_{j}' \in R} \left\{ \max_{(\mathbf{x}_{s}, \mathbf{x}_{t}) \in \mathcal{C}_{ST}} |K(\mathbf{x}_{s}, \mathbf{x}_{j}') - K(\mathbf{x}_{t}, \mathbf{x}_{j}')| \right\} > 0.$$

If $lpha^*$ is the optimal solution of our problem, then,

$$\|oldsymbol{lpha}^*\|_1 \leq rac{1}{eta B_{R} + \lambda}$$

 \Rightarrow The sparsity depends on the hyperparameters and B_R

 \Rightarrow The domains are far \Rightarrow The difference between coordinates is high

- $\rightarrow B_R$ tends to be high
- \rightarrow increase of the sparsity

On the Usefulness of Similarity based Projection Spaces for Transfer Learning

E.Morvant, A.Habrard, S.Ayache

Introduction and Motivation

A Transfer Learning Task: Domain Adaptation (DA)

Learning with Good Similarity Functions [SF]

Modifying the Projection Space for Domain Adaptation

Experimentations

Extended Work: A Little Bit of Theory

Extended Work: A little Bit of Theory Generalization Bounds

- Investigation of algorithmic robustness [Xu and Mannor, 2010]
 - Idea: "if a testing sample is similar to a training sample then the testing error is close to the training error" (in a classical ML setting)
- \Rightarrow Our method is robust on the source domain
- \Rightarrow Generalization bound:

$$err_{T}(h) \leq e\hat{r}r_{S}(h) + \frac{N_{\eta}}{\beta B_{R} + \lambda} + \sqrt{\frac{4M_{\eta} \ln 2 + 2\ln \frac{1}{\delta}}{d_{l}}} + \frac{1}{2}d_{\mathcal{H}\Delta\mathcal{H}}(D_{S}, D_{T}) + \nu,$$

On the Usefulness of Similarity based Projection Spaces for Transfer Learning

E.Morvant, A.Habrard, S.Ayache

Introduction and Motivation

A Transfer Learning Task: Domain Adaptation (DA)

Learning with Good Similarity Functions (SF)

Modifying the Projection Space for Domain Adaptation

Experimentations

Extended Work: A Little Bit of Theory

Outline

A Transfer Learning Task: Domain Adaptation (DA)

Learning with Good Similarity Functions (SF)

Modifying the Projection Space for Domain Adaptation An Heuristic Normalization An Additional Regularization Term

Experimentations

Extended Work: A Little Bit of Theory

Conclusion and Perspectives

On the Usefulness of Similarity based Projection Spaces for Transfer Learning

E.Morvant, A.Habrard, S.Ayache

Introduction and Motivation

A Transfer Learning Task: Domain Adaptation (DA)

earning with Good Similarity Functions SF)

Modifying the Projection Space for Domain Adaptation

Experimentations

Extended Work: A Little Bit of Theory

Conclusion and Perspectives

Conclusion

- Domain Adaptation exploiting a similarity based projection space
 - 1. Normalization of a SF according to the target domain
 - 2. Addition of a new regularization term for moving closer the domains
 - With a "reverse" validation
 - With generalization guarantees
 - Infers sparse classifiers related to the task difficulty

Remark Extended work (ICDM'11): an iterative method improves the results

 \Rightarrow The SF helps to build a relevant projection space for adaptation

Perspectives

- Influence of target labels
- Design SF for Domain Adaptation
- Other applications

On the Usefulness of Similarity based Projection Spaces for Transfer Learning

E.Morvant, A.Habrard, S.Ayache

Introduction and Motivation

A Transfer Learning Task: Domain Adaptation (DA)

Learning with Good Similarity Functions (SF)

Modifying the Projection Space for Domain Adaptation

Experimentations

Extended Work: A Little Bit of Theory

Thank you for your attention.

On the Usefulness of Similarity based Projection Spaces for Transfer Learning

E.Morvant, A.Habrard, S.Ayache

Introduction and Motivation

A Transfer Learning Task: Domain Adaptation (DA)

earning with Good Similarity Functions SF)

Modifying the Projection Space for Domain Adaptation

Experimentations

Extended Work: A Little Bit of Theory

References I

- Balcan, M.-F., Blum, A. and Srebro, N. (2008a). Improved Guarantees for Learning via Similarity Functions. In Proceedings of COLT pp. 287–298,.
- Balcan, M.-F., Blum, A. and Srebro, N. (2008b). A theory of learning with similarity functions. Machine Learning 72, 89–112.

Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F. and Vaughan, J. (2010).A theory of learning from different domains.Machine Learning Journal 79, 151–175.

Bruzzone, L. and Marconcini, M. (2010). Domain Adaptation Problems: A DASVM Classification Technique and a Circular Validation Strategy. IEEE Trans. Pattern Anal. Mach. Intell. *32*, 770–787.

Xu, H. and Mannor, S. (2010). Robustness and Generalization. In Proceedings of COLT pp. 503–515,. On the Usefulness of Similarity based Projection Spaces for Transfer Learning

E.Morvant, A.Habrard, S.Ayache

Introduction and Motivation

A Transfer Learning Task: Domain Adaptation (DA)

earning with Good Similarity Functions SF)

Modifying the Projection Space for Domain Adaptation

Experimentations

Extended Work: A Little Bit of Theory

References II

Zhong, E., Fan, W., Yang, Q., Verscheure, O. and Ren, J. (2010). Cross Validation Framework to Choose amongst Models and Datasets for Transfer Learning. In Proceedings of ECML-PKDD (Part III) pp. 547–562, Springer. On the Usefulness of Similarity based Projection Spaces for Transfer Learning

E.Morvant, A.Habrard, S.Ayache

Introduction and Motivation

A Transfer Learning Task: Domain Adaptation (DA)

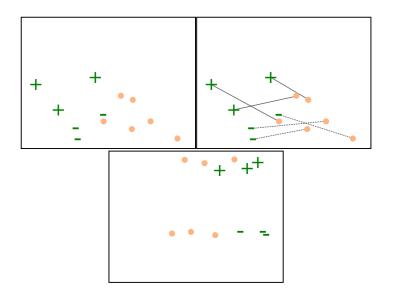
earning with Good Similarity Functions SF)

Modifying the Projection Space for Domain Adaptation

Experimentations

Extended Work: A Little Bit of Theory

Appendix Example



On the Usefulness of Similarity based Projection Spaces for Transfer Learning

E.Morvant, A.Habrard, S.Ayache

Introduction and Motivation

A Transfer Learning Task: Domain Adaptation (DA)

Learning with Good Similarity Functions (SF)

Modifying the Projection Space for Domain Adaptation

Experimentations

Extended Work: A Little Bit of Theory

Appendix Hypothesis

Recall: We solve

$$\begin{split} \min_{\boldsymbol{\alpha}} \sum_{i=1}^{d_i} \left[1 - y_i \sum_{j=1}^{d'_u} \alpha_j \mathcal{K}(\mathbf{x}_i, \mathbf{x}'_j) \right]_+ + \lambda \|\boldsymbol{\alpha}\|_1 \\ + \beta \sum_{(\mathbf{x}_s, \mathbf{x}_t) \in \mathcal{C}_{ST}} ({}^t \boldsymbol{\phi}^{R'}(\mathbf{x}_s) - {}^t \boldsymbol{\phi}^{R'}(\mathbf{x}_t)) \operatorname{diag}(\boldsymbol{\alpha})\|_1 \end{split}$$

Hypothesis:

•
$$\forall \mathbf{x}'_j \in R', \max_{(\mathbf{x}_s, \mathbf{x}_t) \in \mathcal{C}_{ST}} |K(\mathbf{x}_s, \mathbf{x}'_j) - K(\mathbf{x}_t, \mathbf{x}'_j)| > 0$$

- (X, ρ) is a compact metric space
- K is a continuous similarity function on its first argument

On the Usefulness of Similarity based Projection Spaces for Transfer Learning

E.Morvant, A.Habrard, S.Ayache

Introduction and Motivation

A Transfer Learning Task: Domain Adaptation (DA)

Learning with Good Similarity Functions [SF)

Modifying the Projection Space for Domain Adaptation

Experimentations

Extended Work: A Little Bit of Theory

Appendix A Little Bit of Theory: Sparsity Analysis

Lemma

For any $\lambda > 0$, $\beta > 0$ and any pair set C_{ST} verifying the previous hypothesis, let $B_R = \min_{\mathbf{x}'_j \in R} \{ \max_{(\mathbf{x}_s, \mathbf{x}_t) \in C_{ST}} |K(\mathbf{x}_s, \mathbf{x}'_j) - K(\mathbf{x}_t, \mathbf{x}'_j)| \}.$

If α^* is the optimal solution of our problem, then,

$$\|oldsymbollpha^*\|_1 \leq rac{1}{eta oldsymbol B_{oldsymbol R}+\lambda}$$

 \Rightarrow The sparsity depends on the hyperparameters and B_R

 \Rightarrow The domains are far \Rightarrow The difference between coordinates is high

- $\rightarrow B_R$ tends to be high
- \rightarrow increase of the sparsity

On the Usefulness of Similarity based Projection Spaces for Transfer Learning

E.Morvant, A.Habrard, S.Ayache

Introduction and Motivation

A Transfer Learning Task: Domain Adaptation (DA)

Learning with Good Similarity Functions (SF)

Modifying the Projection Space for Domain Adaptation

Experimentations

Extended Work: A Little Bit of Theory

- Algorithmic robustness [Xu and Mannor, 2010]
 - Idea: "if a testing sample is similar to a training sample then the testing error is close to the training error" (in a classical ML setting)
 - ► $\mathbf{x}_s \in LS$ and $\mathbf{x}_t \in TS$ are close (according to a metric) ⇒ $|L(h, \mathbf{x}_s) - L(h, \mathbf{x}_t)| \le \epsilon$
- \Rightarrow Generalization bounds
 - Even if the robustness property is fulfilled for only a subpart of LS

On the Usefulness of Similarity based Projection Spaces for Transfer Learning

E.Morvant, A.Habrard, S.Ayache

Introduction and Motivation

A Transfer Learning Task: Domain Adaptation (DA)

earning with Good Similarity Functions SF)

Modifying the Projection Space for Domain Adaptation

Experimentations

Extended Work: A Little Bit of Theory

Appendix Algorithmic robustness

Definition of algorithmic robustness [Xu and Mannor, 2010] Given a learning sample *LS*, an algorithm \mathcal{A} is ($\mathbf{M}, \epsilon(\mathbf{LS})$) robust if $X \times Y$ can be partitioned into *M* disjoint sets, denoted as $\{C_i\}_{i=1}^M$, such that $\forall s \in LS$,

$$s, u \in C_i \Rightarrow |L(h, s) - L(h, u)| \leq \epsilon(LS),$$

with *h* the model learned from *LS*, *L* the loss function of A.

Theorem [Xu and Mannor, 2010]

If $LS = \{(\mathbf{x}_i, y_i)\}_{i=1}^{d_i}$ is drawn i.i.d. from a distribution P and if the algorithm \mathcal{A} is $(M, \epsilon(LS))$ robust, then for any $\delta > 0$, with probability at least 1- δ ,

$$\begin{aligned} \mathsf{err}_{P}(\mathcal{A}_{LS}) &\leq \widehat{\mathsf{err}}_{P}(\mathcal{A}_{LS}) + \epsilon(LS) + \\ & L^{UP} \sqrt{\frac{2M \ln 2 + 2\ln(1/\delta)}{d_{l}}} \end{aligned}$$

where err_P and $\widehat{\text{err}}_P$ are respectively the expected and the empirical errors over P, L being upper bounded by L^{UP} .

On the Usefulness of Similarity based Projection Spaces for Transfer Learning

E.Morvant, A.Habrard, S.Ayache

Introduction and Motivation

A Transfer Learning Task: Domain Adaptation (DA)

earning with Good Similarity Functions SF)

Modifying the Projection Space for Domain Adaptation

Experimentations

Extended Work: A Little Bit of Theory

Generalization Bounds

Theorem If $LS = \{(\mathbf{x}_i, y_i)\}_{i=1}^{d_i}$ is drawn i.i.d. from P_S , then our method is $(2\mathbf{M}_{\eta}, \frac{\mathbf{N}_{\eta}}{\beta \mathbf{B}_{\mathbf{R}} + \lambda})$ robust on the source domain \mathbf{P}_S , where $N_{\eta} = \max_{\substack{\mathbf{x}_a, \mathbf{x}_b \sim D_S\\ \rho(\mathbf{x}_a, \mathbf{x}_b) \leq \eta}} \|^t \phi^R(\mathbf{x}_a) - {}^t \phi^R(\mathbf{x}_b)\|_{\infty}$ with $\eta > 0$ and M_{η} is the η -covering

number of X. Thus for every h in the hypothesis class \mathcal{H} of SF classifiers, for any $\delta > 0$, with probability at least $1 - \delta$,

$$\operatorname{err}_{S}(h) \leq \operatorname{err}_{S}(h) + \frac{N_{\eta}}{\beta B_{R} + \lambda} + \sqrt{\frac{4M_{\eta} \ln 2 + 2 \ln \frac{1}{\delta}}{d_{l}}}$$

Thus,

$$err_{\tau}(h) \leq e\hat{r}r_{s}(h) + \frac{N_{\eta}}{\beta B_{R} + \lambda} + \sqrt{\frac{4M_{\eta}\ln 2 + 2\ln \frac{1}{\delta}}{d_{l}}} + \frac{d_{\mathcal{H}\Delta\mathcal{H}}(D_{s}, D_{\tau}) + \nu}{d_{\mathcal{H}\Delta\mathcal{H}}(D_{s}, D_{\tau}) + \nu},$$

where ν is the joint error over the domains, $d_{H\Delta H}(D_S, D_T)$ is the $H\Delta H$ -distance between the marginal distributions.

On the Usefulness of Similarity based Projection Spaces for Transfer Learning

E.Morvant, A.Habrard, S.Ayache

Introduction and Motivation

A Transfer Learning Task: Domain Adaptation (DA)

earning with Good Similarity Functions SF)

Modifying the Projection Space for Domain Adaptation

Experimentations

Extended Work: A Little Bit of Theory

A Way to Lighten the Search of the Projection Space

Recall:
$$\phi_{init}^{R'}(.) = \langle K_{init}(., x_1'), \ldots, K_{init}(., x_{d_u}') \rangle$$

 \hookrightarrow Learning α thanks to the regularization term

$$\sum_{\substack{(\mathbf{x}_{s},\mathbf{x}_{t})\in\mathcal{C}_{ST}\\ \parallel}} \underbrace{\left\| \left({}^{t}\phi_{init}^{R'}(\mathbf{x}_{s}) - {}^{t}\phi_{init}^{R'}(\mathbf{x}_{t})\right)\operatorname{diag}(\alpha)\right\|_{1}}_{\parallel t \phi_{new}^{R'}(\mathbf{x}_{s}) - {}^{t}\phi_{new}^{R'}(\mathbf{x}_{t})}\right\|_{1}}$$

$$\Rightarrow \phi_{new}^{R'}(.) = \left\langle \underbrace{\alpha_{1}K_{init}(.,x_{1}')}_{K_{new}(.,x_{1}')}, \ldots, \underbrace{\alpha_{d_{u}}K_{init}(.,x_{d_{u}}')}_{K_{new}(.,x_{d_{u}}')}\right\rangle$$

Problem: Testing all the possible pair set C_{ST} is clearly intractable.

Solution: We iterate the learning process in the new $\phi_{new}^{R'}$ -space \hookrightarrow Stopping criterion ? On the Usefulness of Similarity based Projection Spaces for Transfer Learning

E.Morvant, A.Habrard, S.Ayache

Introduction and Motivation

A Transfer Learning Task: Domain Adaptation (DA)

Learning with Good Similarity Functions (SF)

Modifying the Projection Space for Domain Adaptation

Experimentations

Extended Work: A Little Bit of Theory

A Way to Lighten the Search of the Projection Space

Recall : DA Bound:
$$\operatorname{err}_{T}(h) \leq \operatorname{err}_{S}(h) + \frac{1}{2}d_{H\Delta H}(D_{S}, D_{T}) + \nu$$

Joint error $\nu = \inf_{h \in \mathcal{H}} (\operatorname{err}_{\mathcal{S}}(h) + \operatorname{err}_{\mathcal{T}}(h)) \quad \Leftrightarrow \quad \text{Adaptation ability}$

On the Usefulness of Similarity based Projection Spaces for Transfer Learning

E.Morvant, A.Habrard, S.Ayache

Introduction and Motivation

A Transfer Learning Task: Domain Adaptation (DA)

Learning with Good Similarity Functions (SF)

Modifying the Projection Space for Domain Adaptation

Experimentations

Extended Work: A Little Bit of Theory

A Way to Lighten the Search of the Projection Space

Recall : DA Bound:
$$\operatorname{err}_{\tau}(h) \leq \operatorname{err}_{s}(h) + \frac{1}{2} d_{\mathcal{H}\Delta\mathcal{H}}(D_{s}, D_{\tau}) + \nu$$

Joint error $\nu = \inf_{h \in \mathcal{H}} (\operatorname{err}_{\mathcal{S}}(h) + \operatorname{err}_{\mathcal{T}}(h)) \Leftrightarrow$ Adaptation ability \Rightarrow Stopping criterion

Problem: No label on the target domain

Solution: At each iteration I, we empirically estimate ν

 $\widehat{\nu}_{l} = \widehat{\operatorname{err}}_{\mathcal{S}}(h_{l}^{r}) + \widehat{\operatorname{err}}_{\mathcal{T}}(h_{l}^{r})$

where $\widehat{\operatorname{err}}_T(h_l^r)$ is the error of h_l^r on *TS* auto-labeled by h_l We select parameters associated with the minimal $\widehat{\nu}_l$

⇒ Stop at iteration *I*, if $\hat{\nu}_{l+1}$ increases or converges comparing to $\hat{\nu}_l$ Return $h_l(.)$ with the minimal $\hat{\nu}_l$ On the Usefulness of Similarity based Projection Spaces for Transfer Learning

E.Morvant, A.Habrard, S.Ayache

Introduction and Motivation

A Transfer Learning Fask: Domain Adaptation (DA)

Learning with Good Similarity Functions (SF)

Modifying the Projection Space for Domain Adaptation

Experimentations

Extended Work: A Little Bit of Theory

Appendix Experimental Setup

- Similarity function:
 - K Gaussian kernel
 - K_{ST} Normalization of K according to $LS \cup TS$
- Comparison with SVM, TSVM, DASVM and SF
 - Performances and model sizes
- 1. Toy problem "inter-twinning moons"
 - 1 source domain
 - 8 different target domains according to 8 rotation angles
 - 10 draws for each angle
 - Performances on a test set of 1500 target instances
- 2. Image annotation
 - ▶ Source domain: PascalVOC 2007 with ratio +/- de 1/3
 - Two target domains:
 - Different ratio +/-: PascalVOC 2007 Test
 - Same ratio +/-: TrecVid 2007
 - F-measures on target domain

On the Usefulness of Similarity based Projection Spaces for Transfer Learning

E.Morvant, A.Habrard, S.Ayache

Introduction and Motivation

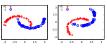
A Transfer Learning Task: Domain Adaptation (DA)

Learning with Good Similarity Functions (SF)

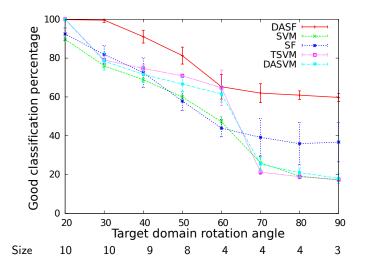
Modifying the Projection Space for Domain Adaptation

Experimentations

Extended Work: A Little Bit of Theory



Appendix Inter-twinning moons: results



On the Usefulness of Similarity based Projection Spaces for Transfer Learning

E.Morvant, A.Habrard, S.Ayache

Introduction and Motivation

A Transfer Learning Fask: Domain Adaptation (DA)

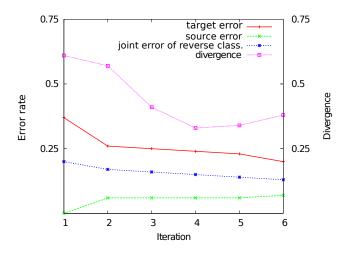
Learning with Good Similarity Functions (SF)

Modifying the Projection Space for Domain Adaptation

Experimentations

Extended Work: A Little Bit of Theory

Inter-twinning moons: an execution example



On the Usefulness of Similarity based Projection Spaces for Transfer Learning

E.Morvant, A.Habrard, S.Ayache

Introduction and Motivation

A Transfer Learning Fask: Domain Adaptation (DA)

earning with Good Similarity Functions SF)

Modifying the Projection Space for Domain Adaptation

Experimentations

Extended Work: A Little Bit of Theory

Appendix Images corpus: results

VOC vs VOC: Reasonable points for the concept PERSON

On the Usefulness of Similarity based Projection Spaces for Transfer Learning

E.Morvant, A.Habrard, S.Ayache

Introduction and Motivation

A Transfer Learning Fask: Domain Adaptation (DA)

Learning with Good Similarity Functions (SF)

Modifying the Projection Space for Domain Adaptation

Experimentations

Extended Work: A Little Bit of Theory

Conclusion and Perspectives

Results

		SVM	SF	TSVM	DASVM	DASF
VOC vs VOC						
Avg. on	F-meas.	0.22	0.19	0.17	0.20	0.25
20 conc.	Size	642	210	705	622	200
VOC vs Trec						
BOAT	F-meas	0.56	0.49	0.56	0.52	0.57
	Size	351	214	498	202	120
CAR	F-meas.	0.43	0.50	0.52	0.55	0.55
	Size	1096	176	631	627	254
MONITOR	F-meas.	0.19	0.34	0.37	0.30	0.42
	Size	698	246	741	523	151
PERSON	F-meas.	0.52	0.45	0.46	0.54	0.57
	Size	951	226	1024	274	19
PLANE	F-meas.	0.32	0.54	0.61	0.52	0.66
	Size	428	178	259	450	7
Avg. on	F-meas.	0.40	0.47	0.50	0.49	0.55
the 5 conc.	Size	705	208	631	415	110