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Motivation: Brain Connectivity

Trend in Neuroscience: unraveling the brain network.
Neurological studies interested in anatomy of white matter
(eg. Alzheimer Disease).
Brain Connectivity & Machine Learning:

NIPS workshop: CINI2009.
International Conference on Data Mining, Contest 2009.
(Pittsburgh Brain Connectivity Competition, 2009)

DISCLAIMER

This talk is NOT about effective connectivity (i.e. causality) or
functional connectivity (i.e. statistical dependence). We study
structural connectivity (i.e. anatomical links).
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Fiber Tract Segmentation: Axons

Brain contains hundreds of millions of neuronal axons that
constitute the white matter and act as wiring.
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Fiber Tract Segmentation: Bundles

Axons are grouped in neuronal pathways/bundles/tracts
sharing a common path
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Fiber Tract Segmentation: Streamlines

dMRI techniques allow the
reconstruction of pathways in
living subjects. Resolution
≈ 1mm.
(deterministic) Tractography
algorithms reconstruct
streamlines/fibers.
A streamline is a polyline
representing thousands of
axons.
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Fiber Tract Segmentation: Tractography (≈ 105

streaml). Here: 5%.
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Fiber Tract Segmentation: Human Expert

Neuroanatomists are able to identify neural pathways/fiber
bundles.
Because of the large amount of streamlines and the
anatomical variability among subjects, manual
segmentation is difficult and lengthy.
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Algorithmic Fiber Tract Segmentation

High-level problem: automatically segment a fiber tract on
a given tractography given examples of that segmentation
on different brains.
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Unsupervised Tract Segmentation

Unsupervised clustering of streamlines: agglomerative,
k-means, . . . (updated short review: [Wang et al., 2011]).
Several ad-hoc distance functions proposed in the
literature, see [Zhang et al., 2008].

(partly) Supervised Tract Segmentation

Affine reg. + B-spline based 1-NN to
atlas [Maddah et al., 2005].
Spectral Clustering [O’Donnell and Westin, 2007].
Hierarchical Dirichelet Process [Wang et al., 2011].
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Proposed Solution

1 Map all tractographies to a common space.
Ask later if interested.

2 Adopt the Statistical Learning Framework.
Definition and Notation
Use prior knowledge: streamline distances.
Classification strategies:

k -NN.
Indefinite streamline kernel.
(Dis)similarity space (+ Linear SVM).
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Definitions and Notation

Streamline: a polyline s = {x1, . . . ,xns}, where x ∈ R3.
Tractography: T = {s1, . . . , sM} ∼ T. Usually |T | ' 3×105.
Fiber Bundle / tract: t ⊂ T
The neuroanatomist provides a segmentation:
Y = {y1, . . . , yM}, yi ∈ {0,1}.

Supervised Learning Problem

Given a class-labeled sample {(s1, y1), . . . , (sN , yN)} ∼ P.
Learn f ∗ from examples minimizing a given Loss L:

f ∗ = argmin
f∈F

EP[L(f (s), y)]
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Issues

Streamlines and Euclidean spaces

“Most of the classification algorithms in the literature assume
that objects live in a Euclidean feature space”, but:

1 Streamlines have different lengths across the brain.
2 The number of points of a streamline is not the same

across the brain.
So streamlines cannot be directly embedded into a Euclidean
space.
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Distances between streamlines (from the literature)
non-metric modified Hausdorff
distances [Zhang et al., 2008,
Dubuisson and Jain, 1994]. Usually:

d1(sA, sB) =
1

KA

KA∑
i=1

d(xA
i , sB)

d2(sA, sB) = min
i=1,...,KA

d(xA
i , sB)

d3(sA, sB) = maxi=1,...,KAd(xA
i , sB)

where

d(xA
i , sB) = min

j=1,...,KB
||xA

i − xB
j ||2

sA
Bs
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k -Nearest Neighbor

“predict class-label as the most frequent one among the k
nearest examples.” (break ties at random)

Pros

Simple and Effective.
Universally Bayes-consistent [Stone, 1977] (for metric
distances).

Cons

k needs to be defined from data or prior knowledge.
Sensitive to noise.
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Kernel Methods: SVC, GPC, perceptron, etc.

“Map data to a RKHS space to enhance linear separability.
Make it easy with the kernel trick.” k(a,b) = 〈φ(a), φ(b)〉

Pros

Very Effective and Widely Adopted.
Kernels are similarity functions, e.g. k(a,b) = e−d(a,b).
Generalization bounds [Schölkopf and Smola, 2002].
Convex optimization problem.

Cons

Kernel k must be positive semi-definite (PSD).
if d is not metric, then k(a,b) = e−d(a,b) is not PSD.
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. . . and Indefinite Kernels

Issues

Non convexity: local minima, saddle point.
Increased amount of computation.
No generalization error guarantees.

Available Solutions [Chen et al., 2009]

“Issues are not so big, do not worry.”
Massage the kernel matrix Kij = k(si , sj). Since
K = UT ΛU, Λ = diag(λ1, . . .):

Clip: λi = max(0, λi )
Flip: λi = |λi |
Shift: λi = λi + |min(λmin,0)|
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(Dis)similarity representation [Pekalska et al., 2002]

“Given a set of prototypes/landmarks R = {s̃1, . . . , s̃D} map
streamlines to RD via ψR(s) = [d(s, s̃1), . . . ,d(s, s̃D)]T .”

Pros

Every classification algorithm can be used.
d has no constraints.

Cons

Computationally more expensive: construction of
feat.space.
How to select prototypes {s̃i}i ?
Generalization?
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(Dis)similarity representation CONT.

General results [Balcan et al., 2008a, Balcan et al., 2008b]
If d is good (= expected intraclass similarity):

We achieve good generalization.
. . . even when {s̃i}i is a random subset of data.
. . . and we have an upper bound on D.

Issues

do assumptions hold?
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Proposed Method

Proposed Method

Use dissimilarity representation.
Use d1:

d1(sA, sB) =
1

KA

KA∑
i=1

d(xA
i , sB)

where
d(xA

i , sB) = min
j=1,...,KB

||xA
i − xB

j ||2

Use random prototypes from {Train ∪ Test}.
Train a linear SVM.
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Dataset: enhanced PBCC 2009

Pittsburgh Brain Connectivity Competition (PBCC) 2009, Spring
www.braincompetition.org 3 subjects × 8 fiber tracts.

Figure: Arcuate (A), cingulum (B), corticospinal (C), forceps major
(D), fornix (E), i.o.f.f. (F), subcallosal (G), uncinate (H).
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Evaluation Criterion

true 0 true 1
pred 0 TN FN
pred 1 FP TP

PBCC2009 score:
r =

TP − FP
TP + FN

Note
r ∈ [− |Sτ |

|t | + 1,1] (r < 0: bad, r > 0:good)

r focuses on sensitivity and penalize predicting a large
tract.
r = TP

TP+FN −
FP

TP+FN = sensitivity− FP
TP+FN
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Results: Same Subject, Proposed Solution

tract Subj0 Subj1 Subj2
arcuate 0.94 0.96 0.93

cingulum 0.85 0.89 0.92
corticosp. 0.94 0.95 0.92
forceps 0.98 0.94 0.92
fornix 0.81 0.86 0.72
ioff 0.70 0.72 0.90

subcall. 0.92 0.83 0.87
uncinate 0.84 0.75 0.63

PBCC2009 score averaged over 4 draws of 100 random
prototypes, SVM linear kernel, 10-fold CV. Std-mean ≈ 0.02,
Testset = 5000.
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Results Cross-Subject. Arcuate Fasciculus

train 7→ test 1-NN d100
1 +`SVM

1L 7→ 2R 0.224 0.328
1L 7→ 3R 0.338 0.711
2R 7→ 1L −0.021 0.333
2R 7→ 3R 0.697 0.860
3R 7→ 1L 0.260 0.792
3R 7→ 2R 0.229 0.187

Cross-Subject Segmentation of the arcuate fasciculus. Sizes -
Subj1 : 96/4027, Subj2 : 406/5050, Subj3 : 228/5142.
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Results Cross-Subject. Corticospinal tract

train 7→ test 1-NN d100
1 +`SVM

1R 7→ 2L 0.402 0.767
1R 7→ 3L 0.091 0.387
2L 7→ 1R 0.446 0.749
2L 7→ 3L 0.852 0.588
3L 7→ 1R 0.417 0.869
3L 7→ 2L 0.459 0.698

Cross-Subject Segmentation of the corticospinal tract. Sizes -
Subj1 : 175/6615, Subj2 : 331/4877, Subj3 : 243/5211.
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Results Cross-Subject. Forceps Major

train 7→ test 1-NN d100
1 +`SVM

1 7→ 2 0.732 0.506
1 7→ 3 0.323 0.194
2 7→ 1 0.158 0.544
2 7→ 3 0.658 0.726
3 7→ 1 0.014 0.347
3 7→ 2 0.366 0.743

Cross-Subject Segmentation of the forceps major. Sizes -
Subj1 : 366/8333, Subj2 : 385/4586, Subj3 : 263/4504.
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Results: Inferior Occipito-Frontal Fasciculus (IOFF)

train 7→ test 1-NN d100
1 +`SVM

1L 7→ 2L −0.853 0.323
1L 7→ 3L −1.170 0.567
2L 7→ 1L −0.095 0.189
2L 7→ 3L −0.025 0.415
3L 7→ 1L 0.090 0.229
3L 7→ 2L −0.049 0.203

Cross-Subject Segmentation of the inferior occipito-frontal
fasciculus (ioff). Sizes - Subj1 : 433/3152, Subj2 : 266/3234,
Subj3 : 282/4858.
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Results Cross-Subject. Cingulum

train 7→ test 1-NN d100
1 +`SVM

0L 7→ 1R −1.243 −0.778
0L 7→ 2L −0.201 0.211
1R 7→ 0L −0.343 0.000
1R 7→ 2L 0.608 0.624
2L 7→ 0L 0.360 0.558
2L 7→ 1R 0.351 0.465

Sizes - Subj1 : 539/4211, Subj2 : 185/4117, Subj3 : 194/5375.
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Results Cross-Subject. Fornix

train 7→ test 1-NN d100
1 +`SVM

0L 7→ 1L 0.156 0.321
0L 7→ 2L −0.319 0.553
1L 7→ 0L −0.407 0.111
1L 7→ 2L −0.404 0.362
2L 7→ 0L 0.296 0.370
2L 7→ 1L −0.431 −0.505

Sizes - Subj1 : 54/3999, Subj2 : 109/4908, Subj3 : 47/4659.
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Results Cross-Subject. Subcallosal

train 7→ test 1-NN d100
1 +`SVM

0R 7→ 1R −1.333 0.000
0R 7→ 2L −0.794 0.000
1R 7→ 0R −0.667 0.000
1R 7→ 2L 0.441 0.000
2L 7→ 0R −1.259 0.000
2L 7→ 1R −1.278 0.000

Sizes - Subj1 : 27/3419, Subj2 : 18/3464, Subj3 : 34/4434.
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Results Cross-Subject. Uncinate

train 7→ test 1-NN d100
1 +`SVM

0R 7→ 1R 0.263 0.075
0R 7→ 2R 0.328 0.197
1R 7→ 0R 0.427 0.280
1R 7→ 2R −0.090 0.016
2R 7→ 0R −0.134 0.402
2R 7→ 1R −0.500 −0.375

Sizes - Subj1 : 82/4148, Subj2 : 80/4829, Subj3 : 122/3711.
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Conclusions

Take-home message

Same-Subject
Experiments confirm that dissimilarity representation works
well.

Cross-Subject
(Dis)similarity + Lin.SVM works consistently better than
1-NN.
There is large anatomical variability across-subject and
proposed registration seems the weak link.
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Future work

Test different number of random prototypes.
Optimal prototypes? [Snelson and Ghahramani, 2005]
Experiment with indefinite kernels.
Tackle cross-subject anatomical differences by Domain
Adaptation/Transfer Learning.

(Semi-)Supervised (e.g. [Daumé et al., 2010]).
Unsupervised (e.g. Transductive SVM. DOES NOT
WORK!)
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Thank You!
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