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Relation to SIMBAD and previous work

Relation to SIMBAD

@ When can we learn using Euclidean representations?

@ Question can be asked at two levels:

e Is the data naturally separable in the given representation
and if not can we adjust the representation to ensure it is?

e For a given set of classifiers H over inputs X can we embed
X into Hilbert space so that H subset of linear threshold
functions?

@ We consider this second question.
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Relation to SIMBAD and previous work

Context

@ If we ignore the problem of how to arrive at the
representation, it is clear that we can represent any
classifier

f:X—{-1,1}

as a (large margin) linear threshold by simply choosing the
embedding:
p:xeX—f(x)eR

@ Now classifier y = sgn(¢(x)) gives perfect classification.

@ What about if we have a set of classifiers - is there an
embedding good for all of them?
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Relation to SIMBAD and previous work

Impossibility of representing classes of functions

@ Surprisingly there are many classes that are known to be
learnable for which no such embedding exists.

@ Ben-David, Eiron and Simon (2002) show that, for VC
classes with VC dimension d on m inputs, only a vanishing
fraction can be embedded into a Euclidean space of
dimension much less than m meaning learning is not
possible with this representation.

@ Note that finite VC dimension d means learnable with an
error bound scaling as /d/m.

@ Proof uses a counting argument — there are too many VC
classes and/or too few linear threshold classes.
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Relation to SIMBAD and previous work

What about Support Vector Machines?

@ Support vector machines (SVMs) work in very (can be
infinite) high dimensional spaces, so no problem?

@ SVMs overcome ‘curse of dimensionality’ by maximising
the margin +, eg bounds have the form:

P(y #sgn(g(x))) = E[H(-yg(x))]
1 Z 2 | Z In(2/6
Sm;&%—m ;K(X/‘,X/)ﬂLS n(2n/1)

@ Note that for the Gaussian kernel this reduces to

Py # sgn(g ZE, T 8 'n(22/5)
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Relation to SIMBAD and previous work

Random projections

@ There is an intimate connection between the effect of
having a large margin and resilience to random projects
(Balcan, Blum & Vempala, 2004):

e bounds on large margin classification can be obtained by
showing that random projections into a low dimensional
(O(R?/~?)) space ensures still have good linear separability

@ hence same non-representability applies

@ Result already obtained by Ben-David et al is
counter-intuitive, but very powerful: for the overwhelming
majority of classes that can be learnt there is no kernel that
will render them learnable by SVMs.

@ One weakness is that it is only an existence proof — would
like to see one of these classes.

John Shawe-Taylor Limitations of Kernel Learning and MKL



Relation to SIMBAD and previous work

Concrete example

@ Forster et al (2002) significantly advanced the technology
of analysing this problem and showed a concrete example.

@ If we consider the sign matrix M of concepts — m rows
indexed by examples, n columns by classifiers, entries
+1, —1, the minimal dimension d to represent this is lower
bounded by

J 1
d > max ]m’ mn (Z 0,-(M)> }
P

John Shawe-Taylor Limitations of Kernel Learning and MKL



Relation to SIMBAD and previous work

Concrete example

@ Has been applied to a few concrete function classes

@ Monomials over n boolean variables are all functions
representable as conjunctions of literals (variables or their
negations)

@ This class can only be embedded with a margin of at most
1/+/n.

@ Unfortunately, does not make learning more difficult, since
VC dimension of monomials is n.
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Relation to SIMBAD and previous work

Converting learning to convex optimisation

@ The aim of this talk is to revisit this impasse by turning to
an alternative large margin approach

@ Maximising the margin while controlling the 1-norm of the
weight vector gives a form of boosting

@ Can also be combined with the SVM approach
@ First will need to take a closer look at the error bounds
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Rademacher complexity

Main Rademacher theorem

The main theorem of Rademacher complexity: with probability
at least 1 — ¢ over random samples S of size m, every f € F
satisfies

R In(1/6
E[1(2)] < E[@)] + An(F) + ) "ol

2m

where R, (F) is the Rademacher complexity of F

sup 2 i oif (z,-)]

Run(F) = EpnE,
" fer M=
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Rademacher complexity

Empirical Rademacher theorem

@ Since the empirical Rademacher complexity

sup — Za, z;) z1,...,z]

fer M
is concentrated, we can make an application of
McDiarmid’s theorem to obtain with probability at least
1—9

Am(F) =

In(2/9)
2m

Ep [f(2)] < E[f(2)] + Rm(F) + 3
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Rademacher complexity

McDiarmid’s inequality

Let Xy, ..., X, be independent random variables taking values
in a set A, and assume that f : A” — R satisfies

sup  |f(Xt,...,Xn) — F(X1, ..., Xi, Xis1,-- -, Xn)| < Cj,
X17"'7Xn7§(feA

for1 < i< n. Then for all e > 0,

_n.2
P{f(X~|,...,Xn)—Ef(X1,...,Xn)ze}gexp <r726>

@ Hoeffding is a special case when f(x1,...,x5) = Sp
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Rademacher complexity

Application to large margin classification

@ Rademacher complexity comes into its own for Boosting
and SVMs.

@ SVM bound we have already seen — now investigate
boosting as will enable conversion of VC classes into a
convex margin optimisation
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Rademacher complexity

Application to Boosting

@ We can view Boosting as seeking a function from the class
(H is the set of weak learners)

{Z aph(x) : ap > 0, Z ap < B} = convg(H)
heH heH
by minimising some function of the margin distribution.

@ Adaboost corresponds to optimising an exponential
function of the margin over this set of functions.

@ We will see how to include the margin in a moment, but
concentrate on computing the Rademacher complexity
Now.
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Rademacher complexity

Rademacher complexity of convex hulls

Rademacher complexity has a very nice property for convex

hull classes:
Rm(convg(H)) = EEU sup Zo,Za/
Mmoo |nens <S5 |
< 2g, | swp Za,Za,
m he/—/z,a,<5
< ZE, [sup B oihi(x;)| < BRn(H).
m- | neH ,z; ihyx) m(H)

John Shawe-Taylor Limitations of Kernel Learning and MKL



Rademacher complexity

Rademacher complexity of convex hulls cont.

@ Hence, we can move to the convex hull without incurring
any complexity penalty for B = 1!

@ Margin is incorporated by applying Rademacher theorem
to class with piecewise linear loss function A:

e loss zero if margin bigger than ~

o linearly increasing loss with slope 1/~ as margin decreases
from~yto 0

e loss 1 for negative margin = misclassification
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Linear programming boosting

Final Boosting bound

@ Gives bound:

P(y #sgn(9(x))) = E[H(-yg(x))] < E[A(-yg(x))]
1 & In(2/6
<6 A a3y MY

where §; = (1 — y; > _p, anh(x;)) . are the so-called slack
variables.
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Linear programming boosting

Linear programme

@ Converting into a corresponding optimisation with the
1-norm of the slack variables we arrive at Linear
programming boosting that minimises

m
Zah+ ngiv
h i=1

where & = (1 — yi Y- anh(x;))...
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Linear programming boosting

Linear programming boosting

@ Can view h(x;) as a set H;; of ‘weak’ learners with j
indexing the set (and include the constant function as one
weak learner and negative of each weak learner):

MiNa,¢ lally + C 314 &

subjectto yHa>1-¢,¢>0,8>0
i=1,....m.
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Linear programming boosting

Alternative version

@ Can equivalently explicitly optimise margin v with 1-norm
fixed:

max,ae v—DY.[ &

subjectto yHia>~vy—-¢,§>0,82>0
Zjli1 g =1.

@ Dual has the following form:
ming y I5;

subjectto >, uyH; < B,j=1,....N,
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Linear programming boosting

Column generation

Can solve the dual linear programme using an iterative method:

1

OOk~ WN

initialise uj =1/m,i=1,....m, 3 =o00,J =10
choose j* that maximises f(j) = Y"1, u;yiH;;
if f(j*) < /3 solve primal restricted to J and exit
J=JUu{j}

Solve dual restricted to set J to give u;, 5
Goto2

John Shawe-Taylor Limitations of Kernel Learning and MKL



Linear programming boosting

LP Boost

@ Note that u; is a distribution on the examples
@ Each j added acts like an additional weak learner
@ f(j) is simply the weighted classification accuracy

@ Hence gives ‘boosting’ algorithm - with previous weights
updated satisfying error bound

@ Guaranteed convergence and soft stopping criteria
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Linear programming boosting

Implementing VC class through LP Boost

@ Each classifier his a weak learner through the mapping:
h:x+— h(x) e R

@ If we restrict to a finite set of m training data, Sauer’s
lemma tells us there are at most

em\
(g
distinct classifiers in the class, so obtain Linear programme
with polynomially many constraints
@ Actually have potentially extended the class of functions as
linear combinations are also allowed

@ Have ducked the problem of how to index the functions, but
would follow from learning algorithm for VC class
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Multiple kernel learning

Between Boosting and SVMs

@ Can we move between boosting and SVMs to ameliorate

the problem with explicitly enumerating all of the classifiers
as constraints?

@ Multiple kernel learning aims to combine a number of

different kernels and select a subset of them as part of the
training

@ Standard multiple kernel learning uses the optimisation:
2
Minw,oe (S IWellz) + CX4 &
subjectto  y; (1L (Wr, 6t (X)) + b) =7 — &, & > 0.
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Multiple kernel learning

Multiple kernel learning

@ Equivalently MKL puts a 1-norm constraint on a linear
combination of kernels:

N N
{n(x,z) = zm(%,2):2>0,) z= 1}
=1 =1

and trains an SVM while optimizing z; — a convex problem,
c.f. group Lasso.

@ This is equivalent to performing Linear programming
boosting with the weak learners:

N
H=JF where Fi={xr (W, () :|W|2 <1}
t=1
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Multiple kernel learning

Multiple kernel learning via LP Boost

@ To implement MKL as an LP Boosting we need to choose

the weak learner h that maximises
m

NI

@ But we can optimise over F; since

IIW\?<X1 Z uiyi(W, o¢(X;)) = <w, Z U/y/¢r(xi)>
— i=1

which is maximised by choosing w parallel to
m
> uiyis(xi)
i=1
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Multiple kernel learning

Multiple kernel learning

@ We obtain a bound on generalisation:
P(y # sgn(9(x)))
1 Z 1. (N In(2/6)
<—) §+-R Fi|+3
my ;51 ~ m (g t) °m

@ but are missing a bound on the Rademacher complexity of
the class of weak learners.
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Multiple kernel learning

Bounding MKL

@ First note further applications of McDiarmid gives with
probability 1 — §p of a random selection of o*:

C 2 * In(1/5f)
< —
Rm(H) < o §g£ ;§:1 o f(x;)+ 4 5
2 7 . In(1/6;)
§ / i) <
and m ?eufgr i=1 7 1) < A1) +4 2m

with probability 1 — o;
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Multiple kernel learning

Bounding MKL

@ Hence taking 6 =d/2(N+1)fort=0,...,N

. (H:M

_2 In(2(N + 1)/6)

m? ZU’ 2m

2 U \/In(2(N+ 1)/6)
= R ) < 4y P

. In(2(N + 1)/9)
< 1rgte;xN Rm(Ft) + 8\/2m

with probability 1 — §/2.
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Conclusions

Concluding remarks

@ Examined the limitations of learning with linear function
classes

@ Reviewed negative results for SVMs when compared to
general VC classes

@ Showed how using LP boosting this problem can be
overcome

@ Extended the approach to Multiple kernel learning that may
enable a less explicit enumeration of the functions
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