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Relation to SIMBAD

When can we learn using Euclidean representations?
Question can be asked at two levels:

Is the data naturally separable in the given representation
and if not can we adjust the representation to ensure it is?
For a given set of classifiers H over inputs X can we embed
X into Hilbert space so that H subset of linear threshold
functions?

We consider this second question.
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Context

If we ignore the problem of how to arrive at the
representation, it is clear that we can represent any
classifier

f : X −→ {−1,1}

as a (large margin) linear threshold by simply choosing the
embedding:

φ : x ∈ X 7−→ f (x) ∈ R

Now classifier y = sgn(φ(x)) gives perfect classification.
What about if we have a set of classifiers - is there an
embedding good for all of them?
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Impossibility of representing classes of functions

Surprisingly there are many classes that are known to be
learnable for which no such embedding exists.
Ben-David, Eiron and Simon (2002) show that, for VC
classes with VC dimension d on m inputs, only a vanishing
fraction can be embedded into a Euclidean space of
dimension much less than m meaning learning is not
possible with this representation.
Note that finite VC dimension d means learnable with an
error bound scaling as

√
d/m.

Proof uses a counting argument – there are too many VC
classes and/or too few linear threshold classes.

John Shawe-Taylor Limitations of Kernel Learning and MKL



Relation to SIMBAD and previous work
Rademacher complexity

Linear programming boosting
Multiple kernel learning

Conclusions

What about Support Vector Machines?

Support vector machines (SVMs) work in very (can be
infinite) high dimensional spaces, so no problem?
SVMs overcome ‘curse of dimensionality’ by maximising
the margin γ, eg bounds have the form:

P(y 6= sgn(g(x))) = E [H(−yg(x))]

≤ 1
mγ

m∑
i=1

ξi +
2

mγ

√√√√ m∑
i=1

κ(xi ,xi) + 3

√
ln(2/δ)

2m

Note that for the Gaussian kernel this reduces to

P(y 6= sgn(g(x))) ≤ 1
mγ

m∑
i=1

ξi +
2√
mγ

+ 3

√
ln(2/δ)

2m
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Random projections

There is an intimate connection between the effect of
having a large margin and resilience to random projects
(Balcan, Blum & Vempala, 2004):

bounds on large margin classification can be obtained by
showing that random projections into a low dimensional
(O(R2/γ2)) space ensures still have good linear separability
hence same non-representability applies

Result already obtained by Ben-David et al is
counter-intuitive, but very powerful: for the overwhelming
majority of classes that can be learnt there is no kernel that
will render them learnable by SVMs.
One weakness is that it is only an existence proof – would
like to see one of these classes.
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Concrete example

Forster et al (2002) significantly advanced the technology
of analysing this problem and showed a concrete example.
If we consider the sign matrix M of concepts – m rows
indexed by examples, n columns by classifiers, entries
+1,−1, the minimal dimension d to represent this is lower
bounded by

d ≥ max


√

mn
‖M‖

,mn

(
d∑

i=1

σi(M)

)−1

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Concrete example

Has been applied to a few concrete function classes
Monomials over n boolean variables are all functions
representable as conjunctions of literals (variables or their
negations)
This class can only be embedded with a margin of at most
1/
√

n.
Unfortunately, does not make learning more difficult, since
VC dimension of monomials is n.
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Converting learning to convex optimisation

The aim of this talk is to revisit this impasse by turning to
an alternative large margin approach
Maximising the margin while controlling the 1-norm of the
weight vector gives a form of boosting
Can also be combined with the SVM approach
First will need to take a closer look at the error bounds
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Main Rademacher theorem

The main theorem of Rademacher complexity: with probability
at least 1− δ over random samples S of size m, every f ∈ F
satisfies

E [f (z)] ≤ Ê [f (z)] + Rm(F) +
√

ln(1/δ)
2m

where Rm(F) is the Rademacher complexity of F

Rm(F) = EDmEσ

[
sup
f∈F

2
m

m∑
i=1

σi f (zi)

]
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Empirical Rademacher theorem

Since the empirical Rademacher complexity

R̂m(F) = Eσ

[
sup
f∈F

2
m

m∑
i=1

σi f (zi)

∣∣∣∣∣ z1, . . . , zm

]

is concentrated, we can make an application of
McDiarmid’s theorem to obtain with probability at least
1− δ

ED [f (z)] ≤ Ê [f (z)] + R̂m(F) + 3

√
ln(2/δ)

2m
.
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McDiarmid’s inequality

Theorem

Let X1, . . . ,Xn be independent random variables taking values
in a set A, and assume that f : An → R satisfies

sup
x1,...,xn,x̂i∈A

|f (x1, . . . , xn)− f (x1, . . . , x̂i , xi+1, . . . , xn)| ≤ ci ,

for 1 ≤ i ≤ n. Then for all ε > 0,

P {f (X1, . . . ,Xn)− Ef (X1, . . . ,Xn) ≥ ε} ≤ exp

(
−2ε2∑n
i=1 c2

i

)

Hoeffding is a special case when f (x1, . . . , xn) = Sn

John Shawe-Taylor Limitations of Kernel Learning and MKL



Relation to SIMBAD and previous work
Rademacher complexity

Linear programming boosting
Multiple kernel learning

Conclusions

Application to large margin classification

Rademacher complexity comes into its own for Boosting
and SVMs.
SVM bound we have already seen – now investigate
boosting as will enable conversion of VC classes into a
convex margin optimisation
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Application to Boosting

We can view Boosting as seeking a function from the class
(H is the set of weak learners){∑

h∈H

ahh(x) : ah ≥ 0,
∑
h∈H

ah ≤ B

}
= convB(H)

by minimising some function of the margin distribution.
Adaboost corresponds to optimising an exponential
function of the margin over this set of functions.
We will see how to include the margin in a moment, but
concentrate on computing the Rademacher complexity
now.
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Rademacher complexity of convex hulls

Rademacher complexity has a very nice property for convex
hull classes:

R̂m(convB(H)) =
2
m
Eσ

 sup
hj∈H,

∑
j aj≤B

m∑
i=1

σi
∑

j

ajhj(xi)


≤ 2

m
Eσ

 sup
hj∈H,

∑
j aj≤B

∑
j

aj

m∑
i=1

σihj(xi)


≤ 2

m
Eσ

[
sup
hj∈H

B
m∑

i=1

σihj(xi)

]
≤ BR̂m(H).

John Shawe-Taylor Limitations of Kernel Learning and MKL



Relation to SIMBAD and previous work
Rademacher complexity

Linear programming boosting
Multiple kernel learning

Conclusions

Rademacher complexity of convex hulls cont.

Hence, we can move to the convex hull without incurring
any complexity penalty for B = 1!
Margin is incorporated by applying Rademacher theorem
to class with piecewise linear loss function A:

loss zero if margin bigger than γ
linearly increasing loss with slope 1/γ as margin decreases
from γ to 0
loss 1 for negative margin ≡ misclassification
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Final Boosting bound

Gives bound:

P(y 6= sgn(g(x))) = E [H(−yg(x))] ≤ E [A(−yg(x))]

≤ 1
m

m∑
i=1

ξi + R̂(H)
∑

h

ah + 3

√
ln(2/δ)

2m

where ξi = (1− yi
∑

h ahh(xi))+ are the so-called slack
variables.
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Linear programme

Converting into a corresponding optimisation with the
1-norm of the slack variables we arrive at Linear
programming boosting that minimises

∑
h

ah + C
m∑

i=1

ξi ,

where ξi = (1− yi
∑

h ahh(xi))+.
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Linear programming boosting

Can view h(xi) as a set Hij of ‘weak’ learners with j
indexing the set (and include the constant function as one
weak learner and negative of each weak learner):

mina,ξ ‖a‖1 + C
∑m

i=1 ξi

subject to yiHia ≥ 1− ξi , ξi ≥ 0, ai ≥ 0
i = 1, . . . ,m.
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Alternative version

Can equivalently explicitly optimise margin γ with 1-norm
fixed:

maxγ,a,ξ γ − D
∑m

i=1 ξi

subject to yiHia ≥ γ − ξi , ξi ≥ 0,aj ≥ 0∑N
j=1 aj = 1.

Dual has the following form:

minβ,u β

subject to
∑m

i=1 uiyiHij ≤ β, j = 1, . . . ,N,∑m
i=1 ui = 1, 0 ≤ ui ≤ D.
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Column generation

Can solve the dual linear programme using an iterative method:
1 initialise ui = 1/m, i = 1, . . . ,m, β =∞, J = ∅
2 choose j? that maximises f (j) =

∑m
i=1 uiyiHij

3 if f (j?) ≤ β solve primal restricted to J and exit
4 J = J ∪ {j?}
5 Solve dual restricted to set J to give ui , β
6 Go to 2
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LP Boost

Note that ui is a distribution on the examples
Each j added acts like an additional weak learner
f (j) is simply the weighted classification accuracy
Hence gives ‘boosting’ algorithm - with previous weights
updated satisfying error bound
Guaranteed convergence and soft stopping criteria
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Implementing VC class through LP Boost

Each classifier h is a weak learner through the mapping:

h : x 7−→ h(x) ∈ R

If we restrict to a finite set of m training data, Sauer’s
lemma tells us there are at most(em

d

)d

distinct classifiers in the class, so obtain Linear programme
with polynomially many constraints
Actually have potentially extended the class of functions as
linear combinations are also allowed
Have ducked the problem of how to index the functions, but
would follow from learning algorithm for VC class
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Between Boosting and SVMs

Can we move between boosting and SVMs to ameliorate
the problem with explicitly enumerating all of the classifiers
as constraints?
Multiple kernel learning aims to combine a number of
different kernels and select a subset of them as part of the
training
Standard multiple kernel learning uses the optimisation:

minwt ,b,γ,ξ

(∑N
t=1 ‖wk‖2

)2
+ C

∑m
i=1 ξi

subject to yi

(∑N
t=1 〈wt , φt (xi)〉+ b

)
≥ γ − ξi , ξi ≥ 0.
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Multiple kernel learning

Equivalently MKL puts a 1-norm constraint on a linear
combination of kernels:{

κ(x, z) =
N∑

t=1

ztκt(x, z) : zt ≥ 0,
N∑

t=1

zt = 1

}
and trains an SVM while optimizing zt – a convex problem,
c.f. group Lasso.
This is equivalent to performing Linear programming
boosting with the weak learners:

H =
N⋃

t=1

Ft where Ft = {x 7→ 〈w, φt(x)〉 : ‖w‖2 ≤ 1}
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Multiple kernel learning via LP Boost

To implement MKL as an LP Boosting we need to choose
the weak learner h that maximises

max
h∈H

m∑
i=1

uiyih(xi)

But we can optimise over Ft since

max
‖w‖≤1

m∑
i=1

uiyi〈w, φt(xi)〉 =

〈
w,

m∑
i=1

uiyiφt(xi)

〉
which is maximised by choosing w parallel to

m∑
i=1

uiyiφt(xi)
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Multiple kernel learning

We obtain a bound on generalisation:

P(y 6= sgn(g(x)))

≤ 1
mγ

m∑
i=1

ξi +
1
γ

R̂m

(
N⋃

t=1

Ft

)
+ 3

√
ln(2/δ)

2m

but are missing a bound on the Rademacher complexity of
the class of weak learners.

John Shawe-Taylor Limitations of Kernel Learning and MKL



Relation to SIMBAD and previous work
Rademacher complexity

Linear programming boosting
Multiple kernel learning

Conclusions

Bounding MKL

First note further applications of McDiarmid gives with
probability 1− δ0 of a random selection of σ∗:

R̂m(H) ≤
2
m

sup
f∈H

m∑
i=1

σ∗i f (xi) + 4

√
ln(1/δt)

2m

and
2
m

sup
f∈Ft

m∑
i=1

σ∗i f (xi) ≤ R̂m(Ft) + 4

√
ln(1/δt)

2m

with probability 1− δt
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Bounding MKL

Hence taking δt = δ/2(N + 1) for t = 0, . . . ,N

R̂m

(
H =

N⋃
t=1

Ft

)

≤ 2
m

sup
f∈F

m∑
i=1

σ∗i f (xi) + 4

√
ln(2(N + 1)/δ)

2m

≤ 2
m

max
1≤t≤N

sup
f∈Ft

m∑
i=1

σ∗i f (xi) + 4

√
ln(2(N + 1)/δ)

2m

≤ max
1≤t≤N

R̂m(Ft) + 8

√
ln(2(N + 1)/δ)

2m

with probability 1− δ/2.
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Concluding remarks

Examined the limitations of learning with linear function
classes
Reviewed negative results for SVMs when compared to
general VC classes
Showed how using LP boosting this problem can be
overcome
Extended the approach to Multiple kernel learning that may
enable a less explicit enumeration of the functions
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