Bag Dissimilarities for Multiple Instance Learning

David M.J. Tax, Marco Loog, Wan-Jui Lee, Veronika Cheplygina, Robert P.W. Duin

How to label this image?

... "Red chilli"?

... "Red chilli"?

How to REPRESENT this image?

- Represent an object (a bag) by a collection of feature vectors (or instances)
- Each bag is labeled

- Multiple-Instance Learning (MIL)
- Classical MIL
- Bag dissimilarities
 - based on pairwise comparisons
 - based on distribution differences
- Experiments
- Observations, open questions/challenge to you
- Conclusions

- Represent an object (a bag) by a collection of feature vectors (or instances)
- Each bag is labeled

naive approach: label according to bag y = +1label

- Represent an object (a bag) by a collection of feature vectors (or instances)
- Each bag is labeled

- Represent an object (a bag) by a collection of feature vectors (or instances)
- Each bag is labeled

MIL approach: model a concept

- Represent an object (a bag) by a collection of feature vectors (or instances)
- Each bag is labeled

MIL approach: model a concept

- Dissimilarity approach: define a distance between bags $\tilde{\mathbf{x}}(B_j) = [d(B_j, B_1), ..., d(B_j, B_N)]$
- Train (and eval.) a traditional classifier on these features

Notation

- Assume we have $N\,$ bags of instances
- Each bag B_i has n_i instances

 $B_i = \{\mathbf{x}_{i1}, ..., \mathbf{x}_{ij}, ..., \mathbf{x}_{in_i}\}$

• In training, each bag is labeled

$$\{(B_i, y_i), i = 1, ..., N\}$$

where

 $y \in \{-1,+1\}$

Bag dissimilarities

• How to define a bag similarity? Use pairwise distances...

Bag dissim. using pairwise dist.

Overall minimum distance:

$$O_1 = O_2 = O_3 = O_4 = O_5 = \min$$

• Mean minimum distance:

 $O_1 = O_2 = \min, \quad O_3 = O_4 = mean, \quad O_5 = mean$

- Standard Hausdorff distance: $O_1 = O_2 = \min, \quad O_3 = O_4 = \max, \quad O_5 = \max$
- ... and many more.

Bag distribution dissimilarities

- Bags of instances are samples of a distribution
- Mahalanobis

$$d_{ij} = (\mu_i - \mu_j)^T \left(\frac{1}{2}\Sigma_i + \frac{1}{2}\Sigma_j\right)^{-1} (\mu_i - \mu_j)$$

 Earth Mover's Distance (EMD) (minimize the flow f_{kl} to transform one uniform PDF over instances to another)

$$d_{ij} = \min_{f_{kl}} \sum_{k,l} f_{kl} D_{ij}(k,l)$$

Does it make sense?

- Strict MIL: when a single instance belongs to the concept, then label bag positive
 :-(Noise sensitive, and not always applicable
- MIL on distributions: all instances contribute to the bag dissimilarities
 - :-(Background may have large influence
- MIL pairwise dissim.: select important pairwise distances as features
 - :-(Completely (?) unclear what it models

Results

• Test on a variety of datasets:

			pos.	neg.	min.	median	max.
dataset	nr.inst.	dim.	bags	bags	inst/bag	inst/bag	inst/bag
MUSK 1 [2]	476	166	47	45	2	4	40
$MUSK \ 2 \ [2]$	6598	166	39	63	1	12	1044
Corel African [19]	7947	9	100	1900	2	3	13
Corel Historical [19]	7947	9	100	1900	2	3	13
SIVAL AjaxOrange [23]	47414	30	60	1440	31	32	32
News atheism $[22]$	5443	200	50	50	22	58	76
News motorcycles $[22]$	4730	200	50	50	22	49	73
News mideast $[22]$	3373	200	50	50	15	34	55
Corel Fox $[6]$	1320	230	100	100	2	6	13
Corel Tiger [6]	1220	230	100	100	1	6	13
Corel Elephant [6]	1391	230	100	100	2	7	13
Web recomm.[24]	2212	5863	17	58	4	24	141

Results

classifier	Musk 1	Musk 2	Corel African	Corel Historical		
Standard MIL classifiers						
APR $\tau = 0.999$	81.8(1.3)	82.5(1.2)	50.5~(0.0)	50.5~(0.1)		
APR $\tau = 0.995$	78.9(1.7)	80.8(2.3)	57.4(0.8)	$61.4 \ (0.4)$		
Diverse Density (100 restarts)	89.4(1.3)	93.2 (0.0)	85.6(0.1)	83.4~(0.7)		
MiBoost ($M = 100$ rounds)	80.3(3.1)	49.3(3.7)	$68.0\ (0.0)$	80.4~(1.6)		
MI-SVM (linear kernel)	70.3(3.0)	81.5(2.1)	63.4(2.0)	$78.9\ (0.6)$		
MI-SVM (RBG kernel)	92.9(1.3)	92.9(1.6)	NaN (0.0)	90.8(1.0)		
MILES (linear kernel)	89.3(1.9)	88.8(1.8)	$88.5 \ (0.5)$	NaN (0.0)		
MILES (RBF kernel)	92.8 (1.4)	95.3 (1.5)	58.9(9.2)	60.8(12.8)		
Simple MIL with LDA, max-comb.	72.9(3.4)	76.7(3.4)	68.8(0.2)	74.4(0.2)		
LDA on mean-inst	85.7(1.4)	87.6(2.8)	77.2(0.3)	86.2(0.1)		
LDA on extremes	92.4 (1.9)	88.9 (4.0)	88.5(0.1)	85.3(0.2)		
BagOfWords (k=10)+linear SVM	72.7 (4.7)	63.7(6.1)	75.1(3.2)	78.4(3.9)		
BagOfWords (k=100)+linear SVM	78.7(5.5)	71.2(3.1)	83.4 (1.8)	85.6(2.6)		
Distance-base	d classifiers	on bag diss	imilarities			
minmin+k-NND	90.1 (1.4)	84.0 (1.9)	86.6(0.4)	84.1 (1.2)		
mindist+k-NND	86.3(2.0)	83.2(1.6)	92.7(0.7)	90.7(1.1)		
hausd.+k-NND	89.0(1.6)	84.2(0.8)	86.7(0.9)	88.5 (1.0)		
mahal.+k-NND	61.8(2.8)	65.7(5.7)	67.3(0.7)	63.2(1.2)		
emd+k-NND	90.1(2.7)	(1)	92.0(0.7)	88.8(1.7)		
lin.ass.+kNND	84.7 (1.6)	76.5(2.7)	69.9(0.6)	87.8 (0.4)		
Standard clas	sifiers on ba	ıg dissimilar	ity space			
minmin.+Parzen Classifier	94.7 (3.0)	92.3(2.7)	90.4(0.6)	84.0 (0.6)		
mindist.+Parzen Classifier	61.2 (6.0)	50.0 (0.0)	83.4(0.9)	86.0(0.5)		
hausd.+Parzen Classifier	86.9(0.7)	92.1(2.5)	79.1(0.6)	84.3(0.5)		
mahal.+Parzen Classifier	52.1(0.9)	65.8(2.4)	46.3(2.4)	52.4(1.3)		
emd+Parzen Classifier	87.4 (3.4)	(1)	89.4(0.4)	85.4(0.7)		
lin.ass.+Parzen Classifier	83.3 (2.7)	72.2(2.9)	83.5(0.7)	86.2(0.5)		
$\operatorname{minmin.}+k\operatorname{-NN}$	93.3 (1.5)	90.7 (3.9)	88.7 (0.8)	83.5(1.3)		
mindist.+k-NN	88.8 (3.0)	83.8 (1.4)	81.7(1.1)	85.5(1.0)		
hausd. $+k$ -NN	89.2(2.7)	91.6 (1.0)	77.0 (0.7)	80.0(1.3)		
mahal.+k-NN	72.0 (3.1)	61.6 (2.7)	53.3 (1.6)	57.0(0.8)		
emd+k-NN	92.4 (1.4)	(1)	86.9 (1.1)	79.6 (1.5)		
lin.ass.+k-NN	88.6 (2.1)	72.6(3.7)	81.5 (1.4)	84.7 (1.4)		

16

Zoom in (1)

• The classic approaches:

classifier	Musk 1	Musk 2	Corel African	Corel Historical
Sta	andard MIL	classifiers		
APR $\tau = 0.999$	81.8(1.3)	82.5(1.2)	50.5(0.0)	50.5(0.1)
APR $\tau = 0.995$	78.9(1.7)	80.8~(2.3)	$57.4 \ (0.8)$	61.4 (0.4)
Diverse Density (100 restarts)	89.4(1.3)	93.2 (0.0)	$85.6\ (0.1)$	$83.4\ (0.7)$
MiBoost ($M = 100$ rounds)	80.3(3.1)	49.3(3.7)	$68.0\ (0.0)$	80.4~(1.6)
MI-SVM (linear kernel)	70.3 (3.0)	81.5(2.1)	63.4~(2.0)	$78.9\ (0.6)$
MI-SVM (RBG kernel)	92.9(1.3)	92.9(1.6)	NaN (0.0)	$90.8 \ (1.0)$
MILES (linear kernel)	89.3(1.9)	88.8(1.8)	$88.5 \ (0.5)$	NaN (0.0)
MILES (RBF kernel)	92.8(1.4)	95.3(1.5)	58.9(9.2)	60.8~(12.8)
Simple MIL with LDA, max-comb.	72.9(3.4)	76.7(3.4)	68.8~(0.2)	$74.4\ (0.2)$
LDA on mean-inst	85.7(1.4)	87.6~(2.8)	77.2 (0.3)	86.2(0.1)
LDA on extremes	92.4(1.9)	88.9(4.0)	88.5~(0.1)	$85.3\ (0.2)$
BagOfWords ($k=10$)+linear SVM	72.7 (4.7)	63.7~(6.1)	75.1 (3.2)	$78.4 \ (3.9)$
BagOfWords ($k=100$)+linear SVM	78.7(5.5)	71.2(3.1)	83.4(1.8)	85.6~(2.6)

Zoom in (2)

Distance-based classifiers on bag dissimilarities							
$\min + k - NND$	90.1(1.4)	84.0 (1.9)	86.6(0.4)	84.1 (1.2)			
mindist+k-NND	86.3(2.0)	83.2(1.6)	92.7 (0.7)	90.7 (1.1)			
hausd.+ k -NND	89.0~(1.6)	84.2 (0.8)	86.7~(0.9)	88.5~(1.0)			
mahal. $+k$ -NND	61.8(2.8)	65.7 (5.7)	67.3 (0.7)	63.2~(1.2)			
emd+k-NND	$90.1 \ (2.7)$	(1)	92.0 (0.7)	88.8(1.7)			
lin.ass.+kNND	84.7(1.6)	76.5(2.7)	69.9(0.6)	87.8(0.4)			
Standard classifiers on bag dissimilarity space							
minmin.+Parzen Classifier	94.7(3.0)	92.3(2.7)	90.4~(0.6)	84.0(0.6)			
mindist.+Parzen Classifier	$61.2 \ (6.0)$	50.0(0.0)	83.4~(0.9)	$86.0\ (0.5)$			
hausd.+Parzen Classifier	86.9(0.7)	92.1~(2.5)	79.1 (0.6)	84.3(0.5)			
mahal.+Parzen Classifier	52.1 (0.9)	65.8(2.4)	46.3(2.4)	52.4(1.3)			
emd+Parzen Classifier	87.4(3.4)	(1)	89.4~(0.4)	85.4 (0.7)			
lin.ass.+Parzen Classifier	83.3(2.7)	72.2(2.9)	83.5(0.7)	86.2(0.5)			
$\min -k-NN$	93.3(1.5)	90.7(3.9)	88.7(0.8)	83.5(1.3)			
mindist.+k-NN	88.8 (3.0)	83.8(1.4)	81.7(1.1)	85.5(1.0)			
hausd.+ k -NN	89.2(2.7)	91.6(1.0)	77.0(0.7)	80.0(1.3)			
mahal.+k-NN	72.0(3.1)	61.6(2.7)	$53.3\ (1.6)$	$57.0\ (0.8)$			
$\mathrm{emd} + k$ -NN	92.4 (1.4)	(1)	86.9(1.1)	79.6 (1.5)			
lin.ass.+k-NN	88.6(2.1)	72.6(3.7)	81.5 (1.4)	84.7(1.4)			
			ŤU	Delft 18			

Min-min distance?

Min-min distance?

concept

background

Min-min distance?

concept

background

Noise sensitive?!! Instances in the concept have be more similar than in the background.

Mean-min. distance?

• Average the minimum distances: take all instances into account

Earth movers distance?

• How much work does it take to move probability mass from B_i to B_j

More results

classifier	AjaxOrange	alt.atheism r	ec.motorcycles p	olitics.mideast	
Standard MIL classifiers					
APR $\tau = 0.995$	48.4(0.8)	50.0(0.0)	50.0(0.0)	49.8(0.4)	
Diverse Density (100 restarts)	55.5(2.9)	52.2(2.4)	46.4(2.9)	40.2 (2.5)	
MiBoost $(M = 100 \text{ rounds})$	56.5(2.4)	50.0(0.0)	NaN (0.0)	50.3(1.5)	
MI-SVM (linear kernel)	93.6 (2.6)	69.8(2.8)	76.4(4.0)	79.8(2.3)	
MI-SVM (RBG kernel)	NaN (0.0)	45.5(7.1)	49.7(5.4)	46.1(2.4)	
MILES (linear kernel)	(2)	80.4(1.2)	$77.4\ (1.9)$	79.9(3.4)	
MILES (RBF kernel)	(2)	47.1 (4.5)	44.7 (4.8)	54.1(1.8)	
Simple MIL with LDA, max-comb.	89.3(0.3)	81.6(1.2)	80.4(2.1)	75.0 (3.1)	
LDA on mean-inst	82.3(0.9)	83.7(2.1)	84.4 (1.8)	78.1 (1.7)	
LDA on extremes	90.3(0.3)	50.0(0.0)	51.2(0.4)	65.0(1.8)	
BagOfWords ($k=100$)+linear SVM	81.2(2.5)	54.0(0.0)	65.2(9.3)	58.6 (6.8)	
Distance-base	ed classifiers	on bag dissin	nilarities		
minmin+k-NND	53.6(1.2)	50.0(0.0)	50.0(0.0)	52.8 (2.2)	
mindist+k-NND	62.9(1.3)	59.2(1.9)	58.4(0.5)	53.4(1.1)	
hausd. $+k$ -NND	72.4(1.3)	72.8(3.0)	68.7(3.2)	67.1(1.8)	
mahal.+k-NND	64.0(1.6)	47.7(4.4)	45.0(3.4)	58.5(6.0)	
emd+k-NND	77.6(2.6)	56.0(1.2)	60.8(0.4)	57.2(1.3)	
lin.ass.+kNND	71.6(1.4)	69.2(1.7)	53.7~(2.9)	58.5(3.2)	
Standard cla	ssifiers on b	ag dissimilarit	ty space		
minmin.+Parzen Classifier	55.7(1.6)	49.8(0.4)	50.0(0.0)	50.4(2.3)	
mindist.+Parzen Classifier	78.0(1.3)	78.9(2.8)	78.4(0.5)	75.2(1.9)	
hausd.+Parzen Classifier	71.8(0.9)	73.8(2.0)	82.0(2.2)	73.8(0.9)	
mahal.+Parzen Classifier	75.3(0.9)	54.2(3.3)	43.7(3.5)	61.9(1.8)	
emd+Parzen Classifier	78.7(1.1)	89.7 (1.3)	77.6(1.5)	87.8(1.1)	
lin.ass.+Parzen Classifier	78.9(0.6)	80.1(2.4)	84.2(2.8)	84.3(3.1)	
$\min\min.+k$ -NN	56.0(1.6)	50.0~(0.0)	50.0~(0.0)	47.8(2.7)	
mindist.+k-NN	70.6(2.6)	84.9(1.6)	86.6~(2.0)	82.2 (1.5)	
hausd.+k-NN	68.9(1.9)	85.6(2.1)	89.2 (3.5)	77.2 (3.2)	
mahal.+k-NN	70.8(1.5)	51.2(3.6)	56.3(3.8)	55.8(4.6)	
emd+k-NN	72.0(2.4)	90.0(1.4)	$86.7 \ (0.7)$	82.6 (1.7)	
lin.ass.+k-NN	$70.1 \ (0.8)$	82.1 (2.3)	82.9(2.4)	^{80.8} (3.8) TU Delft	

24

Zoomed...

<u> </u>	× /	× /	× /	· · /			
Distance-based classifiers on bag dissimilarities							
minmin+k-NND	53.6(1.2)	50.0~(0.0)	50.0~(0.0)	52.8(2.2)			
mindist+k-NND	62.9(1.3)	59.2(1.9)	$58.4 \ (0.5)$	53.4(1.1)			
hausd.+ k -NND	72.4(1.3)	$72.8\ (3.0)$	68.7 (3.2)	$67.1 \ (1.8)$			
mahal. $+k$ -NND	64.0(1.6)	47.7 (4.4)	45.0(3.4)	$58.5 \ (6.0)$			
emd+k-NND	77.6(2.6)	56.0(1.2)	60.8(0.4)	57.2(1.3)			
lin.ass.+kNND	71.6(1.4)	69.2(1.7)	53.7(2.9)	58.5(3.2)			
Standard cl	assifiers on b	ag dissimilari	ty space				
minmin.+Parzen Classifier	55.7(1.6)	49.8(0.4)	50.0(0.0)	50.4(2.3)			
mindist.+Parzen Classifier	78.0(1.3)	78.9(2.8)	78.4(0.5)	75.2(1.9)			
hausd.+Parzen Classifier	71.8(0.9)	73.8(2.0)	82.0(2.2)	73.8(0.9)			
mahal.+Parzen Classifier	75.3(0.9)	54.2(3.3)	43.7(3.5)	61.9(1.8)			
emd+Parzen Classifier	78.7(1.1)	89.7(1.3)	77.6(1.5)	87.8(1.1)			
lin.ass.+Parzen Classifier	78.9(0.6)	80.1(2.4)	84.2(2.8)	84.3(3.1)			
$\min -k-NN$	56.0(1.6)	50.0(0.0)	50.0(0.0)	47.8(2.7)			
mindist.+k-NN	70.6(2.6)	84.9(1.6)	86.6(2.0)	82.2(1.5)			
hausd. $+k$ -NN	68.9(1.9)	85.6(2.1)	89.2(3.5)	77.2(3.2)			
mahal. $+k$ -NN	70.8(1.5)	51.2(3.6)	56.3(3.8)	55.8(4.6)			
$\mathrm{emd} + k$ -NN	72.0(2.4)	90.0(1.4)	86.7 (0.7)	82.6(1.7)			
lin.ass.+k-NN	70.1 (0.8)	82.1 (2.3)	82.9 (2.4)	80.8(3.8)			
				TUDelft 25			

Are there different MIL problems?

• 'Spice shop' OR 'Red chilli' ??

26

Conclusions

- Bag dissimilarities offer possibilities for MIL
- The idea of a 'concept' is often not clear, the bag distribution is more important
- Promising: the `mindist' and the Earth Movers Distance

? This suggest that(1) the full bag distribution is informative, or(2) there may be insufficient nr. of instances to describe the concept well

