Graph Characterization via Backtrackless Paths

Furqan Aziz Richard C. Wilson Edwin R. Hancock

Dept. of Computer Science University of York

Motivation

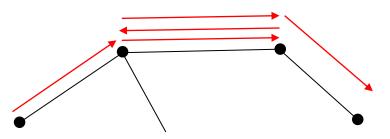
- Graph based methods are widely used in many applications like network analysis, world wide web, data mining, computer vision and complex systems.
- Graph embedding is an important because is allows statistically techniques to be applied directly
 - Embedding should reflect similarity
- Two main approaches
- Structural approach
 - Compute graph structural similarity (graph matching, edit distance, graph kernel)
 - Embed similarities or directly use kernel
 - Similarities may be non-Euclidean; pairwise comparisons
- Feature approach
 - Compare characterizations of the graphs
 - Direct feature embeddings
 - Efficiency and expressive power important
- How can we find efficient methods for characterizing graphs that do not involve exhaustive structural search?

Graph Kernels

- Random Walk Kernel (Gartner et al 2003)
 - Count the number of matching walks between two graphs

$$K(G_1, G_2) = \sum_{(i,j) \in V_{\times}} \sum_{k=0}^{\infty} \varepsilon_k \left[A_{\times}^k \right]_{ij}$$

- -k is the walk length
- The number of walks becomes very large
- The random walk graph kernel suffers from the problem of tottering



- Reduces expressive power and masks structural differences

Path Kernels

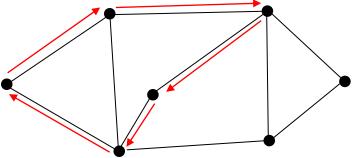
- Tottering can be eliminated by comparing *paths*
- A path is a sequence of edges such that each edge neighbours the previous, and there are no repeated edges
- All-paths kernel (Borgwardt and Kriegel 2005)

$$K(G_1, G_2) = \sum_{p_1 \in \text{allpaths}(G_1)} \sum_{p_2 \in \text{allpaths}(G_1)} k(p_1, p_2)$$

- All-paths is a true kernel, but NP-hard in general to find all paths
- Alternatives are shortest-path or *k*-shortest-path

Cycle Kernels

- Tottering can also be eliminated by using cycles
 - Path beginning and ending at same vertex



- Cycles and bridges kernel (Gärtner et al 2004)
- Still NP-complete to calculate all cycles
 - Some graphs have polynomial cycle complexity

- Rather than enumerating and comparing paths, we can try to characterize graphs based on individual structure
- A *graph characterization* measures structural properties independently from the vertex labelling
 - Graph 'features'
- Spectral: use eigenvalues of adjacency matrix or Laplacian.
- Algebraic: co-efficients of characteristic polynomial.
- Topological: e.g. average degree, degree distribution, edgedensity, diameter, cycle frequencies etc.
- Compare feature space to get similarity

Heat kernel

• The heat kernel is closely connected to random walks – Heat kernel is the kernel of a continuous-time random walk $\mathbf{H}(t) = \exp(-\mathbf{L}t)$

• The heat kernel trace can be used as a random-walk
characterization of a graph (Xiao, Wilson, Hancock – PR
2010).
Tr[
$$\mathbf{H}(t)$$
] = $\sum \exp(-\frac{2}{3}t)$

$$\operatorname{Tr}[\mathbf{H}(t)] = \sum_{i} \exp(-\lambda_{i}t)$$

• Behaviour of trace with time gives a characterization of graph

$$\zeta(s) = \sum_{\lambda_k \neq 0} (\lambda_k)^{-s}$$

Connections

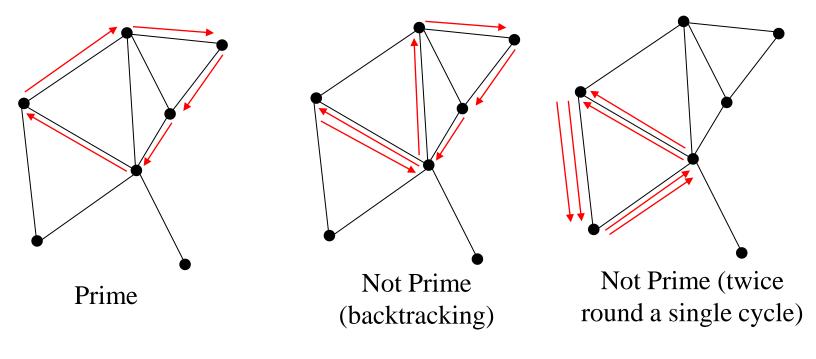
• Heat kernel related to walks

$$h_t(u,v) = \exp[-t] \sum_{k=1}^{\infty} P_k(u,v) \frac{t^k}{k!}$$
$$P_k(u,v) = \sum_{i \in V} (1 - \lambda_i)^k \phi_i(u) \phi_i(v)$$

• Moments of the trace are connected to the *Rosenberg zeta function*

$$\zeta(s) = \sum_{\lambda_k \neq 0} (\lambda_k)^{-s}$$

- Bass (1992), Kotani and Sunada (2000)
- Prime cycle of a graph:
 - A cycle which has no backtracking and is not a multiple of another cycle



- Prime cycles eliminate some of the weaknesses of random walks (tottering)
- Can we (efficiently) characterize graphs using prime cycles? (Ren, Wilson, Hancock 2011 TNN)
- Ihara zeta function:

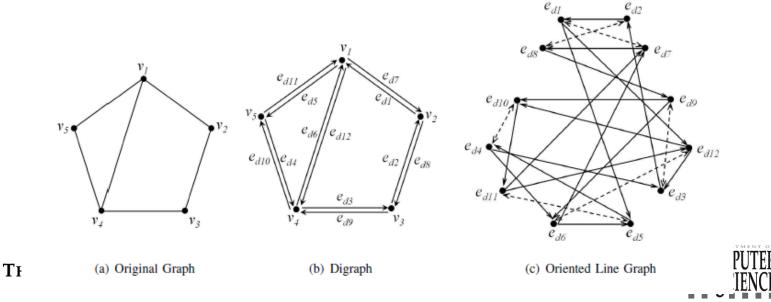
$$\mathcal{E}_G(u) = \prod_{p \in P} (1 - u^{l(p)})^{-1} \qquad l(p) \text{ length of prime cycle } p$$

- Depends purely on prime cycle lengths
 - So characterizes graph with prime cycles
- To evaluate, we would need to find all prime cycles

• Three expressions for the Ihara zeta function

$$\begin{aligned} \zeta_G(u) &= \prod_{p \in P} (1 - u^{l(p)})^{-1} & \mathbf{A} \text{ adjacency matrix} \\ \zeta_G(u) &= (1 - u^2)^{|V| - |E|} \det(\mathbf{I} - u\mathbf{A} + u^2 \mathbf{Q})^{-1} & \mathbf{Q} \text{ degree matrix} \\ \zeta_G(u) &= \det(\mathbf{I} - u\mathbf{T})^{-1} & \mathbf{T} \text{ Perron - Frobenius operator} \end{aligned}$$

• The Perron-Frobenius operator in this case is the adjacency matrix of the oriented line graph



- A polynomial expression for the IZF $\zeta_G(u) = \det(\mathbf{I} - u\mathbf{T})^{-1}$ $= (c_0 + c_1u + c_2u^2 + \dots + c_mu^m)^{-1}$
- We can characterize the graph using the coefficients c
- Related (non-trivially) to the number of cycles of a particular size
- Naïve implementation is expensive

- Worse case: **T** is size $O(n^4)$ and running time $O(n^{12})$

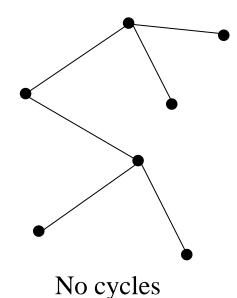
• Showed how to evaluate efficiently using Bell polynomials (Aziz, Wilson, Hancock 2011 CAIP)

Ihara Zeta Function

- IZF is a powerful tool for representing graphs
 - IZF has proved useful for embedding graphs
- Linked to topological quantities
 - Coefficients related to number of triangles, squares etc
- 'Edge based' related to oriented line graph
- Linked to another edge-based walk, the quantum walk
 - Lifting cospectrality: Emms, Hancock, Severini and Wilson showed that positive support of T-cubed can lift cospectrality of strongly regular graphs and trees (see J.Comb07 and Pattern Recognition08).
- Can also be expressed in terms of spectral polynomials (Wilson, Hancock and Luo PAMI 2005)
- Can be extended to hypergraphs

Observations

- Removing backtracking provides a richer description
- Using prime cycles (Ihara Zeta Function) avoids backtracking
 - Efficient computation possible
- IZF has limited applicability

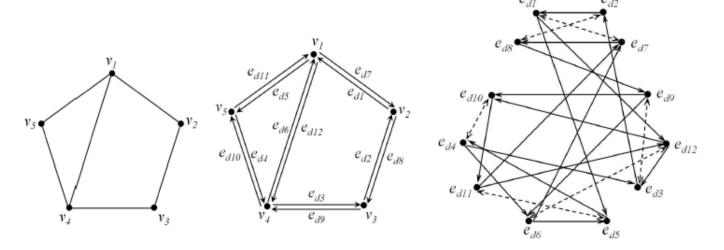


Cycles do not characterize the tree-like parts of a structure

• A random walk of length *k* is a sequence of vertices

$$u_1, u_2, \ldots, u_{k+1}$$

- Such that $e_i = (u_i, u_{i+1}) \in E$
- A backtrackless random walk has the additional condition $e_i \neq e_{i+1}$
 - A sequence of oriented edges, excluding backtracking step



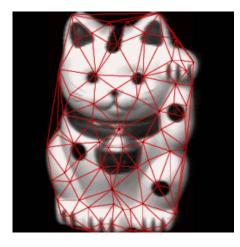
THE UNIVERSITY of York

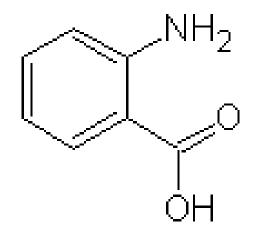
(a) Original Graph

(b) Digraph

(c) Oriented Line Graph

Labelled and Unlabelled graphs





Unlabelled vertices

Labelled (atom type)

• Unlabelled graph – two paths are the same if the sequence of vertices are the same

$$u_1, u_2, \dots, u_{k+1} = v_1, v_2, \dots, v_{k+1}$$

• Labelled graph – vertices and labels must be the same

 $(u_1, l_1), (u_2, l_2), \dots, (u_{k+1}, l_{k+1}) = (v_1, m_1), (v_2, m_2), \dots, (v_{k+1}, m_{k+1})$

• The random walk kernel is

$$K(G_1, G_2) = \sum_{(i,j) \in V_{\times}} \sum_{k=0}^{\infty} \mathcal{E}_k \left[T_{\times}^k \right]_{j}$$

• Defined on the product graph

$$V_{\times}(G_1 \times G_2) = \{(v_1, v_2) \in V_1 \times V_2\}$$

$$E_{\times}(G_1 \times G_2) = \{((u_1, u_2), (v_1, v_2))\}$$

$$(u_1, u_2) \in E_1 \land (v_1, v_2) \in E_2$$

- Our base graph is the OLG
 - Transform each graph into its OLG
 - Form the product graph
- By eliminating the reverse edges in the OLG, we eliminate backtracking

- Complexity is a problem $|V_{\times}| = n^2$ $|E_{\times}| = n^4$
- We can directly compute $n \times n$ matrix \mathbf{A}_k , defined as $(A_k)_{i,j} = \begin{cases} \text{number of paths in } G \text{ of length } k \text{ with no backtracking} \\ \text{starting at } i \text{ and ending at } j \end{cases}$
 - here *i*, *j* run over the vertices of *G*.
- Recursions for the matrices **A**_k
 - Let **A** be the adjacency matrix of a simple graph *G* and **Q** be a $n \times n$ diagonal matrix whose *i*th diagonal entry is the degree of the *i*th node minus 1. Then

$$\mathbf{A}_{k} = \begin{cases} \mathbf{A} & \text{if } k = 1 \\ \mathbf{A}^{2} - (\mathbf{Q} + \mathbf{I}) & \text{if } k = 2 \\ \mathbf{A}_{k-1}\mathbf{A} - \mathbf{A}_{k-2}\mathbf{Q} & \text{if } k \ge 3 \end{cases}$$

Kernels and characterizations

Using this recursion, we can compute low orders of the kernel

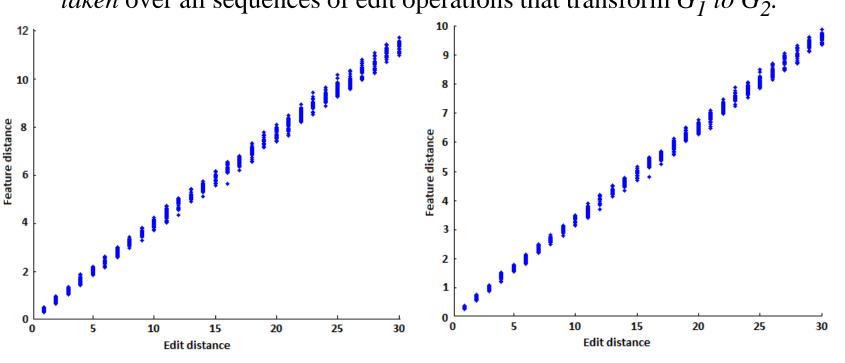
$$K(G_1, G_2) = \sum_{(i,j) \in V_{\times}} \sum_{k=0}^{\infty} \mathcal{E}_k \left[A_{\times}^k \right]_{ij}$$

- The coefficients ε are chosen to allow the kernel to converge quickly enough
- The kernel framework naturally allows labelled graphs
 - Edges exist in the product graph where the labels match
- We can also provide characterizations of a graph using the BRW on a graph

$$l_k = \sum_{i,j=1}^{|V|} \left[A_k \right]_{i,j}$$

Experiments – Synthetic Graphs

- Synthetic data: The purpose of the experiments on synthetic dataset is to evaluate whether the backtrackless walks can distinguish between different graphs under controlled structural errors.
- The edit distance between two graphs G_1 and G_2 is the minimum edit cost taken over all sequences of edit operations that transform G_1 to G_2 .



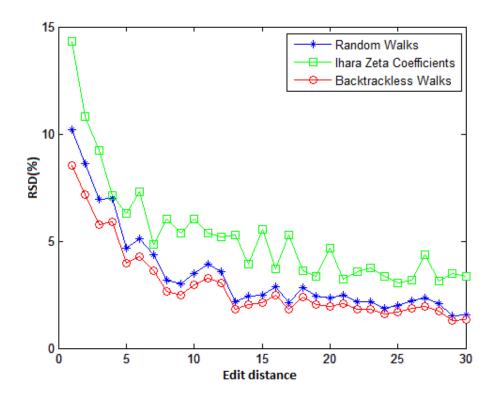
Random Walk

Backtrackless Walk

• Both walks reproduce edit-distance similarity well

Experiments

- Figure shows the relative percent standard deviation as a function of edit distance for different methods.
- It is clear from figure that the backtrackless walk provide a more stable representation of the graph when compared to either random walks or the Ihara Coefficients.



Real world data

- Coil
 - Consist of graphs extracted from images in coil dataset.
 - To establish graphs, feature points are extracted using Harris detector, and then Delaunay triangulation is constructed.

- MUTAG
 - Collection of 188 chemical compounds.
 - Task is to predict whether each compound has mutagenicity or not.

Results

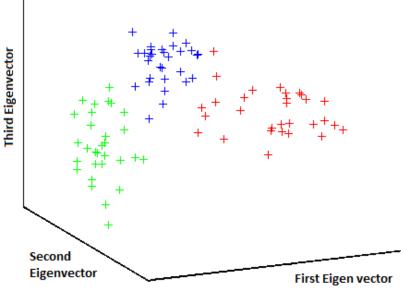


Figure: Performance of clustering

Method	Dataset	Accuracy
Random walk kernel	Mutag(labelled)	90.0%
Backtrackless walk kernel	Mutag(labelled)	91.1 %
Feature vector from Random walk	COIL(unlabeled)	94.4%
<i>Feature vector from backtrackless random walk</i>	COIL(unlabeled)	95.5 %
Feature vector from Ihara coefficients	COIL(unlabeled)	94.4%
Shortest Path Kernel	COIL(unlabeled)	86.7%
Feature vector from Random walk	Mutag(unlabeled)	89.4%
<i>Feature vector from backtrackless random walk</i>	Mutag(unlabeled)	90.5 %
Feature vector from Ihara coefficients	Mutag(unlabeled)	80.5%

Time analysis

- The worst case complexity of computing the backtrackless walk in a graph is same as that of computing the random walk.
- In practice, the execution time of computing backtrackless walk using proposed method is close to the execution time of computing the random walk.
- For comparison the following table shows the execution time of computing walks of length 10 in 1000 randomly generated graphs.

Method	Worst case Running time	Execution Time (in seconds)
Random walk	O(n ⁶)	9.98
Backtrackless walk (using proposed method)	O(n ⁶)	12.30
Backtrackless walk (by transforming graph)	O(n ¹²)	313.14
The University of York		SCIENCE

Conclusion

- Backtrackless walks are more robust to noise compared to random walks.
- Efficient method for computing backtrackless walks for a graph.
- Efficient kernels for clustering both labelled and unlabeled graphs.
- More effective characterization of graph structure than random walks, shortest path and Ihara zeta function

Questions?

