
Graph Characterization via Backtrackless

Paths

Furqan Aziz

Richard C. Wilson

Edwin R. Hancock

Dept. of Computer Science

University of York

Motivation

• Graph based methods are widely used in many applications like network
analysis, world wide web, data mining, computer vision and complex systems.

• Graph embedding is an important because is allows statistically techniques to
be applied directly

– Embedding should reflect similarity

• Two main approaches

• Structural approach

– Compute graph structural similarity (graph matching, edit distance, graph kernel)

– Embed similarities or directly use kernel

– Similarities may be non-Euclidean; pairwise comparisons

• Feature approach

– Compare characterizations of the graphs

– Direct feature embeddings

– Efficiency and expressive power important

• How can we find efficient methods for characterizing graphs that do not
involve exhaustive structural search?

Graph Kernels

• Random Walk Kernel (Gartner et al 2003)

– Count the number of matching walks between two graphs

– k is the walk length

– The number of walks becomes very large

– The random walk graph kernel suffers from the problem of tottering

– Reduces expressive power and masks structural differences

  







Vji k

ij

k

k AGGK
),(0

21),(

Path Kernels

• Tottering can be eliminated by comparing paths

• A path is a sequence of edges such that each edge

neighbours the previous, and there are no repeated edges

• All-paths kernel (Borgwardt and Kriegel 2005)

• All-paths is a true kernel, but NP-hard in general to find all

paths

• Alternatives are shortest-path or k-shortest-path

 
 


)(allpaths)(allpaths

2121

11 12

),(),(
Gp Gp

ppkGGK

Cycle Kernels

• Tottering can also be eliminated by using cycles

– Path beginning and ending at same vertex

• Cycles and bridges kernel (Gärtner et al 2004)

• Still NP-complete to calculate all cycles

– Some graphs have polynomial cycle complexity

Graph Characterizations

• Rather than enumerating and comparing paths, we can try

to characterize graphs based on individual structure

• A graph characterization measures structural properties

independently from the vertex labelling

– Graph ‘features’

• Spectral: use eigenvalues of adjacency matrix or Laplacian.

• Algebraic: co-efficients of characteristic polynomial.

• Topological: e.g. average degree, degree distribution, edge-

density, diameter, cycle frequencies etc.

• Compare feature space to get similarity

Heat kernel

• The heat kernel is closely connected to random walks

– Heat kernel is the kernel of a continuous-time random walk

• The heat kernel trace can be used as a random-walk

characterization of a graph (Xiao, Wilson, Hancock – PR

2010).

• Behaviour of trace with time gives a characterization of

graph

 tt LH  exp)(

 
i

itt)exp()]([Tr H

s

k

k

s 



)()(
0



Connections

• Heat kernel related to walks

• Moments of the trace are connected to the Rosenberg zeta function

!
),(]exp[),(

|

1 k

t
vuPtvuh

k

k

kt 






)()()1(),(vuvuP ii

k

Vi

ik 




s

k

k

s 



)()(
0



Ihara Zeta Function

• Bass (1992), Kotani and Sunada (2000)

• Prime cycle of a graph:

– A cycle which has no backtracking and is not a multiple of another

cycle

Prime
Not Prime

(backtracking)

Not Prime (twice

round a single cycle)

Ihara zeta function

• Prime cycles eliminate some of the weaknesses of random

walks (tottering)

• Can we (efficiently) characterize graphs using prime

cycles? (Ren, Wilson, Hancock 2011 TNN)

• Ihara zeta function:

• Depends purely on prime cycle lengths

– So characterizes graph with prime cycles

• To evaluate, we would need to find all prime cycles





Pp

pl

G uu 1)()1()( l(p) length of prime cycle p

Ihara zeta function

• Three expressions for the Ihara zeta function

• The Perron-Frobenius operator in this case is the adjacency matrix of

the oriented line graph

1

12||||2

1)(

)det()(

)det()1()(

)1()(















TI

QAI

uu

uuuu

uu

G

EV

G

Pp

pl

G







operator Frobenius-Perron

matrix degree

matrixadjacency

T

Q

A

Ihara Zeta Function

• A polynomial expression for the IZF

• We can characterize the graph using the coefficients c

• Related (non-trivially) to the number of cycles of a

particular size

• Naïve implementation is expensive

– Worse case: T is size O(n4) and running time O(n12)

• Showed how to evaluate efficiently using Bell polynomials

(Aziz, Wilson, Hancock 2011 CAIP)

12

210

1

)(

)det()(









m

m

G

ucucucc

uu



TI

Ihara Zeta Function

• IZF is a powerful tool for representing graphs

– IZF has proved useful for embedding graphs

• Linked to topological quantities

– Coefficients related to number of triangles, squares etc

• ‘Edge based’ – related to oriented line graph

• Linked to another edge-based walk, the quantum walk

– Lifting cospectrality: Emms, Hancock, Severini and Wilson

showed that positive support of T-cubed can lift cospectrality of

strongly regular graphs and trees (see J.Comb07 and Pattern

Recognition08).

• Can also be expressed in terms of spectral polynomials

(Wilson, Hancock and Luo PAMI 2005)

• Can be extended to hypergraphs

Observations

• Removing backtracking provides a richer description

• Using prime cycles (Ihara Zeta Function) avoids

backtracking

– Efficient computation possible

• IZF has limited applicability

No cycles

Cycles do not characterize the

tree-like parts of a structure

Backtrackless Random Walk

• A random walk of length k is a sequence of vertices

– Such that

• A backtrackless random walk has the additional condition

– A sequence of oriented edges, excluding backtracking step

121 ,,, kuuu 
Euue iii  ),(1

1 ii ee

Labelled and Unlabelled graphs

Unlabelled vertices Labelled (atom type)

• Unlabelled graph – two paths are the same if the sequence

of vertices are the same

• Labelled graph – vertices and labels must be the same

121121 ,,,,,,   kk vvvuuu 

),(,),,(),,(),(,),,(),,(112211112211   kkkk mvmvmvlululu 

Backtrackless Random Walk Kernel

• The random walk kernel is

• Defined on the product graph

• Our base graph is the OLG

– Transform each graph into its OLG

– Form the product graph

• By eliminating the reverse edges in the OLG, we eliminate

backtracking

  







Vji k

ij

k

k TGGK
),(0

21),(

 

 

221121

212121

212121

),(),(

))},(),,{((

}),{(

EvvEuu

vvuuGGE

VVvvGGV











Efficient computation

• Complexity is a problem

• We can directly compute n×n matrix Ak, defined as

 here i, j run over the vertices of G.

• Recursions for the matrices Ak
– Let A be the adjacency matrix of a simple graph G and Q be a n×n

diagonal matrix whose ith diagonal entry is the degree of the ith node
minus 1. Then

 





ji

kG
A

jik
at ending and at starting

ngbacktracki no with length of in paths ofnumber
,

 
















 3 if

2 if

1 if

21-k

2

k

k

k

k

k

QAAA

IQA

A

A

42 || || nEnV  

Kernels and characterizations

• Using this recursion, we can compute low orders of the

kernel

• The coefficients ε are chosen to allow the kernel to

converge quickly enough

• The kernel framework naturally allows labelled graphs

– Edges exist in the product graph where the labels match

• We can also provide characterizations of a graph using the

BRW on a graph

  







Vji k

ij

k

k AGGK
),(0

21),(

 



V

ji
jikk Al

1,
,

Experiments – Synthetic Graphs

• Both walks reproduce edit-distance similarity well

Random Walk Backtrackless Walk

• Synthetic data: The purpose of the experiments on synthetic dataset is to
evaluate whether the backtrackless walks can distinguish between different
graphs under controlled structural errors.

• The edit distance between two graphs G1 and G2 is the minimum edit cost
taken over all sequences of edit operations that transform G1 to G2.

Experiments

• Figure shows the relative
percent standard deviation as
a function of edit distance for
different methods.

• It is clear from figure that the
backtrackless walk provide a
more stable representation of
the graph when compared to
either random walks or the
Ihara Coefficients.

Real world data

• Coil

– Consist of graphs extracted from images in coil dataset.

– To establish graphs, feature points are extracted using

Harris detector, and then Delaunay triangulation is

constructed.

• MUTAG

– Collection of 188 chemical compounds.

– Task is to predict whether each compound has mutagenicity or not.

Method Dataset Accuracy

Random walk kernel

Backtrackless walk kernel

Mutag(labelled)

Mutag(labelled)

90. 0%

91.1%

Feature vector from Random walk

Feature vector from backtrackless random walk

Feature vector from Ihara coefficients

Shortest Path Kernel

COIL(unlabeled)

COIL(unlabeled)

COIL(unlabeled)

COIL(unlabeled)

94.4%

95.5%

94.4%

86.7%

Feature vector from Random walk

Feature vector from backtrackless random walk

Feature vector from Ihara coefficients

Mutag(unlabeled)

Mutag(unlabeled)

Mutag(unlabeled)

89.4%

90.5%

80.5%

Figure: Performance of clustering

Results

Time analysis

Method Worst case

Running

time

Execution Time

(in seconds)

Random walk O(n6) 9.98

Backtrackless walk (using proposed method) O(n6) 12.30

Backtrackless walk (by transforming graph) O(n12) 313.14

• The worst case complexity of computing the backtrackless

walk in a graph is same as that of computing the random

walk.

• In practice, the execution time of computing backtrackless

walk using proposed method is close to the execution time

of computing the random walk.

• For comparison the following table shows the execution

time of computing walks of length 10 in 1000 randomly

generated graphs.

Conclusion

• Backtrackless walks are more robust to noise compared to

random walks.

• Efficient method for computing backtrackless walks for a

graph.

• Efficient kernels for clustering both labelled and unlabeled

graphs.

• More effective characterization of graph structure than random

walks, shortest path and Ihara zeta function

Questions?

