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Motivation 

• Graph based methods are widely used in many applications like network 
analysis, world wide web, data mining, computer vision and complex systems. 

• Graph embedding is an important because is allows statistically techniques to 
be applied directly 

– Embedding should reflect similarity 

• Two main approaches 

• Structural approach 

– Compute graph structural similarity (graph matching, edit distance, graph kernel)  

– Embed similarities or directly use kernel 

– Similarities may be non-Euclidean; pairwise comparisons 

• Feature approach 

– Compare characterizations of the graphs 

– Direct feature embeddings 

– Efficiency and expressive power important 

• How can we find efficient methods for characterizing graphs that do not 
involve exhaustive structural search? 



Graph Kernels 

• Random Walk Kernel (Gartner et al 2003) 

– Count the number of matching walks between two graphs 

 

 

– k is the walk length 

– The number of walks becomes very large 

– The random walk graph kernel suffers from the problem of tottering 

 

 

 

 

– Reduces expressive power and masks structural differences 
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Path Kernels 

• Tottering can be eliminated by comparing paths 

• A path is a sequence of edges such that each edge 

neighbours the previous, and there are no repeated edges 

• All-paths kernel (Borgwardt and Kriegel 2005) 

 

 

• All-paths is a true kernel, but NP-hard in general to find all 

paths 

• Alternatives are shortest-path or k-shortest-path 
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Cycle Kernels 

• Tottering can also be eliminated by using cycles 

– Path beginning and ending at same vertex 

 

 

 

 

• Cycles and bridges kernel (Gärtner et al 2004) 

• Still NP-complete to calculate all cycles 

– Some graphs have polynomial cycle complexity 

 



Graph Characterizations 

• Rather than enumerating and comparing paths, we can try 

to characterize graphs based on individual structure 

• A graph characterization measures structural properties 

independently from the vertex labelling 

– Graph ‘features’ 

 

• Spectral: use eigenvalues of adjacency matrix or Laplacian. 

• Algebraic: co-efficients of characteristic polynomial. 

• Topological: e.g. average degree, degree distribution, edge-

density, diameter, cycle frequencies etc. 

 

• Compare feature space to get similarity 

 



Heat kernel 

• The heat kernel is closely connected to random walks 

– Heat kernel is the kernel of a continuous-time random walk 

 

• The heat kernel trace can be used as a random-walk 

characterization of a graph (Xiao, Wilson, Hancock – PR 

2010). 

 

• Behaviour of trace with time gives a characterization of 

graph 
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Connections 

• Heat kernel related to walks 

 

 

 

 

 

• Moments of the trace are connected to the Rosenberg zeta function 

 

!
),(]exp[),(

|

1 k

t
vuPtvuh

k

k

kt 






)()()1(),( vuvuP ii

k

Vi

ik 




s

k

k

s 



 )()(
0





Ihara Zeta Function 

• Bass (1992), Kotani and Sunada (2000) 

• Prime cycle of a graph: 

– A cycle which has no backtracking and is not a multiple of another 

cycle 

Prime 
Not Prime 

(backtracking) 

Not Prime (twice 

round a single cycle) 



Ihara zeta function 

• Prime cycles eliminate some of the weaknesses of random 

walks (tottering) 

• Can we (efficiently) characterize graphs using prime 

cycles? (Ren, Wilson, Hancock 2011 TNN) 

• Ihara zeta function: 

 

 

• Depends purely on prime cycle lengths 

– So characterizes graph with prime cycles 

• To evaluate, we would need to find all prime cycles 
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Ihara zeta function 

• Three expressions for the Ihara zeta function 

 

 

 

 

 

• The Perron-Frobenius operator in this case is the adjacency matrix of 

the oriented line graph 
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Ihara Zeta Function 

• A polynomial expression for the IZF 

 

 

• We can characterize the graph using the coefficients c 

• Related (non-trivially) to the number of cycles of a 

particular size 

• Naïve implementation is expensive 

– Worse case: T is size O(n4) and running time O(n12) 

• Showed how to evaluate efficiently using Bell polynomials 

(Aziz, Wilson, Hancock 2011 CAIP) 
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Ihara Zeta Function 

• IZF is a powerful tool for representing graphs 

– IZF has proved useful for embedding graphs 

• Linked to topological quantities 

– Coefficients related to number of triangles, squares etc 

• ‘Edge based’ – related to oriented line graph 

• Linked to another edge-based walk, the quantum walk 

– Lifting cospectrality: Emms, Hancock, Severini and Wilson 

showed that positive support of T-cubed can lift cospectrality of 

strongly regular graphs and trees (see J.Comb07 and Pattern 

Recognition08). 

• Can also be expressed in terms of spectral polynomials 

(Wilson, Hancock and Luo PAMI 2005)  

• Can be extended to hypergraphs 



Observations 

• Removing backtracking provides a richer description 

• Using prime cycles (Ihara Zeta Function) avoids 

backtracking 

– Efficient computation possible 

• IZF has limited applicability 

 

No cycles 

Cycles do not characterize the 

tree-like parts of a structure 



Backtrackless Random Walk 

• A random walk of length k is a sequence of vertices 

 

– Such that 

• A backtrackless random walk has the additional condition 

 

– A sequence of oriented edges, excluding backtracking step 
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Labelled and Unlabelled graphs 

Unlabelled vertices Labelled (atom type) 

• Unlabelled graph – two paths are the same if the sequence 

of vertices are the same 

 

• Labelled graph – vertices and labels must be the same 
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Backtrackless Random Walk Kernel 

• The random walk kernel is 

 

 

• Defined on the product graph 

 

 

 

• Our base graph is the OLG 

– Transform each graph into its OLG 

– Form the product graph 

• By eliminating the reverse edges in the OLG, we eliminate 

backtracking 
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Efficient computation 

• Complexity is a problem 

 

• We can directly compute n×n matrix Ak, defined as 

 

 

 here i, j run over the vertices of G. 

• Recursions for the matrices Ak  
– Let A be the adjacency matrix of a simple graph G and Q be a n×n 

diagonal matrix whose ith diagonal entry is the degree of the ith node 
minus 1. Then 

 





ji

kG
A

jik
at  ending and at  starting

ngbacktracki no with length  of in  paths ofnumber 
,

 
















 3 if            

2 if                

1 if                                

21-k

2

k

k

k

k

k

QAAA

IQA

A

A

42 ||         || nEnV  



Kernels and characterizations 

• Using this recursion, we can compute low orders of the 

kernel 

 

• The coefficients ε are chosen to allow the kernel to 

converge quickly enough 

• The kernel framework naturally allows labelled graphs 

– Edges exist in the product graph where the labels match 

• We can also provide characterizations of a graph using the 

BRW on a graph 
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Experiments – Synthetic Graphs 

• Both walks reproduce edit-distance similarity well 

Random Walk Backtrackless Walk 

• Synthetic data: The purpose of the experiments on synthetic dataset is to 
evaluate whether the backtrackless walks can distinguish between different 
graphs under controlled structural errors. 

• The edit distance between two graphs G1 and G2 is the minimum edit cost 
taken over all sequences of edit operations that transform G1 to G2. 

 



Experiments 

• Figure shows the relative 
percent standard deviation as 
a function of edit distance for 
different methods. 

• It is clear from figure that the 
backtrackless walk provide a 
more stable representation of 
the graph when compared to 
either random walks or the 
Ihara Coefficients. 

 



Real world data 

• Coil 

– Consist of graphs extracted from images in coil dataset.  

– To establish graphs, feature points are extracted using 

Harris detector, and then Delaunay triangulation is 

constructed. 

 

 

• MUTAG 

– Collection of 188 chemical compounds. 

– Task is to predict whether each compound has mutagenicity or not. 

 



Method Dataset Accuracy 

Random walk kernel  

Backtrackless walk kernel 

Mutag(labelled) 

Mutag(labelled) 

90. 0% 

91.1% 

Feature vector from Random walk 

Feature vector from backtrackless random walk 

Feature vector from Ihara coefficients  

Shortest Path Kernel  

COIL(unlabeled) 

COIL(unlabeled) 

COIL(unlabeled) 

COIL(unlabeled) 

94.4% 

95.5% 

94.4% 

86.7% 

Feature vector from Random walk 

Feature vector from backtrackless random walk 

Feature vector from Ihara coefficients  

Mutag(unlabeled) 

Mutag(unlabeled) 

Mutag(unlabeled) 

89.4% 

90.5% 

80.5% 

Figure: Performance of clustering 

Results 



Time analysis 

Method Worst case  

Running 

time 

Execution Time 

(in seconds) 

Random walk O(n6) 9.98 

Backtrackless walk (using proposed method) O(n6) 12.30 

Backtrackless walk (by transforming graph) O(n12) 313.14 

• The worst case complexity of computing the backtrackless 

walk in a graph is same as that of computing the random 

walk. 

• In practice, the execution time of computing backtrackless 

walk using proposed method is close to the execution time 

of computing the random walk. 

• For comparison the following table shows the execution 

time of computing walks of length 10 in 1000 randomly 

generated graphs.  

 



Conclusion 

• Backtrackless walks are more robust to noise compared to 

random walks. 

• Efficient method for computing backtrackless walks for a 

graph. 

• Efficient kernels for clustering both labelled and unlabeled 

graphs. 

• More effective characterization of graph structure than random 

walks, shortest path and Ihara zeta function 



Questions? 


