.
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Philosophy of Anomaly Detection

= How will you know that you're seeing a Alien?




Cost-Sensitive One-Class Anomaly Detection

Problem at hand:

1. We want to detect anomalies
2. During learning we see only one type of examples (positive)

3. Inherent asymmetry between classification errors
1. False alarms are usually far less disastrous than missed anomalies

2. we pay a fixed cost for each false alarm, but once we miss an
anomaly, the “game” is over, and we pay a one-time cost C

mistaken call to fired dept. vs. warehouse burning down |




Problem Definition

How to define this problem formally?
= this is arguably the hardest stage!

= Unlike in PAC, it's not clear what a “good” or “bad” classifier is...
- what'’s to prevent the trivial learner (which label everything positive)?

= What does “probability of mistake™ mean?
There is no distribution over the negative examples!



Common Modeling Assumption: Euclidean
Space

= Pros
= Existence of inner product
= Flexible kernels for incorporating prior knowledge
- Efficient algorithms (SVM)
- Good generalization bounds (margins)

= Cons
= Euclidean structure is a strong assumption
= Many natural settings non-Euclidean
= Choice of kernel: artisan and partisan



What About Metric Space?

= Advantage: often much more natural
= strings
= images
« audio
= web-pages

= Problem: no vector representation
= No notion of dot-product
= What to do”?
= Invent kernel?.. but... many natural metrics aren’t Euclidean!
= Use some NN heuristic?..
= NN classifier has co VC-dim
= Sowhat NN does guarantee?



Section 2

BACKGROUND



Metric Space

= (X,d)is a Metric Space if
= X =set of points
= d=distance functiond:x Xxx - R,
= Nonnegative d(x,x') =0 x =x'
« Symmetric: d(x,x") =d(x', x)
= triangle inequality: d(x,x") < d(x,z) + d(z,x")

= innerproduct= norm ||x|| = /(x, x)
= norm= metricd(x,y) = ||x — ||
= NOT <
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Binary Classification for Metric Data

= A powerful framework for this problem was introduced by
von Luxburg & Bousquet [vLB,'04]

« The natural hypotheses (classifiers) to consider are maximally smooth Lipschitz
functions

= Given the classifier i, the problem of evaluating / for new points in X reduces to the
problem of finding a Lipschitz function consistent with i

= Lipschitz extension problem, a classic problem in Analysis

« The 1-NN is a special case of the Lipschitz classifier.

« For example
- f() = min,[y, + 2d(x,x)/d(S,5 )] overal (x,v.)inS
= Function evaluation reduces to exact Nearest Neighbor Search (NNS), assuming zero training error)
Strong theoretical motivation for the NNS classification heuristic

[VLB’04] : Ulrike von Luxburg, Olivier Bousquet: Distance-Based Classification with Lipschitz Functions. Journal of
Machine Learning Research (JMLR) 5:669-695 (2004)

12



Computational Efficiency

= Efficient construction and evaluation of the classifier 4 on X
= In arbitrary metric space, exact NNS requires ©(72) time
= Can we do better? ®
= Gottlieb et al. [GKK’10] show that the answer is YES

[GKK’10] : Lee-Ad Gottlieb, Leonid Kontorovich, Robert Krauthgamer: Efficient Classification for Metric Data. COLT
2010:433-440
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Doubling Dimension

= Definition: Ball B(x, ) =all points within distance r from x.

= The doubling constant A > 0 (of a metric M) is the minimum value such that every ball can
be covered by A balls of half the radius

= First used by [Ass-83], algorithmically by [Cla’97].

= The doubling dimension is ddim(M) = log,A(M) [GKL'03]
= A metric is doubling if its doubling dimension is constant

= Euclidean:ddim(R") = 0(n)

= Cole & Gottlieb [CG'10]: (1+&)-approximate nearest neighbor search

A% Jog n + A9H9e) time

Here A27.

[Ass’83]: P. Assouad. Plongements lipschitziens dans Rn. Bull. Soc. Math. France, 111(4):429-448, 1983.

[Cla’97]: Kenneth L. Clarkson: Nearest Neighbor Queries in Metric Spaces. STOC 1997: 609-617

[CG’10]: Richard Cole, Lee-Ad : Searching dynamic point sets in spaces with bounded doubling dimension. STOC 2006:

574-583 14



Generalization Bound in Metric Space

= [BST99]:
= Forany f that classifies a sample of size n correctly, we have with probability at least
1—-0

P {(x,y): sgn(f(x)) F y} < %(d In (34;“) log,(578n) + In(4/6) )

d < [8Ldiam(X)]l09/+1

[BST99] : Peter Bartlett and John Shawe-Taylor. Generalization performance of support vector machines and other pattern
classifiers. In Advances in kernel methods: support vector learning, pages 43-54, Cambridge,MA, USA, 1999.MIT Press.
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Section 3

MODEL ASSUMPTIONS



Positive points are
drawn iid froman
unknowndistribution.
Theyare containedin a
“metricshell"

+ +
4
Positive
+ Examplest
+

+

4+ +

17



Anomalies

T+
o
Positive
+ Examples T
+

_l.

4+ +

Negative points
(outliers) are “out
there” but never
drawn
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Anomalies

Additional positive

point possibly exist
outside the metric

shell
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Anomalies

The positive and
negative regions
are separated by a
metric shell with
positive Separation
Distance

20



Section 4

ANOMALY DETECTION VIA
ASYMMETRIC RISK
MINIMIZATION



Various Models of Uncertainty in y

= ¥ is known
= We have a prioron ¥
= Yet a weaker assumption on y

22



Instead of Generalization Error - Asymmetric
Risk

= The Risk has two components:
= False alarm - a false report of anomaly is made by the detector
= Missed anomaly - the detector fails to detect a real anomaly in the data.

= Risk s their weighted sum!
= False-Alarm + Missed Anomalies™ C

= The notion of Separation Distance

Separation distance, i.e.. d(X;,X_) = xeX,lJ,n;fex_ d(x,y) > y for some

separation distancey > 0
= anatural analogue of the Euclidean Margin



15t Case: A Known Separation Distance (y)

= Given atrainingset, S = {X, ..., X, } drawn from y iid under the distribution P,
define the proximity classifier f, 5, as:

Normal,d(x,S) <y
Anomaly, else

fay ) =

In this model there are no missed anomalies

24



1stCase: A Known Separation Distance ()

= Assumethat the separation distance y is known.

25



Bound the False Alarm Rate for Known y

= = [hefalse alarm rate is:

FAGD = [ 190dP()
Xy
= With probability at least 1 — &, this classifiers achieves a false alarm rate that satisfies :

2(Dlog,(3%€"/))log, (578n) + log,(4/5))
mn

FA(fny) <
where
ddim(X)+1

8A
D=
Y

[GKK] : Lee-Ad Gottlieb, Leonid Kontorovich, Robert Krauthgamer: Efficient Classification for Metric Data. COLT
2010:433-440



Bound the Risk as Function of ¥

* Assumingalargen
Risk(y) = E[FA(fy)] < Any + By

where
~ 2(Dylog, (343"/0},)1092 (578n)+log,(4))
ny n
and
B = 2
" nin2

(*)when nis large enough, 4,,,, < 1

27



2"d Case: We Have a Priorony

= Although there is uncertainty regarding the separation distance y, we might be able to
model it via some distribution G (+) on (0, 00),

= assumed as a prior
= Quantify the induced risk:

00 Yo
Risk(y,) = f E[FA(f,,)]dG(y) +C f dG(y)
Yo 0

where G (+) is the prior on'y

This reflects our modeling assumption that we pay a unit cost for each FA, and a large
“catastrophic” cost C for any number of missed anomalies



Choosing the Optimal Separation Distance

= We define the Risk as follows:

00 Yo
Risk(y,) = J E[FA(f,,)]dG(y) + C JO dG(y) <
Yo

Yo

< J (A, +BdG(y) +C | dG(y)
Yo 0

=:Rn(v0)
= The classification rule:
« Compute the minimizer y* of Ry, (*) and use the classifier f,, .-

- Notice that A,, ,, grows inversely with ¥ (proportional to 1/y 44tm*)+1) 'so that 1* would
not be arbitrary small.

- AIOf\ D {’\l \ — n N M A M 'Fnr ANy ;;VI’\I‘I ar
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31 Case: No Explicit Prioron y

= We can make the weak assumption:

= We define the maximal distance from any point in S to its nearest neighbor (isolation
distance), in any discrete metric space (S, d), as follows:

p = sup,esd(x, S\{x})
assuming p <y

= We can estimate p empirically, as a proxy of y
p,, = maxmind(X;, X;)

i€[n] i#]

Note that o' < p andthat o — p almost surely

26.10.2010
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Estimating the False-Alarm Component

=Net and Unseen Mass:

= The sample S is called e-net if every point in x has an epsilon neighbor in S.
= Forx € S we define e-ball :

B.(x) ={y € X:d(x,y) < &}

forS < X we defineit e-envelope, S

s.= | JBe@

XES

we definethe e-unseen mass as follows:

Up(e) = P(X4\Se)

31



Estimating the False-Alarm Component

= Berend and Kontorovish [BK11] : the mass of all the points outside £-net (false-alarm
component) is bounded by:

E[Un ()] < ein (A/E)ddim(x)+2

« For any sample X3, ..., X,, achieving an e-net:

Pn < P <ppt 26

« If S'is e-netthen choose 7:=p + 2¢

[BK11] : Daniel Berend and Aryeh Kontorovich . The missing mass problem , in preparation . 2011
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Estimating the Missed Anomaly Components

= What do we do about the missed anomaly?
= We can’tgive a non-rivial bound P(y > y) since we don’tknow how close p istoy
= Instead, use the following heuristic:
= Correspondingroughlyto the assumption Pr[p + tA > y] =~ t

2Ce

Missed Anomalies = e

= Combining the two risk components:
1 ] 2Ce
R, (&): =— (A/E)ddlm()()+2_|_T

which is minimized at &,, = A4dimX)+3 /2 Cen
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False Alarms Are Possible it y <y

Observed Normal Points

Correctly classified normal
test points

A False Alarms
X

Correctly Classified Attacks

Anomalies
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Missed Anomalies Are Possibleif ¥ > y

+ Observed Normal Points

Correctly Classified or
Observed Points

®)
& Missed Attack
X

Correctly Classified Attacks

‘, X
\
|
|
|
X
Anomalies
X
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Section 5

EMPIRICAL EXPERIMENT



Classification Results and The Incurred
Classification Cost

= The participating classifiers are the proposed cost-sensitive-
classifier, denoted as "AAD", the Peer-Group-Analysis classifier,
denoted as "PGA" and the Global-Density-Estimation, denoted as

1MnmH/S SN\Nr—ii

Dataset Classifier | ** <'Eroree" (Z?I;:rar:fs O/Zi\t/lz;gliid IIm(::uorslled
AAD 0.44 0.00 0.01 24,000.08
2D-Single-Cluster GDE 16.03 0.00 0.91 273,000.1
PGA 1.24 0.01 0.03 57,000.24

AAD 0.24 0.00 0.00 0.13

9D-Sphere GDE 28.45 0.29 0.00 15.65
PGA 1.11 0.01 0.07 21,000.54

AAD 0.18 0.00 0.00 0.14

BGU ARP GDE 59.10 0.61 0.00 45.57
PGA 4.55 0.01 1.00 300,000.9







