Combining Data Sources Nonlinearly for Cell Nucleus Classification of Renal Cell Carcinoma

Mehmet Gönen¹ Aydin UlaŞ² Peter Schüffler³ Umberto Castellani² Vittorio Murino^{2,4}

¹ Aalto University School of Science, Department of Information and Computer Science Helsinki Institute for Information Technology (HIIT), Espoo, Finland ² University of Verona, Department of Computer Science, Verona, Italy ³ ETH Zurich, Department of Computer Science, Zürich, Switzerland ⁴ Istituto Italiano di Technologia (IIT), Genova, Italy

Outline

• Introduction

Methodology

• Data Set

• Experiments

Introduction

- Kernel function = similarity measure
- Main factor of empirical performance
- Cross-validation to pick the best kernel
- *Multiple kernel learning* (MKL) to learn a better similarity measure

Our Contribution

- Formulate a nonlinear MKL variant
- Test it on cell nucleus classification of *renal cell carcinoma* (RCC)
- Combine different feature representations from *Tissue microarray* (TMA) images
- Compare our variant with single-kernel SVMs and linear MKL algorithms

Methodology

- Instead of picking a single kernel using cross-validation
- Combine *P* different kernels
 - similarity measures (i.e., different kernel functions)
 - feature representations (i.e., coming from different data sources or modalities)

Methodology

 $k_{\eta}(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}; \boldsymbol{\eta}) = f_{\eta}(\{k_{m}(\boldsymbol{x}_{i}^{m}, \boldsymbol{x}_{j}^{m})_{m=1}^{P}\}; \boldsymbol{\eta})$

Constructing Kernels

• scaling a kernel with a positive number

• $ak_1(oldsymbol{x}_i^1,oldsymbol{x}_j^1)$

• summing up two kernels

•
$$k_1(\boldsymbol{x}_i^1, \boldsymbol{x}_j^1) + k_2(\boldsymbol{x}_i^2, \boldsymbol{x}_j^2)$$

multiplying two kernels

$$k_1(m{x}_i^1,m{x}_j^1)k_2(m{x}_i^2,m{x}_j^2)$$

Linear MKL Algorithms

Linear MKL Algorithms

- Linear combination $\{ \boldsymbol{\eta} \colon \boldsymbol{\eta} \in \mathbb{R}^P \}$
 - arbitrary kernel weights
- Conic combination $\{ oldsymbol{\eta} \colon oldsymbol{\eta} \in \mathbb{R}^P_+ \}$
 - positive kernel weights
- Convex combination $\{ \boldsymbol{\eta} : \boldsymbol{\eta} \in \mathbb{R}^P_+, \ \mathbf{1}^\top \boldsymbol{\eta} = 1 \}$
 - kernel weights on a simplex

Our Nonlinear Variant

Our Nonlinear Variant

Our Nonlinear Variant

Modified optimization problem

$$\begin{array}{l} \underset{\boldsymbol{\eta} \in \mathcal{M}}{\operatorname{minimize}} \quad J_{\boldsymbol{\eta}} = \underset{\boldsymbol{\alpha} \in \mathcal{A}}{\operatorname{minimize}} \quad \mathbf{1}^{\top} \boldsymbol{\alpha} - \frac{1}{2} \boldsymbol{\alpha}^{\top} ((\boldsymbol{y} \boldsymbol{y}^{\top}) \odot \mathbf{K}_{\boldsymbol{\eta}}) \boldsymbol{\alpha} \\ \\ \mathcal{M} = \{ \boldsymbol{\eta} \colon \boldsymbol{\eta} \in \mathbb{R}_{+}^{P}, \quad \mathbf{1}^{\top} \boldsymbol{\eta} = 1 \} \\ \\ \mathcal{A} = \{ \boldsymbol{\alpha} \colon \boldsymbol{\alpha} \in \mathbb{R}_{+}^{P}, \quad \boldsymbol{y}^{\top} \boldsymbol{\alpha} = 0, \quad \boldsymbol{\alpha} \leq C \} \end{array}$$

• A projection-based gradient-descent algorithm

$$rac{\partial J\eta}{\partial \eta_m} = -rac{1}{2}\sum_{h=1}^P \eta_h oldsymbollpha^ op ((oldsymbol yoldsymbol y^ op)\odot \mathbf{K}_h\odot \mathbf{K}_m)oldsymbollpha$$

Data Set

Nuclei extraction by two pathologists

- 1633 patches in total
- Pathologists agreed on labels of 1273 patches (891 benign and 382 malignant)

Data Set

Name	Feature Description
ALL	Patch Intensity
FG	Foreground Intensity
BG	Background Intensity
LBP	Local Binary Patterns
COL	Color Feature
FCC	Freeman Chain Code
SIG	1D-Signature
PHOG	Pyramid Histograms of Oriented Gradients

Experiments

- 10-fold stratified cross-validation on 1273 nuclei samples (from 8 patients)
- 8 feature representations (ALL, FG, BG, LBP, COL, FCC, SIG, and PHOG)
- 3 basic kernel functions (LIN, POL, and GAU)

Experiments

- SVM: each feature representation separately
- RBMKL: using the mean of the kernels
- SimpleMKL: benchmark linear MKL
- GLMKL: group Lasso-based MKL
- NLMKL: our nonlinear MKL variant

SVM Results

	LIN	POL	GAU
ALL	$70.0{\pm}0.2$	$71.9{\pm}2.9$	$68.7{\pm}2.9$
FG	$70.0{\pm}0.2$	$71.2{\pm}3.7$	$65.9{\pm}4.3$
BG	$70.2{\pm}0.6$	$72.7{\pm}3.8$	$69.6{\pm}3.1$
LBP	$70.0{\pm}0.2$	$63.6{\pm}2.7$	$68.4{\pm}6.3$
COL	$70.2{\pm}3.0$	$62.9{\pm}3.5$	$67.2{\pm}3.4$
FCC	$70.0{\pm}0.2$	$69.8{\pm}0.7$	$62.9{\pm}5.5$
SIG	$70.0{\pm}0.2$	$69.6{\pm}3.4$	$66.0{\pm}3.0$
PHOG	$76.0{\pm}3.4$	$70.5{\pm}3.3$	$\textbf{76.9}{\pm}\textbf{2.7}$

MKL Results

	LIN	POL	GAU	LIN+POL+GAU
SVM	$76.0{\pm}3.4$	$72.7{\pm}3.8$	$76.9{\pm}2.7$	NA
RBMKL SimpleMKL GLMKL NLMKL	$77.3{\pm}4.0$ $77.1{\pm}3.3$ $77.1{\pm}3.5$ $77.9{\pm}3.9$	77.2 ± 2.4 77.3 ± 2.3 76.5 ± 3.2 79.2 ± 3.8	82.7 ± 3.6 81.8 ± 3.8 81.8 ± 4.3 83.3 ± 3.6	81.8 ± 3.8 81.6 ± 3.9 81.8 ± 3.8 83.1 ± 3.5

Training Times

	LIN	POL	GAU	LIN+POL+GAU
SVM	4.45	5.81	3.52	NA
RBMKL	1.56	0.87	1.35	2.57
SimpleMKL	35.55	11.07	11.71	32.81
GLMKL	11.11	4.61	5.20	14.27
NLMKL	45.25	39.21	44.28	323.83

Conclusion

- Our NLMKL is better than single-kernel SVMs and linear MKL methods
- Better results may be possible
 - using more complex combination schemes
 - adding new modalities

Some Notes

- Many MKL algorithms in the literature
- See Gönen & Alpayd1n (2011) for a recent survey
- MKL Matlab Toolbox is available at http://users.ics.tkk.fi/gonen/mkl