
Self-Tuning Association Rules for KNIME
Yacaree: from Python to Java

Javier de la Dehesa

Universidad de Cantabria

October 21, 2011

J. de la Dehesa (UC) Yacaree in KNIME October 2011 1 / 27

Outline

1 The porting problem
Integrating data types
Structural design
Memory management
Iterators
Input/output

2 A quick demo

3 Conclusions

J. de la Dehesa (UC) Yacaree in KNIME October 2011 2 / 27

Outline

1 The porting problem
Integrating data types
Structural design
Memory management
Iterators
Input/output

2 A quick demo

3 Conclusions

J. de la Dehesa (UC) Yacaree in KNIME October 2011 3 / 27

From Python to KNIME

We want to introduce Yacaree into KNIME, so we need to:

1 Know Yacaree check

2 Know KNIME check

3 Port Yacaree to a KNIME node ??

J. de la Dehesa (UC) Yacaree in KNIME October 2011 4 / 27

Porting issues

Integrating data types How do we represent our data? Can we take
advantage of the way KNIME handles data?

Structural design Should KNIME node follow the same structure that the
Python program?

Memory management Which is the best way to ensure that we do not run
out of memory and the closures queue does not grow too
much?

Iterators How can we reproduce with Java the behaviour of the
“magical” Python keyword yield?

Input/output How do we get our data and where do we put discovered
rules?

J. de la Dehesa (UC) Yacaree in KNIME October 2011 5 / 27

Outline

1 The porting problem
Integrating data types
Structural design
Memory management
Iterators
Input/output

2 A quick demo

3 Conclusions

J. de la Dehesa (UC) Yacaree in KNIME October 2011 6 / 27

Representing transactions

KNIME data is encapsulated in a BufferedDataTable class with
interesting features:

Iterable.

Cacheable to virtual memory if necessary.

Easy to use and well documented.

Handy!

But one BIG drawback (for our purposes):

Does not allow random access.

BufferedDataTable is not suitable for Yacaree, so transactions are put
into a Java HashMap that maps each row identifier (RowKey) to
corresponding transaction as a Set of String.

J. de la Dehesa (UC) Yacaree in KNIME October 2011 7 / 27

Representing closures and rules

Instead of storing a single global bidirectional relation between items
and transactions, now we only keep track of the transactions list
(transaction to items relation).

Item closures are stored along with its support set (transactions
containing it).

Rules are stored as a couple of closures satisfying that antecedent is
subset of consequent.

J. de la Dehesa (UC) Yacaree in KNIME October 2011 8 / 27

Outline

1 The porting problem
Integrating data types
Structural design
Memory management
Iterators
Input/output

2 A quick demo

3 Conclusions

J. de la Dehesa (UC) Yacaree in KNIME October 2011 9 / 27

Python class diagram

yacaree

ruleminer

lattice

clminerdataset

rule

itset

J. de la Dehesa (UC) Yacaree in KNIME October 2011 10 / 27

Rearranging the structure

Several changes have been made to the original structure:

KNIME forces us to put some auxiliary classes, YacareeNodeModel,
YacareeNodeDialog and YacareeNodeFactory.

ruleminer does not inherit from lattice anymore to improve
modularity.

dataset is not be modeled as a class itself but as an instance of an
existing class.

As a consequence, item sets will be replaced by closures with its
support set.

J. de la Dehesa (UC) Yacaree in KNIME October 2011 11 / 27

KNIME class diagram

YacareeNodeFactory

YacareeNodeDialog YacareeNodeModel

RuleMiner

Lattice

ClosureMiner ItemClosure

Rule

J. de la Dehesa (UC) Yacaree in KNIME October 2011 12 / 27

Outline

1 The porting problem
Integrating data types
Structural design
Memory management
Iterators
Input/output

2 A quick demo

3 Conclusions

J. de la Dehesa (UC) Yacaree in KNIME October 2011 13 / 27

Managing resources

Two thresholds to watch:

Maximum heap space

Closures queue size

In both cases, whenever the threshold is exceeded the closures queue is
halved, so:

Bigger ⇒ More closures explored

Lower ⇒ Faster

Bigger ; More rules

J. de la Dehesa (UC) Yacaree in KNIME October 2011 14 / 27

Setting thresholds

Heap space

In Python, fixed to 1 GB.

In KNIME, depends on memory assigned to JVM ⇒ KNIME
configuration.

Closures queue size

In both cases fixed to 214.

Disclaimer: These thresholds has been set experimentally and have
sensible effects on the execution. Their values are subject to discussion.

J. de la Dehesa (UC) Yacaree in KNIME October 2011 15 / 27

Outline

1 The porting problem
Integrating data types
Structural design
Memory management
Iterators
Input/output

2 A quick demo

3 Conclusions

J. de la Dehesa (UC) Yacaree in KNIME October 2011 16 / 27

Iterators in Python

Any function can return a value with yield saving program counter,
variables values, etc. so next time it is called it resumes where we left off.

Example

def i t e r a b l e f u n c t i o n () :
i = 1
y i e l d i
y i e l d i + 1
y i e l d i + 2

f o r i i n i t e r a b l e f u n c t i o n () :
p r i n t i

Amazing!

J. de la Dehesa (UC) Yacaree in KNIME October 2011 17 / 27

Iterators in Java

A conventional Iterator interface with next(), hasNext() and
remove() methods that, in combination with Iterable interface,
provides a tiny syntactic sugar that saves you a couple of lines of code.

Example

I t e r a b l e <E> i t e r a b l e O b j e c t = new A r r a y L i s t <E>() ;
/∗ i n s e r t e l ement s i n t o l i s t ∗/

f o r (E e l em en t : i t e r a b l e O b j e c t)
System . out . p r i n t l n (E . t o S t r i n g ()) ;

Unamazing!
ClosureMiner, Lattice and RuleMiner inherit from Iterator, but just
for convention.

J. de la Dehesa (UC) Yacaree in KNIME October 2011 18 / 27

Comparative implementation. Closure miner

Python version

Initializes closures queue to
singletons.
While queue is not empty:

Yield next closure in the
queue.

Combine closure with every
singleton and enqueue.

Java version

Initializes closures queue to
singletons.
hasNext() checks if closures
queue is empty.
next() method:

Combine next closure with
every singleton and enqueue.

Return closure.

J. de la Dehesa (UC) Yacaree in KNIME October 2011 19 / 27

Comparative implementation. Lattice

Python version

For every received closure:

Add every valid predecessor to
a ready queue.

Yield every item in ready

queue.

Java version

While there are closures:

hasNext() fetchs next and
adds every valid predecessor
to a ready queue.

next() returns every item in
the ready queue.

J. de la Dehesa (UC) Yacaree in KNIME October 2011 20 / 27

Comparative implementation. Rule miner

Python version

For every candidate closure:

For every predecessor:

Make rule and yield if valid.

Java version

While there are candidate closures:

hasNext() fetchs next and
adds every every valid rule
made with predecessors to a
ready queue.

next() returns every item in
the ready queue.

J. de la Dehesa (UC) Yacaree in KNIME October 2011 21 / 27

Outline

1 The porting problem
Integrating data types
Structural design
Memory management
Iterators
Input/output

2 A quick demo

3 Conclusions

J. de la Dehesa (UC) Yacaree in KNIME October 2011 22 / 27

Python Yacaree

Input A plain text file.

Example

b r e a d a n d c a k e b a k i n g n e e d s c o f f e e
p r e p a r e d m e a l s f r o z e n f o o d s s m a l l g o o d s

Output Human-readable text file.

Example

3/
p r e p a r e d m e a l s

=>
f r o z e n f o o d s

[c o n f : 0 . 7 3 2 ; supp : 0 . 2 0 1 ; l i f t : 1 . 2 4 6 ; b o o s t : 1 . 2 1 7]

J. de la Dehesa (UC) Yacaree in KNIME October 2011 23 / 27

KNIME Yacaree

Input KNIME provides input handling for different sources out of
the box:

Files
Databases
Web services
Wherever

User just have to put data into a “Collection type” column
in a table.

Output A KNIME table that can be connected to other nodes or
written to a file.

J. de la Dehesa (UC) Yacaree in KNIME October 2011 24 / 27

Outline

1 The porting problem
Integrating data types
Structural design
Memory management
Iterators
Input/output

2 A quick demo

3 Conclusions

J. de la Dehesa (UC) Yacaree in KNIME October 2011 25 / 27

Outline

1 The porting problem
Integrating data types
Structural design
Memory management
Iterators
Input/output

2 A quick demo

3 Conclusions

J. de la Dehesa (UC) Yacaree in KNIME October 2011 26 / 27

Conclusions

KNIME offers a solid platform to implement data mining algorithms.

Porting 6= “Translate”

Memory thresholds are an open question - probably with no answer.

Iterators, and specially yield, can be one the most challenging issues
when porting from Python.

The obtained node is fairly easy to use - we would love to see you
using it.

J. de la Dehesa (UC) Yacaree in KNIME October 2011 27 / 27

	The porting problem
	Integrating data types
	Structural design
	Memory management
	Iterators
	Input/output

	A quick demo
	Conclusions

