Streaming Multi-label Classification

Jesse Read[†], Albert Bifet, Geoff Holmes, Bernhard Pfahringer

University of Waikato, Hamilton, New Zealand

[†]currently at: Universidad Carlos III, Madrid

October 19, 2011

Introduction: Streaming Multi-label Classification

Multi-label Classification

Each data instance is associated with a subset of class labels (as opposed to a *single* class label).

- dependencies between labels
- greater dimensionality (2^L instead of L)
- evaluation: different measures

Music labeled with emotions dataset; co-occurrences

Introduction: Streaming Multi-label Classification

Data Stream Classification

Data instances arrive continually (often automatic / collaborative process) and potentially infinitely.

- cannot store everything
- ready to predict at any point
- concept drift
- evaluation: different methods, getting labelled data

Data stream learning cycle

- Text
 - $\bullet~$ text documents \rightarrow subject categories
 - $\bullet \ \text{e-mails} \to \text{labels}$
 - $\bullet\,$ medical description of symptoms \rightarrow diagnoses
- Vision
 - $\bullet \ images/video \rightarrow scene \ concepts$
 - $\bullet\ images/video \rightarrow objects$ identified; objects recognised
- Audio
 - $\bullet \ \ \text{music} \to \text{genres; moods}$
 - $\bullet\,$ sound signals $\rightarrow\,$ events; concepts
- Bioinformatics
 - ${\: \bullet \:}$ genes \rightarrow biological functions
- Robotics
 - $\bullet\,$ sensor inputs $\rightarrow\,$ states; object recognition; error diagnoses

- Text
 - $\bullet~$ text documents \rightarrow subject categories
 - $\bullet \ \text{e-mails} \to \text{labels}$
 - $\bullet\,$ medical description of symptoms \rightarrow diagnoses
- Vision
 - $\bullet \ images/video \rightarrow scene \ concepts$
 - $\bullet\ images/video \rightarrow objects$ identified; objects recognised
- Audio
 - $\bullet \ \ \text{music} \to \text{genres; moods}$
 - $\bullet~$ sound signals $\rightarrow~$ events; concepts
- Bioinformatics
 - ${\: \bullet \:}$ genes \rightarrow biological functions
- Robotics
 - $\bullet\,$ sensor inputs \rightarrow states; object recognition; error diagnoses

Many of these applications exist in a streaming context!

Problem Transformation

- Transform a multi-label problem into single-label (multi-class) problems
- Use any off-the-shelf single-label classifier to suit requirements: Decision Trees, SVMs, Naive Bayes, *k*NN, *etc.*

Problem Transformation

- Transform a multi-label problem into single-label (multi-class) problems
- Use any off-the-shelf single-label classifier to suit requirements: Decision Trees, SVMs, Naive Bayes, *k*NN, *etc.*

Algorithm Adaptation

- Adapt a single-label method directly for multi-label classification
- Often for a specific domain; incorporating the advantages/disadvantages of chosen method

Problem Transformation Methods

If we have L labels ...

Binary Relevance (BR)

L separate binary-class problems: e.g. $(\mathbf{x}, \{l_1, l_3\}) \rightarrow (\mathbf{x}, 1)_1, (\mathbf{x}, 0)_2, (\mathbf{x}, 1)_3, \dots, (\mathbf{x}, 0)_L$

- simple, flexible, fast
- no explicit modelling of label dependencies; poor accuracy

Classifier Chains (CC) [Read et al., 2009]: model label dependencies along a BR 'chain'; in ensemble (ECC).

 high predictive performance, approximately as fast as BR Run BR twice (2BR): once on the input data, and again on the initially predicted output labels [Qu et al., 2009]

learn label dependencies

Problem Transformation Methods

If we have L labels ...

Label Powerset (LP)

All of the 2^L possible labelset combinations^{*a*} are treated as single labels in a multi-class problem: e.g. $(\mathbf{x}, \{l_1, l_5\}) \rightarrow (\mathbf{x}, y)$ where $y = \{l_1, l_5\}$

- explicit modelling of label dependencies; high accuracy
- overfitting and sparsity; can be very slow if many unique labelsets

^ain practice, only the combinations found in the training data

Pruned sets (PS) [Read et al., 2008]: Prune and subsample *infrequent* labelsets before running LP; in ensemble (EPS).

• much faster, reduces label sparsity and overfitting over LP

Using random *k*-label subsets (RAkEL) for LP instead of the full label set [Tsoumakas and Vlahavas, 2007]

• $m2^k$ worst-case complexity instead of 2^L

Multi-label C4.5 decision trees

Adapted C4.5 decision trees to multi-label classification by modifying the entropy calculation to allow multi-label predictions at the leaves [Clare and King, 2001]

- Fast, works very well,
- most success in specific domains (e.g. biological data).

How can we use multi-label methods on data streams?

• Binary Relevance methods: just use an incremental binary classifier e.g. Naive Bayes, Hoeffding Trees, chunked-SVMs ('batch-incremental') How can we use multi-label methods on data streams?

- Binary Relevance methods: just use an incremental binary classifier e.g. Naive Bayes, Hoeffding Trees, chunked-SVMs ('batch-incremental')
- Label Powerset methods: the known labelsets change over time!
 - use Pruned Sets for fewer labelsets
 - assume we can learn the distribution of labelsets from the first *n* examples
 - when the distribution changes, so has the concept!

How can we use multi-label methods on data streams?

- Binary Relevance methods: just use an incremental binary classifier e.g. Naive Bayes, Hoeffding Trees, chunked-SVMs ('batch-incremental')
- Label Powerset methods: the known labelsets change over time!
 - use Pruned Sets for fewer labelsets
 - assume we can learn the distribution of labelsets from the first *n* examples
 - when the distribution changes, so has the concept!
- Multi-label C4.5: can create multi-label Hoeffding trees!

Using a drift-detector

- Use an ensemble (Bagging), and
- employ a drift-detection method of your choice; we use ADWIN [Bifet and Gavaldà, 2007]
 - an ADaptive sliding WINdow with rigorous guarantees
- when drift is detected, the worst model is reset.

Using a drift-detector

- Use an ensemble (Bagging), and
- employ a drift-detection method of your choice; we use ADWIN [Bifet and Gavaldà, 2007]
 - an ADaptive sliding WINdow with rigorous guarantees
- when drift is detected, the worst model is reset.

Alternative method - batch-incremental (e.g. [Qu et al., 2009]):

- Assume there is always drift, and
- reset a classifier every *n* instances.

WEKA¹

- Waikato Environment for Knowledge Analysis
- Collection of state-of-the-art machine learning algorithms and data processing tools implemented in Java
 - Released under the GPL
- Support for the whole process of experimental data mining
 - Preparation of input data
 - Statistical evaluation of learning schemes
 - Visualization of input data and the result of learning

- Used for education, research and applications
- Complements Data Mining by Witten & Frank & Hall

¹http://www.cs.waikato.ac.nz/ml/weka/

MOA²

Massive Online Analysis is a framework for online learning from data streams.

- Closely related to WEKA
- A collection of instance-incremental and batch-incremental methods for classification
- ADWIN for adapting to concept drift
- Tools for evaluation, and generation of evolving data streams
- MOA is easy to use and extend
 - void resetLearningImpl()
 - void trainOnInstanceImpl(Instance inst)
 - double[] getVotesForIntance(Instance i)

²http://moa.cs.waikato.ac.nz

Read, Bifet, Holmes, Pfahringer (UoW)

Streaming Multi-label Classification

Multi-label extension to WEKA

MEKA

- Very closely integrated with WEKA
 - extend MultilabelClassifier
 - void buildClassifier(Instances X)
 - double[] distributionForInstance(Instance x) (plus threshold function)
- Problem transformation methods using any WEKA base-classifier
- Generic ensemble and thresholding methods
- Provides a wrapper around Mulan³ classifiers
- Multi-label evaluation

³http://mulan.sourceforge.net ⁴http://meka.sourceforge.net

A Multi-label Learning Framework for Data Streams

- MOA wrapper for WEKA (+MEKA) classifiers.
- MEKA wrapper for MOA classifiers.
- Real multi-label data + multi-label synthetic data streams
- Multi-label evaluation measures with data-stream evaluation methods

Evaluation

Multi-label Evaluation Measures

Given labelset \hat{Y} for a test example ...

- Example Accuracy $\hat{Y} = Y$?
- Label Accuracy $(I \in \hat{Y}) = (I \in Y)$? for $I = 1, \dots, L$
- Subset Accuracy $\frac{|\hat{Y} \cap Y|}{|\hat{Y} \cup Y|}$?

Also need to consider a threshold if a classifier outputs $\in \mathbb{R}^{L}$:

• $I \in Y \iff y_l > t$ for some threshold t

Data stream Evaluation Methods

- Holdout
- Interleaved Test-Then-Train
- Prequential
 - output evaluation statistics from a sliding window

Unfortunately large sources of real-world data are:

- sensitive; difficult to parse; or
- too large.

Unfortunately large sources of real-world data are:

- sensitive; difficult to parse; or
- too large.

Our framework can synthesis evolving multi-label data streams.

Generate example (\mathbf{x}, Y) (an input \mathbf{x} and associated labelset Y)

- $Y = f(\theta)$ where θ describes label dependencies
- **2** $\mathbf{x} = f(Y, g)$ where g is any MOA binary-class generator e.g. :
 - Random RBF (Radial Basis Function) Generator
 - Random Tree Generator

Concept drift is introduced by changing θ (label space) over time, and by introducing drift in g (input space)—standard in MOA.

GUI: Configuring a multi-label classifier

MOA Graphical User Interface					
	Classific	ation Clusteri	Ig		
Configure Users/jesse/Data/	E-IMDB-F.arff -c 28) -e M	ultilabelWindowPe	rformanceEvaluator –i 10	00 -f 100 -q 100 Run	
command status	000	Configure task	· · · · ·	% complete	
Evaluater requestion - remaining	class mos tasks Evalue	Proquential	•	100,000	
	Purpose				
	Evaluates a classifier on with each example in se	a stream by testi quence.	ng then training		
	learner	.000 –l Hoeffding	Tree Edit		
learning evaluation instances,	stream	ı/E-IMDB-F.arff -	c 28 (Edit)	fl-macro-l.lcard real.lcard	
L00.0,0.274603,0.0,0.0,8.151151 200.0,0.753184,0.0,0.0,7.552475	evaluator	00	Editing option: lear	ner	
$\begin{array}{c} 300.0,1,20597,0.0,0.0,0,3,44849;\\ 400.0,1,66775,0.0,0.0,0,7,44059;\\ 500.0,2,165982,0.0,0.0,0,8,841926;\\ 700.0,2,165982,0.0,0.0,8,841926;\\ 700.0,3,0,1057,0,0,0.0,8,841926;\\ 800.0,3,470742,0.0,0.0,9,87985;\\ 900.0,3,476742,0.0,0.0,7,73685;\\ 1000.0,4.368723,0.0,0.01,8,519;\\ \end{array}$	instanceLimit	class moa.c	lassifiers.multilabel.PS	•	
	timeLimit	MOA Classifier: moa.classifiers.multilabel.PS			
	sampleFrequency	р		3 🗘	
	maxMemory			1	
	memCheckFrequency				
	Help	r		1,000 🗘	
		baseLearner	HoeffdingTree	Edit	
			Help Reset to d	efaults	
			Ca	ncel OK	
(\supset)4 +	
	Expo	ort as .txt file			

Read, Bifet, Holmes, Pfahringer (UoW)

Streaming Multi-label Classification

15 / 21

GUI: Setting a multi-label stream generator

urpose	
enerates a multi–	label stream using a binary generator.
binaryGenerator	generators.RandomTreeGenerator Edit
etaRandomSeed	1
numLabels	8
skew	
labelCardinality	2.5
	Help Reset to defaults

Adapted current methods to data streams:

- Ensembles of Binary Relevance (EBR)
- Ensembles of Classifier Chains (ECC)
- Ensembles of Pruned Sets (EPS)
 - model the first 1000 labelset combinations
- 2x Binary Relevance (2BR) [Qu et al., 2009]
- Multi-label Hoeffding Trees (HT)

Created a novel method:

• Ensembles of Multi-label Hoeffding Trees with Pruned Sets at the leaves (EHT_{PS}) [Read et al., 2010].

Table: Multi-label data sources.

	Ν	L	D	$\frac{\sum_{I} Y_{i} }{N}$
TMC2007	28596	22	500 <i>b</i>	2.2
MediaMill	43907	101	120 <i>n</i>	4.4
20NG	19300	20	1001 <i>b</i>	1.1
IMDB	120919	28	1001 <i>b</i>	2.0
Slashdot	3782	22	1079 <i>b</i>	1.2
Enron	1702	53	1001 <i>b</i>	3.4
Ohsumed	13929	23	1002 <i>n</i>	1.7
SynG(g = RBF)	1E5	25	80 <i>n</i>	2.8
SynT(g = RTG)	1E6	8	30 <i>b</i>	1.6
SynGa(g = RBF)	1E5	25	80 <i>n</i>	$1.5 { ightarrow} 3.5$
SynTa(g = RTG)	1E6	8	30 <i>b</i>	$1.8 { ightarrow} 3.0$

n indicates numeric attributes, and b binary.

< A >

18 / 21

Evaluation

Table: Number of wins over 11 datasets; 3 evaluation measures

	ex-acc	lbl-acc	set-acc
EHT _{PS}	6	5	7
EBR	0	4	4
HT	5	1	0
EPS	1	0	0
2BR	0	1	0

Table: Average running time (seconds) over 11 datasets

	S
EHT _{PS}	1824
EBR	1580
HT	59
EPS	2209
2BR	4388

Problem Transformation methods (EBR, EPS) using HoeffdingTree classifiers, 2BR using J48 (WEKA's C4.5).

All use ADWIN to detect concept drift (except 2BR—every 1000 examples).

3

• • • •

A multi-label streaming framework:

- Streaming problem-transformation and algorithm-adaptation methods
- Multi-label and data-stream-specific evaluation
- Synthetic multilabel-data generation
- A novel method; setting a benchmark.

Future Work:

- label space and attribute space is dynamic
- more drift-detection and thresholding methods

References

Bifet, A. and Gavaldà, R. (2007).

Learning from time-changing data with adaptive windowing. In SDM '07: 2007 SIAM International Conference on Data Mining.

Clare, A. and King, R. D. (2001).

Knowledge discovery in multi-label phenotype data. *Lecture Notes in Computer Science*, 2168.

Qu, W., Zhang, Y., Zhu, J., and Qiu, Q. (2009).

Mining multi-label concept-drifting data streams using dynamic classifier ensemble. In ACML '09: 1st Asian Conference on Machine Learning.

Read, J., Bifet, A., Holmes, G., and Pfahringer, B. (2010).

Efficient multi-label classification for evolving data streams. Technical report, University of Waikato, Hamilton, New Zealand. Working Paper 2010/04.

Read, J., Pfahringer, B., and Holmes, G. (2008).

Multi-label classification using ensembles of pruned sets. In *ICDM'08: Eighth IEEE International Conference on Data Mining*, pages 995–1000. IEEE.

Read, J., Pfahringer, B., Holmes, G., and Frank, E. (2009).

Classifier chains for multi-label classification.

In ECML '09: 20th European Conference on Machine Learning, pages 254-269. Springer.

Random k-labelsets: An ensemble method for multilabel classification. In ECML '07: 18th European Conference on Machine Learning, pages 406–417. Springer.

http://www.tsc.uc3m.es/~jesse/

< 67 ▶