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Bag of Terms Image Retrieval

v

Generate a representation that is similar to text
documents.

» Images are represented by frequencies of parts.

v

IR weighting and ranking functions can be
directly applied to Bag of Terms models.

v

Bag of Terms model relies on 3 stages
1. Region Detection.
2. Feature Description.
3. Code-block Generation & Quantisation.




Region Detection
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» Regular Grid
[Nowak et al.2006] [Tuytelaars2010]

> Interest Points
[Mikolajczyk et al.2005] [Csurka et al.2004]

» Segmentation
[Koniusz & Mikolajczyk2010]




Feature Description

» Discrete Cosine Transform

» Scale Invariant Feature
(DCT) [Carneiro et al.2007]

Transform (SIFT)
[Lowe2004]
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Code-block Generation & Quantisation

k-Means Clusters
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Apply K-means to region feature
descriptors from all collection images.

Cluster means are treated as “visual
terms’ .

Quantise each image by associating each
feature descriptor to its closest " visual
term”.

Images are represented as vectors
d={di,...,dr} where d; is a “weight”
of the importance of the tf visual term.

TF-IDF weighting d; = n; g log 2

score(d, q) = Z dr X gt
t



Probabilistic IR Models

» Formal methodology for developing IR weighting and ranking
algorithms.

» Rank documents / images based on the probability of
relevance w.r.t. a user query.

» Two popular frameworks:

1. Probabilistic Relevance Framework
[Robertson & Zaragoza2009]
2. Language Modeling Framework [Hiemstra2001]



Language Models for IR

» Assume a generative process for each document in the
collection.

(3¢ ne,a)!
p(d|0g) = M(d|6g) = ~==== T 047
Ht ntyd' t
» ML estimate for 84+ = ng+/ Y . ng,v leads to over-fitting
problems for terms with O frequency.
» Introduce a Dirichlet prior D(04|c) over model parameters
and obtain a MAP estimate

(MAP)

HMAP) _ (ng.t + ar — 1)
dt

0 = argmax p(d|@ 0.), =
d e p(d[04)p(04) SN T w—

» Prior parameters a; are usually set to the average frequency
of the t* term in the collection.



Language Models for IR

» Give a query q rank documents using the query likelihood

A(MAP) Nd,t
log p(ql6 ) Xq Z ng,t log <at_1 + 1)

{t:ng,t>0Ang4 >0}
- g (znd,tlmt,—l) S
t! {t:nq,:>0}

» Ranking function depends only on terms common in the
document and query.

» Efficient implementation with an inverted index data structure.



Probabilistic Models for Image Retrieval

> Model the density of continuous image features directly using
semi-parametric models.

> Images are unordered sets of vectors
D
d:{xl,...,xN,}, xR

» Gaussian Mixture Models,
[Westerveld et al.2003, Vasconcelos & Lippman et al.2003]

N K

p(d|0q) = [ [ D mN (xnltee: Zi)

n=1 k=1

» Maximum likelihood parameter estimates using the EM
algorithm.

» Given a query image q rank images using the query likelihood
~(M
log p(al@y ).
> No efficient data structure



Model Predictive Density

(1) = [ p(x'16) p(6)d) do

posterior

» Marginalise uncertainty about the parameters 6.
» MAP and ML estimates can be seen as approximations of the
predictive density.

~(MAP)
p(x’[d) ~ p(x*[8"")
» Point estimates are asymptotically n — oo optimal.

» Images and documents only contain a finite set of
observations.

» Number of parameters is usually large, e.g. in the order of
vocabulary terms.



Multinomial-Dirichlet Model

» The posterior for the Multinomial-Dirichlet model is a
Dirichelt

p(d|04)p(04)
[ p(d|64) p(04)d0y

» The predictive density is also available in closed form
[Zaragoza et al.2003] and its log is proportional to

p(0q4ld) =

(Od]nd + a)

ntq

log p(ald) oq >, Do <a +g_1+1>

t:ng ¢>0An; >0 g=1
Zt/ nt/7q
— Z |Og (Z nyr o + oy +_/ - 1)
j=1 t/

» Ranking function depends only on terms common in the
document and query.



Gaussian Mixture Model

v

Posterior is not tractable for mixture models. Two possible
approaches:

1. MCMC samples from the posterior.

2. Variational approximation.
MCMC is asymptotically optimal as the number of samples
tends to infinity.

Several chains have to run for each image in the collection to
monitor convergence.

For a query the predictive density is the weighted sum of the
posterior samples.

Variational approach provides a “local” approximation to the
posterior.

Posterior and predictive density have convenient analytical
forms.



Variational Inference for Gaussian Mixture Model

v

Latent variable representation

N K
p(d104,2) = T TT [msV (xalpese, Ze))™*

n=1 k=1

Conjugate prior

p(m) = D(m|ap), small ag gives preference to “sparse”
solutions.

p(py|Zk) = N (peg|mo, B71Xk). mg can be set to the mean
of feature descriptors in the collection. A small 3 ensures prior
is flat in high likelihood regions.

p(Xx) = IW(Zk|Wo, vp). Wp can be set to the precision of
feature descriptors in the collection. Set vy such that prior is
flat in high likelihood regions.



Variational Inference for Gaussian Mixture Model

» Augment parameters and latent variables © = {04, Z}

» Consider an approximate posterior that factorizes such that
q(®) = q(04)p(2)

» Applying Jensen's inequality the marginal can be written

p(e) = [ a(@)1og

Lower Bound

d@ / Iog c)l) doe

» By maximising the Lower Bound the KL is minimised.
» q(®y) can be further factored as g(Z)q() Hle (e, k).

» Taking each factor separately while considering all others
constant we can iteratively optimise the lower bound, e.g.

log g(Z) = /Iog p(d,®)q(04)d64 + const



Variational Inference for Gaussian Mixture Model

» The variational posterior takes the following form
[Bishop2006, Chap. 7]
q(zn) = M(zn[l,rp)
q(w) = D(rw|a)
(ki k) = N(elmi, B E)IW(E Wi, vi)
» The parameters of the variational posterior o, p, m, W are
optimised using the Variational EM algorithm (VEM)
[Bishop2006, Chap. 7].
» The predictive density can also obtained explicitly

K
(x*|d) — TN (| £0)a(7) (1, Ex)drrdpa dE
p kz_:l///k s Zi) () (g, T ) dmd puy X

K
1 1-D
= = E o St <X*|mk,(Vk+)I8ka,Vk—|—1—D>
&~ 1+ B



Determining the Number of Components

» From the Dirichlet variational posterior over the mixing
coefficients 7 we have

E[me] =

» In the VEM algorithm the « parameters are updated as

N
Qg = ap + 5 I'n,k
n=1

» When ag is small, set K to a relatively large value and remove
components with a, = g [Bishop & Corduneanu 2001] as
they have negligible contribution to the predictive density.



Corel 5K Test Collection

» 4,500 training images, 500 test images.

» Collection is divided into 50 categories, e.g. “sunset”, “roses”,
“stamps” etc.

> We index the 4,500 training images which contain 90 images
per category.

» The 500 test images are used as queries, 10 images for each
category.

» Given a query image we expect the 90 images from
corresponding category to be ranked first.



Pre-processing

> Images are converted to the YUV colour space. 1 Luminance
and 2 chrominance channels.

» Segment images using a 8 x 8 pixels sliding window with 4
pixels overlap.

> DCT is applied to each 8 x 8 pixels region.

» For the Bag of Terms representation we used K-means with
2,000 clusters.

> For the GMM the EM algorithm was used with 8 components
[Westerveld et al.2003].

» For the VEM the number of components was initially set to
40 and then components were removed.

» The EM and VEM algorithms where initialised by randomly
setting the latent variables Z.



Results

Table: Retrieval results for 500 query images in the test set. * indicates

statistical significance using a Wilcoxon rank-sum test with 1%
significance level.

Method MAP R-Prec. P@5 P@10 P©@20
BOT-MAP | 0.0333 0.0364 0.0441 0.0429 0.0383
BOT-PD 0.0341 0.0375 0.0477 0.0431 0.0387
GMM-ML 0.0975* 0.1280* 0.3038* 0.2599* 0.2179*
GMM-MAP | 0.0999 0.1308 0.3070 0.2645 0.2210
GMM-PD 0.1165* 0.1457* 0.3315* 0.2836* 0.2370*
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Figure: Distribution of the number of components K for the 4.500
images in the collection.



Conclusions

» Scalability of the Bag of Terms representation is questionable
as quantisation of query images is required.

» K-means code-block generation is computationally
challenging. Alternatives, DBSCAN, hierarchical clustering.

» Quantisation errors can significantly decrease retrieval
effectiveness.

» Probabilistic image retrieval models are superior to Bag of
Terms approaches.

> Retrieval requires a linear scan through the collection.

» The predictive density ranking function is always superior
w.r.t. ML and MAP estimates, indicative of over-fitting.

» Number of mixture components can be identified
automatically from the data.

» VEM has the same order of complexity as the EM algorithm.



Future Work

> Improve indexing structure for probabilistic retrieval models.

v

Locality Sensitive Hashing (LSH) on Kernel spaces

[Kulis & Grauman 2009].

Sub linear complexity with theoretical approximation error
bounds.

v

v

Kernel functions for probabilistic generative models.

Fisher Kernels [Jaakkola & Haussler1999], Probability Product
Kernels [Jebara et al.2004]

v
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