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Bag of Terms Image Retrieval

I Generate a representation that is similar to text
documents.

I Images are represented by frequencies of parts.

I IR weighting and ranking functions can be
directly applied to Bag of Terms models.

I Bag of Terms model relies on 3 stages

1. Region Detection.
2. Feature Description.
3. Code-block Generation & Quantisation.



Region Detection

I Regular Grid

[Nowak et al.2006] [Tuytelaars2010]

I Interest Points

[Mikolajczyk et al.2005] [Csurka et al.2004]

I Segmentation

[Koniusz & Mikolajczyk2010]



Feature Description

I Scale Invariant Feature
Transform (SIFT)
[Lowe2004]

The value of the first coefficient, obtained by the first basis function cb0 is equal to

the mean of the input signal, also called the DC coefficient, while the rest coefficients

associated with zero-mean basis functions are commonly known as AC coefficients.

Generalizing into 2 dimensions suffices in calculating the N2 2D basis functions which

can be obtained by taking the outer products of all 1D basis functions. Therefore

if we introduce the matrix B with rows b(i) = cbi, the DCT transformed image I�

can be obtained by I� = BIBT . Similarly, due to orthogonally, the original image

can be obtained by the invert transform I = BT I�B.

One of the most popular feature descriptors, mainly due to its success in object

recognition, is the Scale Invariant Feature Transform, or SIFT [Lowe, 2004]. SIFT

is calculated by a 16 × 16 image patches of gradients. The patch is divided into

4 × 4 regions from which 16 orientation histograms of 8 bins are calculated by

summing the magnitudes of the edges at each bin. To avoid boundary artifacts

the gradient magnitudes are weighted by a Gaussian window placed at the center

of the patch, Figure 3.5. To make the descriptor rotation invariant, all gradient

orientations are rotated relative to the key-point’s orientation. To account also

for linear illumination changes the vector is normalized to unit length. For non-

linear illumination changes the histogram bins are thresholded and the vector is re-

normalised. SIFT descriptors are usually combined with automatic scale selection

of blob features from a Difference of Gaussian (DoG) kernel scale space which allows

for scale invariance.

Image gradients Keypoint descriptor
Figure 7: A keypoint descriptor is created by fi rst computing the gradient magnitude and orientation

at each image sample point in a region around the keypoint location, as shown on the left. These are

weighted by a Gaussian window, indicated by the overlaid circle. These samples are then accumulated

into orientation histograms summarizing the contents over 4x4 subregions, as shown on the right, with

the length of each arrow corresponding to the sum of the gradientmagnitudes near that direction within

the region. This fi gure shows a 2x2 descriptor array computed from an 8x8 set of samples, whereas

the experiments in this paper use 4x4 descriptors computed from a 16x16 sample array.

6.1 Descriptor representation

Figure 7 illustrates the computation of the keypoint descriptor. First the image gradient mag-

nitudes and orientations are sampled around the keypoint location, using the scale of the

keypoint to select the level of Gaussian blur for the image. In order to achieve orientation

invariance, the coordinates of the descriptor and the gradient orientations are rotated relative

to the keypoint orientation. For effi ciency, the gradients are precomputed for all levels of the

pyramid as described in Section 5. These are illustrated with small arrows at each sample

location on the left side of Figure 7.

A Gaussian weighting function with σ equal to one half the width of the descriptor win-
dow is used to assign a weight to the magnitude of each sample point. This is illustrated

with a circular window on the left side of Figure 7, although, of course, the weight falls off

smoothly. The purpose of this Gaussian window is to avoid sudden changes in the descriptor

with small changes in the position of the window, and to give less emphasis to gradients that

are far from the center of the descriptor, as these are most affected by misregistration errors.

The keypoint descriptor is shown on the right side of Figure 7. It allows for signifi cant

shift in gradient positions by creating orientation histograms over 4x4 sample regions. The

fi gure shows eight directions for each orientation histogram, with the length of each arrow

corresponding to the magnitude of that histogram entry. A gradient sample on the left can

shift up to 4 sample positions while still contributing to the same histogram on the right,

thereby achieving the objective of allowing for larger local positional shifts.

It is important to avoid all boundary affects in which the descriptor abruptly changes as a

sample shifts smoothly from being within one histogram to another or from one orientation

to another. Therefore, trilinear interpolation is used to distribute the value of each gradient

sample into adjacent histogram bins. In other words, each entry into a bin is multiplied by a

weight of 1 − d for each dimension, where d is the distance of the sample from the central
value of the bin as measured in units of the histogram bin spacing.
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Figure 3.5: Sift descriptor constructed form 8 × 8 pixel patch with 4 orientation

histograms. The circle is the Gaussian kernel weighting the gradient magnitudes.

An extension of the SIFT descriptor, that has been evaluated and showed to out-

perform the original version [Mikolajczyk et al., 2005a] for object class recognition,

is the Gradient Location-Oriantation Histogram (GLOH). GLOH descriptors also

quantize the log polar coordinate system in 17 bins and measure the frequency of

gradients at each bin. Also orientation histograms, use 16 bins instead of 8 used
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I Discrete Cosine Transform
(DCT) [Carneiro et al.2007]



Code-block Generation & Quantisation

I Apply K-means to region feature
descriptors from all collection images.

I Cluster means are treated as “visual
terms”.

I Quantise each image by associating each
feature descriptor to its closest “”visual
term”.

I Images are represented as vectors
d = {d1, . . . , dT} where dt is a “weight”
of the importance of the tth visual term.

I TF-IDF weighting dt = nt,d log N
dft

score(d,q) =
∑

t

dt × qt



Probabilistic IR Models

I Formal methodology for developing IR weighting and ranking
algorithms.

I Rank documents / images based on the probability of
relevance w.r.t. a user query.

I Two popular frameworks:

1. Probabilistic Relevance Framework
[Robertson & Zaragoza2009]

2. Language Modeling Framework [Hiemstra2001]



Language Models for IR

I Assume a generative process for each document in the
collection.

p(d|θd ) =M(d|θd ) =
(
∑

t nt,d )!∏
t nt,d !

∏
t

θ
nd,t

d ,t

I ML estimate for θd ,t = nd ,t/
∑

t′ nd ,t′ leads to over-fitting
problems for terms with 0 frequency.

I Introduce a Dirichlet prior D(θd |α) over model parameters
and obtain a MAP estimate

θ̂
(MAP)
d = argmax

θd

p(d|θd )p(θd ), θ̂
(MAP)
d ,t =

(nd ,t + αt − 1)∑
t′(nd ,t′ + αt′ − 1)

I Prior parameters αt are usually set to the average frequency
of the tth term in the collection.



Language Models for IR

I Give a query q rank documents using the query likelihood

log p(q|θ̂(MAP)
d ) ∝q

∑
{t:nq,t>0∧nd,t>0}

nq,t log

(
nd ,t

αt − 1
+ 1

)

− log

(∑
t′

nd ,t′ + αt′ − 1

) ∑
{t:nq,t>0}

nq,t

I Ranking function depends only on terms common in the
document and query.

I Efficient implementation with an inverted index data structure.



Probabilistic Models for Image Retrieval

I Model the density of continuous image features directly using
semi-parametric models.

I Images are unordered sets of vectors
d = {x1, . . . , xNI

}, x ∈ RD

I Gaussian Mixture Models,
[Westerveld et al.2003, Vasconcelos & Lippman et al.2003]

p(d|θd ) =
N∏

n=1

K∑
k=1

πkN (xn|µk ,Σk )

I Maximum likelihood parameter estimates using the EM
algorithm.

I Given a query image q rank images using the query likelihood

log p(q|θ̂(ML)
d ).

I No efficient data structure



Model Predictive Density

p(x∗|d) =

∫
p(x∗|θ) p(θ|d)︸ ︷︷ ︸

posterior

dθ

I Marginalise uncertainty about the parameters θ.

I MAP and ML estimates can be seen as approximations of the
predictive density.

p(x∗|d) ≈ p(x∗|θ̂(MAP)
d )

I Point estimates are asymptotically n→∞ optimal.

I Images and documents only contain a finite set of
observations.

I Number of parameters is usually large, e.g. in the order of
vocabulary terms.



Multinomial-Dirichlet Model

I The posterior for the Multinomial-Dirichlet model is a
Dirichelt

p(θd |d) =
p(d|θd )p(θd )∫
p(d|θd )p(θd )dθd

= D(θd |nd ,· + α)

I The predictive density is also available in closed form
[Zaragoza et al.2003] and its log is proportional to

log p(q|d) ∝q

∑
t:nt,q>0∧nt,d>0

nt,q∑
g=1

log

(
nt,d

αt + g − 1
+ 1

)

−

∑
t′ nt′,q∑
j=1

log

(∑
t′

nt′,d + αt′ + j − 1

)

I Ranking function depends only on terms common in the
document and query.



Gaussian Mixture Model

I Posterior is not tractable for mixture models. Two possible
approaches:

1. MCMC samples from the posterior.
2. Variational approximation.

I MCMC is asymptotically optimal as the number of samples
tends to infinity.

I Several chains have to run for each image in the collection to
monitor convergence.

I For a query the predictive density is the weighted sum of the
posterior samples.

I Variational approach provides a “local” approximation to the
posterior.

I Posterior and predictive density have convenient analytical
forms.



Variational Inference for Gaussian Mixture Model

I Latent variable representation

p(d|θd ,Z) =
N∏

n=1

K∏
k=1

[πkN (xn|µk ,Σk )]zn,k

I Conjugate prior

I p(π) = D(π|α0), small α0 gives preference to ‘‘sparse”
solutions.

I p(µk |Σk ) = N (µk |m0, β
−1Σk ). m0 can be set to the mean

of feature descriptors in the collection. A small β ensures prior
is flat in high likelihood regions.

I p(Σk ) = IW(Σk |W0, v0). W0 can be set to the precision of
feature descriptors in the collection. Set v0 such that prior is
flat in high likelihood regions.



Variational Inference for Gaussian Mixture Model

I Augment parameters and latent variables Θ = {θd ,Z}
I Consider an approximate posterior that factorizes such that

q(Θ) = q(θd )p(Z)

I Applying Jensen’s inequality the marginal can be written

p(d) =

∫
q(Θ) log

p(d,Θ)

q(Θ)
dΘ︸ ︷︷ ︸

Lower Bound

−
∫

q(Θ) log
p(Θ|d)

q(Θ)
dΘ︸ ︷︷ ︸

KL

I By maximising the Lower Bound the KL is minimised.

I q(Θd ) can be further factored as q(Z)q(π)
∏K

k=1 q(µk ,Σk ).

I Taking each factor separately while considering all others
constant we can iteratively optimise the lower bound, e.g.

log q(Z) =

∫
log p(d,Θ)q(θd )dθd + const



Variational Inference for Gaussian Mixture Model

I The variational posterior takes the following form
[Bishop2006, Chap. 7]

q(zn) = M(zn|1, rn)

q(π) = D(π|α)

q(µk ,Σk ) = N (µk |mk , β
−1
k Σk )IW(Σk |Wk , vk )

I The parameters of the variational posterior α,ρ,m,W are
optimised using the Variational EM algorithm (VEM)
[Bishop2006, Chap. 7].

I The predictive density can also obtained explicitly

p(x∗|d) =
K∑

k=1

∫ ∫ ∫
πkN (x∗|µk ,Σk )q(π)q(µk ,Σk )dπdµkdΣk

=
1

α̂

K∑
k=1

αk St

(
x∗|mk ,

(vk + 1− D)βk

1 + βk
Wk , vk + 1− D

)



Determining the Number of Components

I From the Dirichlet variational posterior over the mixing
coefficients π we have

E[πk ] =
αk

α̂
, Var(πk ) =

αk (α̂− αk )

α̂2(α̂ + 1)
, α̂ =

K∑
k=1

αk

I In the VEM algorithm the αk parameters are updated as

αk = α0 +
N∑

n=1

rn,k

I When a0 is small, set K to a relatively large value and remove
components with αk = α0 [Bishop & Corduneanu 2001] as
they have negligible contribution to the predictive density.



Corel 5K Test Collection

I 4,500 training images, 500 test images.

I Collection is divided into 50 categories, e.g. “sunset”, “roses”,
“stamps” etc.

I We index the 4,500 training images which contain 90 images
per category.

I The 500 test images are used as queries, 10 images for each
category.

I Given a query image we expect the 90 images from
corresponding category to be ranked first.



Pre-processing

I Images are converted to the YUV colour space. 1 Luminance
and 2 chrominance channels.

I Segment images using a 8× 8 pixels sliding window with 4
pixels overlap.

I DCT is applied to each 8× 8 pixels region.

I For the Bag of Terms representation we used K-means with
2,000 clusters.

I For the GMM the EM algorithm was used with 8 components
[Westerveld et al.2003].

I For the VEM the number of components was initially set to
40 and then components were removed.

I The EM and VEM algorithms where initialised by randomly
setting the latent variables Z.



Results

Table: Retrieval results for 500 query images in the test set. ∗ indicates
statistical significance using a Wilcoxon rank-sum test with 1%
significance level.

Method MAP R-Prec. P@5 P@10 P@20
BOT-MAP 0.0333 0.0364 0.0441 0.0429 0.0383
BOT-PD 0.0341 0.0375 0.0477 0.0431 0.0387
GMM-ML 0.0975∗ 0.1280∗ 0.3038∗ 0.2599∗ 0.2179∗

GMM-MAP 0.0999 0.1308 0.3070 0.2645 0.2210
GMM-PD 0.1165∗ 0.1457∗ 0.3315∗ 0.2836∗ 0.2370∗



Results

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

200

400

600

800

1000

1200

Number of Components

Figure: Distribution of the number of components K for the 4.500
images in the collection.



Conclusions

I Scalability of the Bag of Terms representation is questionable
as quantisation of query images is required.

I K-means code-block generation is computationally
challenging. Alternatives, DBSCAN, hierarchical clustering.

I Quantisation errors can significantly decrease retrieval
effectiveness.

I Probabilistic image retrieval models are superior to Bag of
Terms approaches.

I Retrieval requires a linear scan through the collection.

I The predictive density ranking function is always superior
w.r.t. ML and MAP estimates, indicative of over-fitting.

I Number of mixture components can be identified
automatically from the data.

I VEM has the same order of complexity as the EM algorithm.



Future Work

I Improve indexing structure for probabilistic retrieval models.

I Locality Sensitive Hashing (LSH) on Kernel spaces
[Kulis & Grauman 2009].

I Sub linear complexity with theoretical approximation error
bounds.

I Kernel functions for probabilistic generative models.

I Fisher Kernels [Jaakkola & Haussler1999], Probability Product
Kernels [Jebara et al.2004]
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