Treeler: Open-source Structured Prediction for NLP

Xavier Carreras

Universitat Politècnica de Catalunya

thanks to: M. Collins, A. Globerson, T. Koo, N. Ata, P. S. Madhyastha

acknowledgements: Pascal2 Harvest Programme

http://nlp.lsi.upc.edu/treeler

An open-source package for linear structured prediction

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

- Released under GNU General Public License
- Focus on NLP problems:
 - Everything is structured
 - Everything is large, performance is critical
 - High overlap of components across tasks
- Origins at MIT CSAIL (2006-2009)
- Redesigned to be more flexible
- ► C++, polymorphism via templates

Mr. Wayne bought shares of Acme Corp.

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Read texts from the web. For a new text:

Mr. Wayne bought shares of Acme Corp.

- Read texts from the web. For a new text:
 - 1. Classify according to financial or not.
 - Use a binary classifier using bag-of-words representations

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

PER PER -- -- ORG ORG Mr. Wayne bought shares of Acme Corp.

- Read texts from the web. For a new text:
 - 1. Classify according to financial or not.
 - 2. Extract named entities (persons and organizations)

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Use a sequence tagger

- Read texts from the web. For a new text:
 - 1. Classify according to financial or not.
 - 2. Extract named entities (persons and organizations)
 - 3. Parse text and extract grammatical relations.
 - Use a probabilistic dependency parser
 - Compute syntactic paths linking entities, weighted by their probability

- Read texts from the web. For a new text:
 - 1. Classify according to financial or not.
 - 2. Extract named entities (persons and organizations)
 - 3. Parse text and extract grammatical relations.
 - 4. Classify each pair of entities.
 - Use a multiclass classifier deciding the type of relation

Use grammatical relations as features

- Read texts from the web. For a new text:
 - 1. Classify according to financial or not.
 - 2. Extract named entities (persons and organizations)
 - 3. Parse text and extract grammatical relations.
 - 4. Classify each pair of entities.

Treeler provides core algorithms for learning and using classifiers, taggers and parsers.

Linear (Structured) Prediction Classification Sequence Tagging Parsing

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Classification

- Not really structured prediction
- Linear Multiclass Classification:
 - $\mathcal{X} = \mathbb{R}^d$, an input domain with d features
 - $\mathcal{Y} = \{1, ..., L\}$, a set of classes
 - Define parameters $\mathbf{w}_l \in \mathbb{R}^d$, for $1 \leq l \leq L$
 - Classify new points $\mathbf{x} \in \mathcal{X}$ with:

$$\underset{l=1,...,L}{\operatorname{argmax}} \quad \mathbf{w}_l \cdot \mathbf{x}$$

Learning algorithms: Perceptron, SVM, Maximum Entropy

Structured Prediction: Sequence Tagging

y :	PER	\mathbf{PER}	-	-	LOC
x:	Jack	London	went	to	Paris

- \blacktriangleright Goal: given input sequence ${\bf x},$ predict sequence ${\bf y}$
- Approach 1: local classifiers
 - A multiclass classifier to predict individual tags

$$\hat{y}_i = \operatorname*{argmax}_{l=1,\dots,L} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, l)$$

Best sequence = concatenate best tag for each word

$$\hat{\mathbf{y}} = \operatorname*{argmax}_{\mathbf{y} \in \mathcal{Y}(x)} \sum_{i} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, l)$$

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Structured Prediction: Sequence Tagging

y :	PER	\mathbf{PER}	-	-	LOC
x :	Jack	London	went	to	Paris

- \blacktriangleright Goal: given input sequence ${\bf x},$ predict sequence ${\bf y}$
- Approach 1: local classifiers (limited features)
- Approach 2: global classifier
 - Multiclass classifier to predict full tag sequences

$$\hat{\mathbf{y}} = \operatorname*{argmax}_{y = \{1, \dots, L\}^n} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, \mathbf{y})$$

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Unrestricted features, but too expensive

Structured Prediction: Sequence Tagging

y :	PER	\mathbf{PER}	-	-	LOC
x:	Jack	London	went	to	Paris

- \blacktriangleright Goal: given input sequence ${\bf x},$ predict sequence ${\bf y}$
- Approach 1: local classifiers (limited features)
- Approach 2: global classifier (too expensive in general)
- Approach 3: factored global classifier
 - Factor y into bigrams of tags

$$\hat{\mathbf{y}} = \operatorname*{argmax}_{\mathbf{y} \in \mathcal{Y}^*} \sum_{i} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, \mathbf{y}_{i-1}, \mathbf{y}_i)$$

- Extended locality by extending scope of n-grams
- Fast inference using Viterbi algorithm

Structured Prediction: Parsing

 Directed arcs represent dependencies between a head word and a modifier word.

► E.g.:

shares *modifies* bought, Wayne *modifies* bought, Mr. *modifies* Wayne Dependency Parsing: arc-factored models (McDonald et al. 2005)

- Parse trees decompose into single dependencies $\langle h, m \rangle$

$$\operatorname*{argmax}_{\mathbf{y}\in\mathcal{Y}(\mathbf{x})}\sum_{\langle h,m\rangle\in y}\mathbf{w}\cdot\mathbf{f}(\mathbf{x},h,m)$$

▶ Some features: $f_1(\mathbf{x}, 3, 4) = [$ "bought" \rightarrow "shares"] $f_2(\mathbf{x}, 3, 4) = [$ distance = +1]

Tractable inference exists (e.g. variants of CKY)

Linear Structured Prediction

Classification

 $\underset{\mathbf{y} \in \{1,...,L\}}{\operatorname{argmax}} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, \mathbf{y})$

Sequence prediction (bigram factorization)

$$\operatorname*{argmax}_{\mathbf{y}\in\mathcal{Y}(\mathbf{x})}\sum_{i}\mathbf{w}\cdot\mathbf{f}(\mathbf{x},i,\mathbf{y}_{i-1},\mathbf{y}_{i})$$

Dependency parsing (arc factorization)

$$\underset{\mathbf{y}\in\mathcal{Y}(\mathbf{x})}{\operatorname{argmax}}\sum_{\langle h,m\rangle\in y}\mathbf{w}\cdot\mathbf{f}(\mathbf{x},h,m)$$

In general, we can enumerate parts $r \in \mathbf{y}$

$$\operatorname*{argmax}_{\mathbf{y}\in\mathcal{Y}(\mathbf{x})}\sum_{r\in\mathbf{y}}\mathbf{w}\cdot\mathbf{f}(\mathbf{x},r)$$

Linear Structured Prediction Framework

- Generic Structured Prediction
 - Input domain X, output domain Y
 - A choice of factorization, $r \in \mathbf{y}$
 - Features: $\mathbf{f}(\mathbf{x}, r) \to \mathbb{R}^d$
- The linear prediction model, with $\mathbf{w} \in \mathbb{R}^d$

$$\mathop{\mathrm{argmax}}_{\mathbf{y}\in\mathcal{Y}(\mathbf{x})}\sum_{r\in y}\mathbf{w}\cdot\mathbf{f}(\mathbf{x},r)$$

- Inference, i.e. how to solve the argmax?
 - Depends on the factorization
- Learning, i.e. how to obtain w?
 - Perceptron, SVM, CRF
 - Generic with respect to factorization

Structured Prediction Framework Factorizations Features Inference Learning

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Factorizations

- ▶ X : a generic type for input patterns
- ▶ Y : a generic type for output structures
- ▶ R is a factorization providing:
 - r_t : a type for parts
 - > parts(x,y) : the set of parts in x and y
 - parts(x) : the set of parts assignable to x

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Factorizations: enumerating parts

PER	PER	-	-	LOC	
Jack	London	went	to	Paris	
1	2	3	4	5	

(tagging via bigram factorizations)

r_t = tuple of int i; // position of bigram tag a; // tag at i-1 tag b; // tag at i

<pre>parts(x,y)</pre>	parts(x)			
(1, - ,PER)	(1, - , -)			
(2,PER,PER)	(1, - ,PER)			
(3,PER, -)	(1, - ,LOC)			
(4, - , -)	(2, - , -)			
(5, - ,LOC)	(2, - ,PER)			
	(2, - ,LOC)			
	(2,PER,PER)			

. . .

(parsing via arc factorizations)

parts(x,y)	parts(x)
(*,3)	(*,1)
(3,2)	(*,2)
(3,4)	(*,3)
(2,1)	(*,4)
(4,5)	(*,5)
(5,7)	(*,6)
(7,6)	(*,7)

▲□▶▲□▶▲□▶▲□▶ □ 少のの

Scores

- Scores<X,R> provides scores for parts
 - score(x,r) : score of part r assigned to x
- We can define the following generic algorithm: function score(X x, Y y, Score<X,R> s) sum = 0 foreach r in parts(x,y) sum += s.score(x,r) return sum

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Scores, Features and Parameters

Features<X,R> provides feature vectors for parts

- fvec_t : a type for feature vectors
- f(x,r) : the fvec for r assigned to x

WFScores<X,R,F> : implements a scorer based on features

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

- w_t : a type for parameters
- score(x,r) : the inner product of f(x,r) and w
- The form of WFScores can be tailored to R and F
 - Sparse or dense fvec_t and w_t
 - Polymorphic inner products

Inference

- Inference<X,Y,R> provides inference algorithms
 - Let s be a scoring of type Scores<X,R>
 - max(x,s) computes the best structure for x, i.e.

$$\hat{\mathbf{y}} = \operatorname*{argmax}_{\mathbf{y} \in \mathcal{Y}(\mathbf{x})} \sum_{r \in \mathbf{y}} \operatorname{score}(\mathbf{x}, r)$$

> partition(x,s) computes the partition function for x, i.e.

$$Z = \sum_{\mathbf{y} \in \mathcal{Y}(\mathbf{x})} \exp\left\{\sum_{r \in \mathbf{y}} \operatorname{score}(\mathbf{x}, r)\right\}$$

sum(x,s) computes marginals for parts, i.e.

$$\mu(r) = \sum_{\mathbf{y} \in \mathcal{Y}(\mathbf{x}): r \in \mathbf{y}} \exp\left\{\sum_{r \in \mathbf{y}} \operatorname{score}(\mathbf{x}, r)\right\} * Z^{-1}$$

► Actual implementations depend on Y and R

Learners

- Learner<X,Y,R>, a concept class for learning algorithms
 - learn(trainset, params) : learns a weight vector from a training set

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

- A learner will use the following components, implicitly defined by X, Y and R:
 - Features<X,R>
 - WFScores<X,R,Features<X,R>>
 - Inference<X,Y,R>
- Available methods: Perceptron, MaxMargin, LogLinear

Averaged Perceptron (Freund and Schapire '98, Collins '03)

```
function Perceptron<X,Y,R>(trainset, T)
typedef WFScores<X,R,Features<X,R>> WF_t;
WF_t::w_t w = 0; // initialize weights
WF_t::w_t wavg = 0; // initialize averaged weights
for t = 1 . T
   foreach (x,y) in trainset
      // create scorer for x using w
      WF_t scores(w,x);
      // get max solution under w
      Y z = Inference<X,Y,R>::max(x, scores);
      // update w
      if (z != y)
         foreach r in parts(x,y)
            w = w + Features < X, R > :: f(x,r);
         foreach r in parts(x,z)
            w = w - Features < X, R > :: f(x,r)
      // update averaged w
      wavg = wavg + w
return (w,wavg)
```

Learners in Treeler

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Structured Prediction Models in Treeler

	Х	Y	R	I::max	I::sum
	\mathbb{R}^{d}	$\{1,\ldots,L\}$	1	one-vs-all	explicit
CI355.	\mathbb{R}^{d}	$\{1,\ldots,L\}$	1,1'	pairwise	explicit
tagging	sent.	L^*	2-gram	Viterbi<1>	FwdBack<1>
	sent.	L^*	3-gram	Viterbi<2>	FwdBack<2>
	sent.	proj.	h,m	Eisner<1>	IO-Eisner<1>
parsing	sent.	non-proj.	h,m	C-L-E	matrix-tree
	sent.	proj.	h,m,c	Eisner<2>	IO-Eisner<2>

+ feature functions commonly used in the state-of-the-art

+ methods for reading/writing using standard formats

+ scripts for training models and running them on new data

experiments:

Dependency Parsing

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

Comparing Learners for Dependency Parsing

Dataset: English "WSJ" Penn Treebank

Learners: Perceptron vs. LogLinear vs. MaxMargin

Comparing Factorizations for Dependency Parsing

Dataset: English "WSJ" Penn Treebank

Learner: Averaged Perceptron

CoNLL-2007: Multilingual Dependency Parsing

200

Treeler: Summary

- Open-source library for Structured Prediction http://nlp.lsi.upc.edu/treeler
- Focus: tagging and parsing in NLP
- Abstract interfaces between models and learners:
 - New models can be easily plugged to learners
 - New learners can be used accross different structured tasks

► C++ templates, effective and efficient polymorphism