
Treeler:

Open-source Structured Prediction for NLP

Xavier Carreras

Universitat Politècnica de Catalunya

thanks to: M. Collins, A. Globerson, T. Koo,
N. Ata, P. S. Madhyastha

acknowledgements: Pascal2 Harvest Programme

http://nlp.lsi.upc.edu/treeler

◮ An open-source package for linear structured prediction

◮ Released under GNU General Public License

◮ Focus on NLP problems:
◮ Everything is structured
◮ Everything is large, performance is critical
◮ High overlap of components across tasks

◮ Origins at MIT CSAIL (2006-2009)

◮ Redesigned to be more flexible

◮ C++, polymorphism via templates

An Application: Extracting Financial Relations

sharesWayne bought Corp.of AcmeMr.

◮ Read texts from the web. For a new text:

An Application: Extracting Financial Relations

sharesWayne bought Corp.of AcmeMr.

◮ Read texts from the web. For a new text:

1. Classify according to financial or not.

◮ Use a binary classifier using bag-of-words representations

An Application: Extracting Financial Relations

PER PER −− −− ORG ORG−−

sharesWayne bought Corp.of AcmeMr.

◮ Read texts from the web. For a new text:

1. Classify according to financial or not.

2. Extract named entities (persons and organizations)

◮ Use a sequence tagger

An Application: Extracting Financial Relations

PER PER −− −− ORG ORG−−PER −− −− ORG ORG−−PER

sharesWayne bought Corp.of AcmeMr.*

◮ Read texts from the web. For a new text:

1. Classify according to financial or not.

2. Extract named entities (persons and organizations)

3. Parse text and extract grammatical relations.

◮ Use a probabilistic dependency parser
◮ Compute syntactic paths linking entities, weighted by their

probability

An Application: Extracting Financial Relations

PER PER −− −− ORG ORG−−PER −− −− ORG ORG−−PER

sharesWayne bought Corp.of AcmeMr.*

◮ Read texts from the web. For a new text:

1. Classify according to financial or not.

2. Extract named entities (persons and organizations)

3. Parse text and extract grammatical relations.

4. Classify each pair of entities.

◮ Use a multiclass classifier deciding the type of relation
◮ Use grammatical relations as features

An Application: Extracting Financial Relations

PER PER −− −− ORG ORG−−PER −− −− ORG ORG−−PER

sharesWayne bought Corp.of AcmeMr.*

◮ Read texts from the web. For a new text:

1. Classify according to financial or not.

2. Extract named entities (persons and organizations)

3. Parse text and extract grammatical relations.

4. Classify each pair of entities.

Treeler provides core algorithms for learning and using
classifiers, taggers and parsers.

Linear (Structured) Prediction

Classification

Sequence Tagging

Parsing

Classification

◮ Not really structured prediction

◮ Linear Multiclass Classification:
◮ X = R

d, an input domain with d features
◮ Y = {1, ..., L}, a set of classes
◮ Define parameters wl ∈ R

d, for 1 ≤ l ≤ L
◮ Classify new points x ∈ X with:

argmax
l=1,...,L

wl · x

◮ Learning algorithms: Perceptron, SVM, Maximum Entropy

Structured Prediction: Sequence Tagging

y: per per - - loc

x: Jack London went to Paris

◮ Goal: given input sequence x, predict sequence y

◮ Approach 1: local classifiers
◮ A multiclass classifier to predict individual tags

ŷi = argmax
l=1,...,L

w · f(x, i, l)

◮ Best sequence = concatenate best tag for each word

ŷ = argmax
y∈Y(x)

∑

i

w · f(x, i, l)

Structured Prediction: Sequence Tagging

y: per per - - loc

x: Jack London went to Paris

◮ Goal: given input sequence x, predict sequence y

◮ Approach 1: local classifiers (limited features)

◮ Approach 2: global classifier
◮ Multiclass classifier to predict full tag sequences

ŷ = argmax
y={1,...,L}n

w · f(x,y)

◮ Unrestricted features, but too expensive

Structured Prediction: Sequence Tagging

y: per per - - loc

x: Jack London went to Paris

◮ Goal: given input sequence x, predict sequence y

◮ Approach 1: local classifiers (limited features)

◮ Approach 2: global classifier (too expensive in general)

◮ Approach 3: factored global classifier
◮ Factor y into bigrams of tags

ŷ = argmax
y∈Y∗

∑

i

w · f(x, i,yi−1,yi)

◮ Extended locality by extending scope of n-grams
◮ Fast inference using Viterbi algorithm

Structured Prediction: Parsing

Corp.Mr. Wayne bought shares of Acme*

◮ Directed arcs represent dependencies between a head word
and a modifier word.

◮ E.g.:

shares modifies bought,
Wayne modifies bought,
Mr. modifies Wayne

Dependency Parsing: arc-factored models

(McDonald et al. 2005)

Corp.Mr. Wayne bought shares of Acme
31 2 74 5 6*

◮ Parse trees decompose into single dependencies 〈h,m〉

argmax
y∈Y(x)

∑

〈h,m〉∈y

w · f(x, h,m)

◮ Some features: f1(x, 3, 4) = [”bought” → ”shares”]
f2(x, 3, 4) = [distance = +1]

◮ Tractable inference exists (e.g. variants of CKY)

Linear Structured Prediction
◮ Classification

argmax
y∈{1,...,L}

w · f(x,y)

◮ Sequence prediction (bigram factorization)

argmax
y∈Y(x)

∑

i

w · f(x, i,yi−1,yi)

◮ Dependency parsing (arc factorization)

argmax
y∈Y(x)

∑

〈h,m〉∈y

w · f(x, h,m)

◮ In general, we can enumerate parts r ∈ y

argmax
y∈Y(x)

∑

r∈y

w · f(x, r)

Linear Structured Prediction Framework
◮ Generic Structured Prediction

◮ Input domain X , output domain Y
◮ A choice of factorization, r ∈ y
◮ Features: f(x, r) → R

d

◮ The linear prediction model, with w ∈ R
d

argmax
y∈Y(x)

∑

r∈y

w · f(x, r)

◮ Inference, i.e. how to solve the argmax?

◮ Depends on the factorization

◮ Learning, i.e. how to obtain w?

◮ Perceptron, SVM, CRF
◮ Generic with respect to factorization

Structured Prediction Framework

Factorizations

Features

Inference

Learning

Factorizations

◮ X : a generic type for input patterns

◮ Y : a generic type for output structures

◮ R is a factorization providing:
◮ r t : a type for parts
◮ parts(x,y) : the set of parts in x and y
◮ parts(x) : the set of parts assignable to x

Factorizations: enumerating parts

per per - - loc

Jack London went to Paris
1 2 3 4 5

(tagging via bigram factorizations)

r_t = tuple of

int i; // position of bigram

tag a; // tag at i-1

tag b; // tag at i

parts(x,y) parts(x)

(1, - ,PER) (1, - , -)

(2,PER,PER) (1, - ,PER)

(3,PER, -) (1, - ,LOC)

(4, - , -) (2, - , -)

(5, - ,LOC) (2, - ,PER)

(2, - ,LOC)

(2,PER,PER)

. . .

Corp.Mr. Wayne bought shares of Acme
31 2 74 5 6*

(parsing via arc factorizations)

r_t = tuple of

int h; // position of head

int m; // position of mod

parts(x,y) parts(x)

(*,3) (*,1)

(3,2) (*,2)

(3,4) (*,3)

(2,1) (*,4)

(4,5) (*,5)

(5,7) (*,6)

(7,6) (*,7)

. . .

Scores

◮ Scores<X,R> provides scores for parts
◮ score(x,r) : score of part r assigned to x

◮ We can define the following generic algorithm:

function score(X x, Y y, Score<X,R> s)

sum = 0

foreach r in parts(x,y)

sum += s.score(x,r)

return sum

Scores, Features and Parameters

◮ Features<X,R> provides feature vectors for parts
◮ fvec t : a type for feature vectors
◮ f(x,r) : the fvec for r assigned to x

◮ WFScores<X,R,F> : implements a scorer based on features
◮ w t : a type for parameters
◮ score(x,r) : the inner product of f(x,r) and w

◮ The form of WFScores can be tailored to R and F

◮ Sparse or dense fvec t and w t
◮ Polymorphic inner products

Inference
◮ Inference<X,Y,R> provides inference algorithms

◮ Let s be a scoring of type Scores<X,R>
◮ max(x,s) computes the best structure for x, i.e.

ŷ = argmax
y∈Y(x)

∑

r∈y

score(x, r)

◮ partition(x,s) computes the partition function for x, i.e.

Z =
∑

y∈Y(x)

exp

{

∑

r∈y

score(x, r)

}

◮ sum(x,s) computes marginals for parts, i.e.

µ(r) =
∑

y∈Y(x):r∈y

exp

{

∑

r∈y

score(x, r)

}

∗ Z−1

◮ Actual implementations depend on Y and R

Learners

◮ Learner<X,Y,R>, a concept class for learning algorithms
◮ learn(trainset, params) : learns a weight vector from a

training set

◮ A learner will use the following components, implicitly defined
by X, Y and R:

◮ Features<X,R>
◮ WFScores<X,R,Features<X,R>>
◮ Inference<X,Y,R>

◮ Available methods: Perceptron, MaxMargin, LogLinear

Averaged Perceptron (Freund and Schapire ’98, Collins ’03)

function Perceptron<X,Y,R>(trainset, T)

typedef WFScores<X,R,Features<X,R>> WF_t;

WF_t::w_t w = 0; // initialize weights

WF_t::w_t wavg = 0; // initialize averaged weights

for t = 1 .. T

foreach (x,y) in trainset

// create scorer for x using w

WF_t scores(w,x);

// get max solution under w

Y z = Inference<X,Y,R>::max(x, scores);

// update w

if (z != y)

foreach r in parts(x,y)

w = w + Features<X,R>::f(x,r);

foreach r in parts(x,z)

w = w - Features<X,R>::f(x,r)

// update averaged w

wavg = wavg + w

return (w,wavg)

Learners in Treeler

Structured Prediction Models in Treeler

X Y R I::max I::sum

class.
R
d {1, . . . , L} l one-vs-all explicit

R
d {1, . . . , L} l,l’ pairwise explicit

tagging
sent. L∗ 2-gram Viterbi<1> FwdBack<1>

sent. L∗ 3-gram Viterbi<2> FwdBack<2>

parsing
sent. proj. h,m Eisner<1> IO-Eisner<1>

sent. non-proj. h,m C-L-E matrix-tree

sent. proj. h,m,c Eisner<2> IO-Eisner<2>

+ feature functions commonly used in the state-of-the-art

+ methods for reading/writing using standard formats

+ scripts for training models and running them on new data

experiments:

Dependency Parsing

Comparing Learners for Dependency Parsing
Dataset: English “WSJ” Penn Treebank

0 5 10 15
82

83

84

85

86

87

88

89

90

Epochs

V
al

id
at

io
n

A
cc

ur
ac

y

Averaged Perceptron
LogLinear
LogLinear
MaxMargin
MaxMargin

C=0.001

C=0.01

C=0.001

C=0.0001

X Y R I::max I::sum

sent. proj. h,m Eisner<1> IO-Eisner<1>

◮ Learners: Perceptron vs. LogLinear vs. MaxMargin

Comparing Factorizations for Dependency Parsing
Dataset: English “WSJ” Penn Treebank

0 5 10 15 20
88

88.5

89

89.5

90

90.5

91

91.5

92

Epochs

V
al

id
at

io
n

A
cc

ur
ac

y

first order
second order

X Y R I::max I::sum

sent. proj. h,m Eisner<1> IO-Eisner<1>

sent. proj. h,m,c Eisner<2> IO-Eisner<2>

◮ Learner: Averaged Perceptron

CoNLL-2007: Multilingual Dependency Parsing

arabic basque catalan chinese czech english greek hungarian italian turkish
0

10

20

30

40

50

60

70

80

90

100

Treeler
Best result per language

Treeler: Summary

◮ Open-source library for Structured Prediction
http://nlp.lsi.upc.edu/treeler

◮ Focus: tagging and parsing in NLP

◮ Abstract interfaces between models and learners:
◮ New models can be easily plugged to learners
◮ New learners can be used accross different structured tasks

◮ C++ templates, effective and efficient polymorphism

