Ontology matching tutorial

Pavel Shvaiko

Jérôme Euzenat

Trento, Italy pavel@dit.unitn.it Monbonnot, France Jerome.Euzenat@inrialpes.fr

June 6, 2007

- Illustrate the role of ontology matching
- Provide an overview of basic matching techniques
- Demonstrate the use of basic matching techniques in state of the art systems
- Motivate future research

Problem	Classification	Basic techniques	Process	Systems	Other	Conclusions
Outlin	е					
1 The c	ontology mate	ching problem				
2 Classi	fication					
3 Basic	techniques					
4 Match	hing process					
5 System	ms					
6 Other	topics					
7 Concl	usions					
Ontology match	ing tutorial (v11) – Sh	waiko and Euzenat				3 / 79

Problem	Classification	Basic techniques	Process	Systems	Other	Conclusions
Outline	;					

- The ontology matching problem
- 2 Classification
- Basic techniques
- 4 Matching process
- 5 Systems
- 6 Other topics
- 7 Conclusions

Resources being expressed in different ways must be reconciled before being used.

Mismatch between formalized knowledge can occur when:

- different languages are used;
- different terminologies are used;
- different modelling is used.

Reconciliation can be achieved online or offline with different constraints

Ontology matching tutorial (v11) – Shvaiko and Euzenat						
Problem	Classification	Basic techniques	Process	Systems	Other	Conclusions
-						
Scope						

- Reducing heterogeneity can be performed in 2 steps
 - Match, thereby determine the alignment
 - Process the alignment (merging, transforming, etc.)
- When do we match?
 - Design time
 - Run time

The Matching operation

- takes as input ontologies, consisting of a set of discrete entities (e.g., tables, XML elements, classes, properties), and
- determines as output the relationships (e.g., equivalence, subsumption) holding between these entities.
- possibly exploiting techniques developed in a variety of fields, including linguistics, automated reasoning, statistics and data analysis, machine learning, etc.

Problem	
---------	--

Conclusions

Motivation: two ontologies

Problem	Classification	Basic techniques	Process	Systems	Other	Conclusions
Corres	pondence					

Definition (Correspondence)

Given two ontologies o and o', a **correspondence** between o and o' is a 5-uple: $\langle id, e, e', r, n \rangle$ such that:

- id is a unique identifier of the correspondence
- e and e' are entities of o and o' (e.g., XML elements, classes)
- r is a relation (e.g., equivalence (=), more general (□), disjointness (⊥))
- n is a confidence measure in some mathematical structure (typically in the [0,1] range)

Ontology matching tutorial (v11) – Shvaiko and Euzenat							
Problem	Classification	Basic techniques	Process	Systems	Other	Conclusions	
Alıgnr	Alignment						

Definition (Alignment)

Given two ontologies o and o', an **alignment** (A) between o and o':

- is a set of correspondences on o and o'
- with some additional metadata (multiplicity: 1-1, 1-*, method, date, properties, etc.)

			_	_		
Problem	Classification	Basic techniques	Process	Systems	Other	Conclusions
Match	ing proces	S				
	01					
		o nara	matars			
			↓			
		A mat	ching	+ <u>A'</u>		
			 ↑			
		o' resc	ources			
Ontology match	ing tutorial (v11) – Sh	vaiko and Euzenat				12 / 79
Problem	Classification	Basic techniques	Process	Sustance	Other	Conclusions
roben	Classification	Dasic techniques	FIOCESS	Systems	Other	Conclusions
Applic	ation dom	ains				

Problem	Classification	Basic techn	iques Process	Systems	Other	Conclusions
Applic	ations:	Web servi	ce composi [.]	tion		
servic	ze1	O 1 output	 Matcher A Generator ↓ mediator 	O' Înput	> Se	ervice2
Ontology match	ing tutorial (v11)	– Shvaiko and Euzen	at			18 / 79
	,					,
Problem	Classificatior	n Basic techn	iques Process	Systems	Other	Conclusions
Problem	Classification	Basic techn	iques Process	Systems	Other	Conclusions
Problem Applic	Classification	Agent cor	iques Process	Systems	Other	O' ↑

Other

Applications: summary

Application	instances	run time	automatic	correct	complete	operation
Ontology evolution						transformation
Schema integration						merging
Catalog integration						data translation
Data integration						query answering
P2P information sharing						query answering
Web service composition						data mediation
Multi agent communication						data translation
Query answering						query reformulation

Ontology matching tutorial (v11) – Shvaiko and Euzenat						
Problem Classification	Basic techniques	Process	Systems	Other	Conclusions	
Outline						

- 2 Classification
- 3 Basic techniques
- 4 Matching process
- 5 Systems
- 6 Other topics
- 7 Conclusions

Matching dimensions

Input dimensions

- Underlying models (e.g., XML, OWL)
- Schema-level vs. Instance-level
- Process dimensions
 - Approximate vs. Exact
 - Interpretation of the input
- Output dimensions
 - ► Cardinality (e.g., 1-1, 1-*)
 - Equivalence vs. Diverse relations (e.g., subsumption)
 - Graded vs. Absolute confidence

Ontology matching tutorial (v11) – Shvaiko and Euzenat						
Problem	Classification	Basic techniques	Process	Systems	Other	Conclusions
Three	lavers					
	5					

- ► The upper layer
 - Granularity of match
 - Interpretation of the input information
- The middle layer represents classes of elementary (basic) matching techniques
- The lower layer is based on the kind of input which is used by elementary matching techniques

Systems

24 / 79

Classification of schema-based techniques

Ontology matching tutorial (v11) - Shvaiko and Euzenat

 Problem
 Classification
 Basic techniques
 Process
 Systems
 Other
 Conclusions

 Outline

- 1 The ontology matching problem
- 2 Classification
- 3 Basic techniques
- 4 Matching process
- 5 Systems
- 6 Other topics
- 7 Conclusions

Basic techniques: classification

Techniques are presented according to our classification:

- Element-level techniques
 - Terminological

Classification

Problem

- String-based
- Language-based
- Constraint-based
- Based on external resources
 - linguistic resources
 - ontologies
- Global techniques
 - Taxonomy-based
 - Graph-based
- Extensional techniques
- Semantic techniques

Ontology matching tutorial (v11) – Shvaiko and Euzenat							
Problem	Classification	Basic techniques	Process	Systems	Other	Conclusions	
Distan		it, diasimila					
Distar	Distance, similarity, dissimilarity						

Many of the techniques used are based on computing a distance or a similarity between ontology elements.

These distances are for the sake of comparability normalized over the unit interval.

They can turned into a boolean value by applying thresholds (e.g., S-match).

Basic techniques

Conclusions

Problem	Classification	Basic techniques	Process	Systems	Other	Conclusions	
Element-level techniques: String-based							
► Pre	efix						
•	 takes as input the second or net = networ 	t two strings and ne k; but also hot =	checks wh	ether the fir	st string s	starts with	
► Suf	fix						
•	 takes as input the second or ID = PID; but 	t two strings and ne t also <mark>word</mark> = sw	checks wh	ether the fir	st string e	ends with	
(e.g., C	OMA, SF, S-N	latch, OLA)					
Ontology mate	hing tutorial (v11) – Sh	vaiko and Euzenat				28 / 79	
Problem	Classification	Basic techniques	Process	Systems	Other	Conclusions	
Eleme	ent-level teo	chniques: St	ring-bas	ed			

- takes as input two strings and calculates the number of edition operations, (e.g., insertions, deletions, substitutions) of characters required to transform one string into another,
- normalized by length of the maximum string
- EditDistance(NKN,Nikon) = 0.4

(e.g., S-Match, OLA, Anchor-Prompt)

(e.g., OLA, COMA)

Svstems

Element-level techniques: Linguistic resources

Sense-based: WordNet A ⊆ B if A is a hyponym or meronym of B Brand ⊆ Name A ⊒ B if A is a hypernym or holonym of B Europe ⊒ Greece A = B if they are synonyms Quantity = Amount A ⊥ B if they are antonyms or the siblings in the part of hierarchy Microprocessors ⊥ PC Board

(e.g., Artemis, Ct×Match, S-Match)

Some other measures (e.g., Resnik measure) depends on the frequency of the terms in the corpus made of all the labels of the ontologies. (e.g., S-Match)

Problem	Classification	Basic techniques	Process	Systems	Other	Conclusions
Elemer	nt-level tec	hniques: Li	nguistic	resource	es	
► Glos ► (e.g., S-N	s-based: Wor The number of the similarity similarity valu Maltese dog is Afghan hound Match)	dNet gloss com of the same word value. The equiv e exceeds a giver s a breed of toy o is a tall gracefu	parison s occurring alence relat n threshold dogs having l breed of h	in both inp ion is retur a long stra ound with a	out glosses ned if the hight silky a long silky	increases resulting white coat y coat
Ontology matchi	ng tutorial (v11) – Shv	aiko and Euzenat				36 / 79
Problem	Classification	Basic techniques	Process	Systems	Other	Conclusions
Elemer	nt-level tec	hniques: Li	nguistic	resource	es	
► Spec ► ►	cific thesauri These usually PO = Purcha uom = UnitO line = item pid, COMA)	store specific do se Order fMeasure	main knowl	edge		

Systems

Structure-level techniques: Taxonomy-based

Ontologies are viewed as graph-like structures containing terms and their inter-relationships.

- Bounded path matching
 - These take two paths with links between classes defined by the hierarchical relations, compare terms and their positions along these paths, and identify similar terms
- (e.g., Anchor-Prompt, NOM, QOM)

Problem	Classification	Basic techniques	Process	Systems	Other	Conclusions
Sequer	ntial comp	osition				
Ontology matchi	o p_{i}	arameters inatching resources	A' m	rameters'	-• A "	46 / 70
Ontology matchi	ng tutorial (v11) – Sh	vaiko and Euzenat				46 / 79
Problem	Classification	Basic techniques	Process	Systems	Other	Conclusions
Data i	ntegration	as sequenti	al comp	osition		

Problem	Classification	Basic techniques	Process	Systems	Other	Conclusions
Paralle	el composi	tion				
		parameters matching resources parameters' matching' matching' resources'	A' A"	ggregation		
Ontology match	ing tutorial (v11) – Sh	vaiko and Euzenat				48 / 79
Problem	Classification	Basic techniques	Process	Systems	Other	Conclusions
Simila	ritv filter.	alignment ex	tractor	and align	ment fi	lter

Many algorithms are based on similarity or distance computation. A number of operations can be based on similarity/distance matrices.

Sequential composition through distance matrices

Ontology matching tutorial (v11) – Shvaiko and Euzenat						
Problem	Classification	Basic techniques	Process	Systems	Other	Conclusions

Parallel composition through distance matrices

Problem	Classification	Basic techniques	Process	Systems	Other
Aggre	gation ope	erations			

There are many different ways to aggregate matcher results, usually depending on confidence/similarity:

- Triangular norms (min, weighted products) useful for selecting only the best results;
- Multidimentional distances (Eudidean distance, weighted sum) useful for taking into account all dimensions;
- Fuzzy aggregation (min, weighted average) useful for aggregating competing algorithms and averaging their results;
- Other specific measures (e.g., ordered weighted average).

Conclusions

Other

Dealing with cycles: fix point computation

$$\sigma_{C}(c,c') = .6. \frac{1}{\max(|A(c)|, |A(c')|)} \cdot \sum_{\langle a,a' \rangle \in match(A(c),A(c'))} \sigma_{A}(a,a') + .4.\sigma(N(c),N(c'))$$

$$\sigma_{A}(a,a') = .6.\sigma_{C}(domain(a), domain(a')) + .4.\sigma(N(a),N(a'))$$

Problem	Classification	Basic techniques	Process	Systems	Other	Conclusions
Dealing	with cvc	les: fix poin	t compi	Itation		

$$\sigma_{C}(c,c') = .6. \frac{1}{\max(|A(c)|, |A(c')|)} \cdot \sum_{\langle a,a' \rangle \in match(A(c),A(c'))} \sigma_{A}(a,a') + .4.\sigma(N(c),N(c'))$$

$$\sigma_{A}(a,a') = .6.\sigma_{C}(domain(a), domain(a')) + .4.\sigma(N(a),N(a'))$$

Process

Other

Dealing with cycles: fix point computation

$$\sigma_{C}(c,c') = .6. \frac{1}{\max(|A(c)|, |A(c')|)} \cdot \sum_{\langle a,a' \rangle \in match(A(c),A(c'))} \sigma_{A}(a,a') + .4.\sigma(N(c),N(c'))$$

$$\sigma_{A}(a,a') = .6.\sigma_{C}(domain(a), domain(a')) + .4.\sigma(N(a),N(a'))$$

	/
Ontology matching tutorial (v11) – Shvaiko and Euzenat	53 / 79

Problem	Classification	Basic techniques	Process	Systems	Other	Conclusions
Dealing	with cycle	es: fix noint	compi	Itation		

C_{1} P C_{2} q C_{1} P' C_{1}' Q' C_{2}'

	C_1	р	C_2	q
C'_1	.53		.47	
<i>p</i> ′		.67		.34
C'_2	.46		.56	
q'		.4		.52

Threshold reached: no .1 variation

$$\sigma_{C}(c,c') = .6. \frac{1}{\max(|A(c)|,|A(c')|)} \cdot \sum_{\langle a,a' \rangle \in match(A(c),A(c'))} \sigma_{A}(a,a') + .4.\sigma(N(c),N(c'))$$

$$\sigma_{A}(a,a') = .6.\sigma_{C}(domain(a),domain(a')) + .4.\sigma(N(a),N(a'))$$

Problem	Classification	Basic techniques	Process	Systems	Other	Conclusions		
Learning matcher (parameter)s								
Ontology match		matching resources	A A'	comparison		54 / 70		
Untology match	ing tutorial (VII) – Sh	valko and Euzenat				54 / 79		
Problem	Classification	Basic techniques	Process	Systems	Other	Conclusions		
Learni	ng algorith	ms						

- Bayes learning
- ► WHIRL learner
- Neural networks
- Decision trees
- Stacked generalisation

Problem	Classification	Basic techniques	Process	Systems	Other	Conclusions
Filterin	g similari	ties: thresho	lding			

- ► Hard threshold retains all the correspondence above threshold *n*;
- Delta threshold consists of using as a threshold the highest similarity value out of which a particular constant value d is subtracted;
- Proportional threshold consists of using as a threshold the percentage of the highest similarity value;
- Percentage retains the n% correspondences above the others.

Applies a monotonous function $f : [0 \ 1] \rightarrow [0 \ 1]$

- Hardening all correspondences with non-1 confidence are assigned 0 confidence;
- Smoothening (e.g., sigmoïd) consists of using as a threshold the highest similarity value out of which a particular constant value d is subtracted;
- Weakening consists of using as a threshold the percentage of the highest similarity value;

- ► Greedy algorithm: 1.96;
- ► Stable marriage: 2.1;

Problem	Classification	Basic techniques	Process	Systems	Other	Conclusions
Extrac	cting alignm	nents				
			×0 ¹	ø		
		*	Les a	ulishe	.xet	
		800 ~	(³⁾	n N		

Product	.84	0.	.90	.12
Provider	.12	0.	.84	.60
Creator	.60	.05	.12	.84

- ► Greedy algorithm: 1.96;
- ► Stable marriage: 2.1;
- ► Maximal weight match: 2.52.

Ontol	Ontology matching tutorial (v11) – Shvaiko and Euzenat							
Pro	blem	Classification	Basic techniques	Process	Systems	Other	Conclusions	
0	utline	;						
1	The on	tology mate	hing problem					
2	Classifi	cation						
3	Basic t	echniques						
4	Matchi	ng process						
5	System	IS						
6	Other t	topics						
7	Conclu	sions						

- OLA (INRIA Rhône-Alpes and U. de Montréal)
- S-Match (U. of Trento)
- ▶ ...

Ontology matching tutorial (v11) – Shvaiko and Euzenat							
Problem	Classification	Basic techniques	Process	Systems	Other	Conclusions	
.							
Cupid							
•							

- Schema-based
- Computes similarity coefficients in the [0 1] range
- Performs linguistic and structure matching
- Sequential system

Problem	Classification	Basic techniques	Process	Systems	Other	Conclusions
Cupid	architectu	re				
O O'	ing tutorial (v11) – Sh	Linguistic matching thesauri	M' Str ma	A' ← ructure atching ←	M" + ₩	/eighting
ontoiogy materi						02 / 15
Problem	Classification	Basic techniques	Process	Systems	Other	Conclusions
OLA						

- Schema- and Instance-based
- Computes dissimilarities + extracts alignments (equivalences in the [0 1] range)
- Based on terminological (including linguistic) and structural (internal and relational) distances
- Neither sequential nor parallel

Problem	Classification	Basic techniques	Process	Systems	Other	Conclusions
OLA a	rchitecture					
		pai M re	rameters ↓ milarity ompu- tation ↓ sources	→ M' →		Α'
Ontology match	ing tutorial (v11) – Shva	iko and Euzenat				64 / 79
Problem	Classification	Basic techniques	Process	Systems	Other	Conclusions
Falcon	-OA archit	ecture				
0	→ <i>M</i> ·	Linguistic matching	M' Stri mat	ucture tching	M'' →	► <u>A'</u>

Problem	Classification	Basic techniques	Process	Systems	Other	Conclusions
S-Mat	ch					

- Schema-based
- Computes equivalence (=), more general (⊒), less general (⊑), disjointness (⊥)
- Analyzes the meaning (concepts, not labels) which is codified in the elements and the structures of ontologies
- Sequential system with a composition at the element level

Problem	Classification	Basic techniques	Process	Systems	Other	Conclusions
Outlin	e					
1 The o	ntology matc	hing problem				
2 Classi	fication					
3 Basic	techniques					
4 Match	ning process					
5 Syster	ns					
6 Other	topics					
7 Conclu	usions					
Ontology matchi	ng tutorial (v11) – Sh	vaiko and Euzenat				68 / 79
Problem	Classification	Basic techniques	Process	Systems	Other	Conclusions
What	is an align	ment for?				

- Processing them and enerating processing output (transformations, axioms, rules);
- Evaluating and comparing them;
- Storing, finding, and floating around;
- Piping alignments algorithms (improving an existing alignment);
- Manipulating (thresholding and hardening);

Goal: improvement of matching algorithms through comparison, measure of the evolution of the field.

- Yearly campaign comparing algorithms on different test benches;
- Participants submit their alignments in a standard format;
- These are compared with available reference alignments;
- Deviation is measured by classic measures such as precision and recall;
- Test and results are published on our web site.

http://oaei.ontologymatching.org

Problem	Classification	Basic techniques	Process	Systems	Other	Conclusions
Alignn	nent API					
	M <i>read</i> (RDF	atcher al A harden()	ign(p) cu render()	A' ev. E XS RD SW OV	al(p) Evaluator LT DF /RL VL	
Ontology match	ling tutorial (VII) – Sn	valko and Euzenat				12 / 19
Problem	Classification	Basic techniques	Process	Systems	Other	Conclusions
Examp	oles of API	use				
OWLOnto OWLOnto	ology 01 = 1 ology 02 = 1	loadOntology loadOntology	(); ();			

Problem	Classification	Basic techniques	Process	Systems	Other	Conclusions
Outlin	e					
1 The o	ntology mate	hing problem				
2 Classi	fication					
3 Basic	techniques					
4 Match	ning process					
5 Syster	ns					
6 Other	topics					
Concl	usions					
Ontology match	ing tutorial (v11) – Sh	vaiko and Euzenat				74 / 79
Problem	Classification	Basic techniques	Process	Systems	Other	Conclusions
Summ	arv					

- Ontology heterogeneity is the nature of the semantic web;
- Ontology matching is part of the solution;
- It can be based on many different techniques;
- There already are numerous systems there;
- A relatively solid research field has emerged (tools, formats, evaluation, etc.) and is making progress;
- But there remains serious challenges ahead.

Problem	Classification	Basic techniques	Process	Systems	Other	Conclusions			
Challe	Challenges								
 Usi Per Inte Exp Soc Lar Infr 	ng background formance of s eractive appro planations of r cial aspects of ge-scale evalu rastructures	d knowledge ystems aches natching ontology match ation	ning						
Ontology matc	hing tutorial (v11) – Sh	vaiko and Euzenat				76 / 79			
Problem	Classification	Basic techniques	Process	Systems	Other	Conclusions			
Ackno	wledgment	ts							

We thank all the participants of the Heterogeneity workpackage of the Knowledge Web network of excellence

In particular, we are grateful to Than-Le Bach, Jesus Barrasa, Paolo Bouquet, Jan De Bo, Jos De Bruijn, Rose Dieng-Kuntz, Enrico Franconi, Raúl García Castro, Manfred Hauswirth, Pascal Hitzler, Mustafa Jarrar, Markus Krötzsch, Ruben Lara, Malgorzata Mochol, Amedeo Napoli, Luciano Serafini, François Sharffe, Giorgos Stamou, Heiner Stuckenschmidt, York Sure, Vojtěch Svátek, Valentina Tamma, Sergio Tessaris, Paolo Traverso, Raphaël Troncy, Sven van Acker, Frank van Harmelen, and Ilya Zaihrayeu.

And more specifically to Marc Ehrig, Fausto Giunchiglia, Loredana Laera, Diana Maynard, Deborah McGuinness, Petko Valchev, Mikalai Yatskevich, and Antoine Zimmermann for their support and insightful comments

Problem	Classification	Basic techniques	Process	Systems	Other	Conclusions
Quest	ions?					
Quest	IONS !					

pavel@dit.unitn.it
Jerome.Euzenat@inrialpes.fr

http://www.ontologymatching.org