

Ontology Matching and Alignment

Ilya Zaihrayeu

Slides adopted from a presentation of Pavel Shvaiko (<u>http://www.dit.unitn.it/~pavel</u>)

The 1st Asian Autumn School on the Semantic Web

6 November 2007, Busan, Korea

Outline

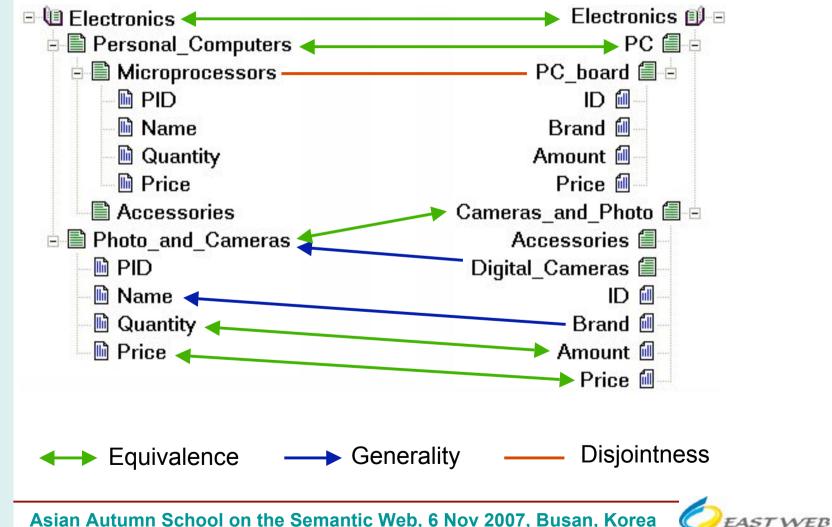
Part I: The matching problem
Part II: State of the art in ontology matching
Part III: Schema-based semantic matching
Part IV: Evaluation (technology showcase)
Part V: Conclusions

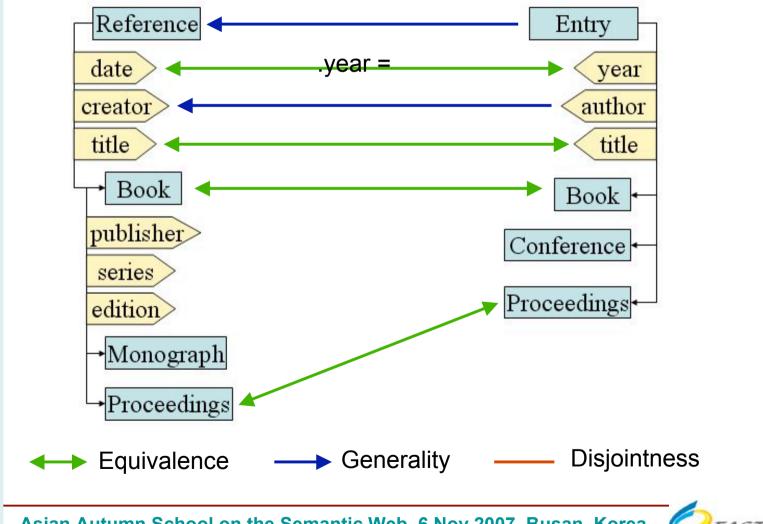
Outline

Part I: The matching problem
Problem statement
Applications
Part II: State of the art in ontology matching
Part III: Schema-based semantic matching
Part IV: Evaluation (technology showcase)
Part V: Conclusions

Matching operation

Matching operation takes as input ontologies, each consisting of a set of discrete entities (e.g., tables, XML elements, classes, properties) and determines as output the correspondences (e.g., equivalence, subsumption) that hold between these entities




Example: two XML schemas

Example: two ontologies

Asian Autumn School on the Semantic Web, 6 Nov 2007, Busan, Korea

WEB

Statement of the problem

Scope

Reducing heterogeneity can be performed in two steps:

Match, thereby determine the alignment

Process the alignment (merge, transform, translate...)

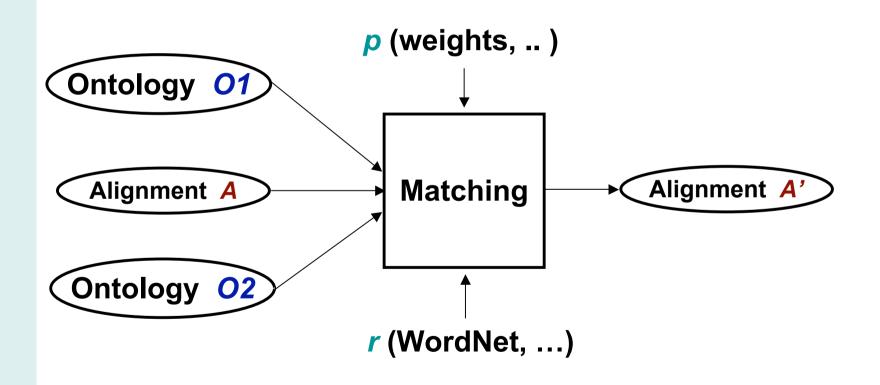
Statement of the problem

Correspondence is a 5-tuple <id, e1, e2, R, n>
 o id is a unique identifier of the correspondence
 o e1 and e2 are entities (XML elements, classes,...)
 o R is a relation (equivalence, more general,
 disjointness,...)
 o n is a confidence measure, typically in the [0,1]

range

Alignment (A) is a set of correspondences with some cardinality: 1-1, 1-n, ...

osome other properties (complete/partial)



Statement of the problem

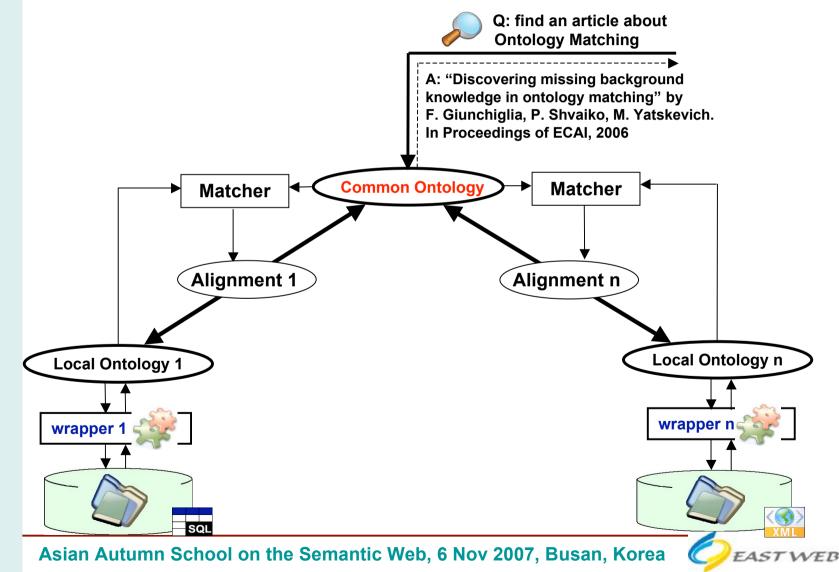
Matching process

Applications

Traditional

Ontology evolution
Schema integration
Catalog integration
Data integration

Emergent


P2P information sharing
Web service composition
Agent communication
Query answering on the web

Applications: Information integration

12

Applications: summary

Application	instances	run time	automatic	correct	complete	operation
Ontology evolution	\checkmark			\checkmark	\checkmark	transformation
Schema integration	\checkmark			\checkmark	\checkmark	merging
Catalog integration	\checkmark			\checkmark	\checkmark	data translation
Data integration	\checkmark			\checkmark	\checkmark	query answering
P2P information sharing		\checkmark				query answering
Web service composition		\checkmark	\checkmark	\checkmark		data mediation
Multi-agent communication		\checkmark	\checkmark	\checkmark	\checkmark	data translation
Query answering	\checkmark	\checkmark		\checkmark		query reformulation

Outline

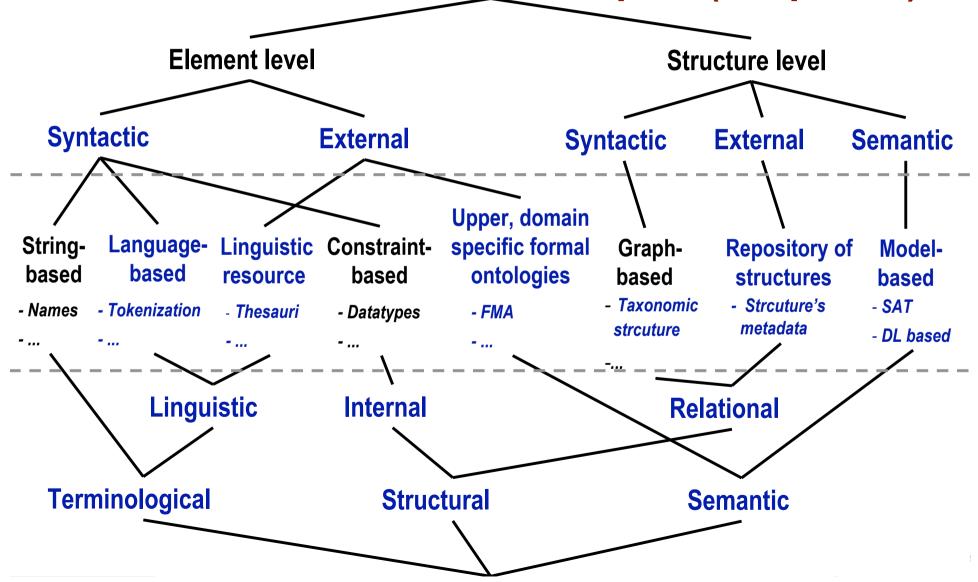
Part I: The matching problem
Part II: State of the art in ontology matching

Classification of matching techniques
Overview of matching systems

Part III: Schema-based semantic matching
Part IV: Evaluation (technology showcase)
Part V: Conclusions

Classification of basic techniques

Three layers


- The upper layer
 - oGranularity of matching
 - oInterpretation of input information
- The middle layer represents classes of elementary (basic) matching techniques
- The lower layer is based on the kind of input which is used by elementary matching techniques

Classification of techniques (simplified)

Basic techniques

String-based

Edit distance

olt takes as input two strings and calculates
 the number of insertions, deletions, and
 substitutions of characters required to
 transform one string into another, normalized
 by max(length(string1), length(string2))
oEditDistance(NKN,Nikon) = 0.4

Basic techniques (cont'd)

Linguistic resources: WordNet

It computes relations between ontology entities by using (lexical) relationships of WordNet

 $\bullet A \subseteq B$ if A is a hyponym or meronym of B

Brand \subseteq **Name**

 $\bullet A \supseteq B$ if A is a hypernym or holonym of B

Europe \supseteq **Greece**

•A = B if they are synonyms

Quantity = Amount

•A ⊥ B if they are antonyms or siblings in part of hierarchy

 $\textbf{Microprocessors} \perp \textbf{PC} \ \textbf{Board}$

Systems: analytical comparison

~50 matching systems exist, ...we consider some of them

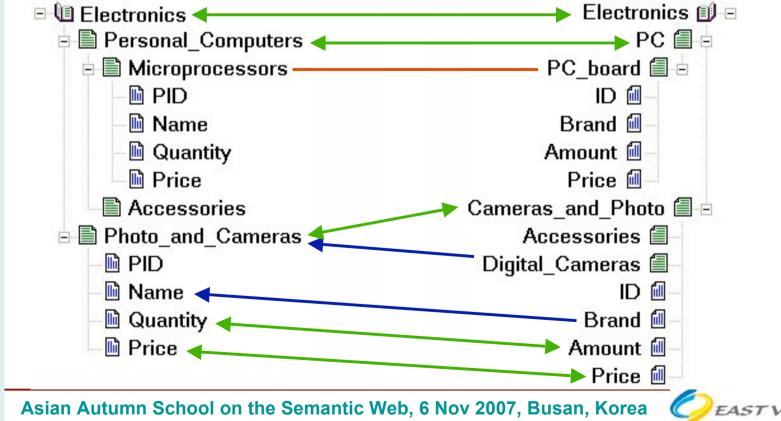
		SF	Artemis	Cupid	СОМА	Prompt	OLA	S-Match
Element-level	Syntactic	string-based, data types, key properties	domain compatibility, language- based	string-based, language-based, data types, key properties	string-based language-based, data types	string-based, domains and ranges	string-based, data types, language-based	string-based, language- based
Eleme	External	-	common thesaurus (CT)	auxiliary dictionary	auxiliary dictionary	-	WordNet	WordNet
Structure-level	Syntactic	iterative fix-point computation	matching of neighbors via CT	tree matching weighted by leaves	DAG (tree) matching with a bias towards leaf or children structures	bounded path matching (arbitrary links, <i>is-a</i> links)	iterative fix-point computation, matching of neighbors	-
Struct	Semantic	-	-	-	-	-	-	SAT

Outline

Part I: The matching problem
Part II: State of the art in ontology matching
Part III: Schema-based semantic matching

Semantic matching
Iterative semantic matching

Part IV: Evaluation (technology showcase)
Part V: Conclusions



Generic matching

Information sources (classifications, XML schemas, ...) can be viewed as graph-like structures containing terms and their inter-relationships

Matching takes two graph-like structures and produces correspondences between the nodes of the graphs that are supposed to correspond to each other

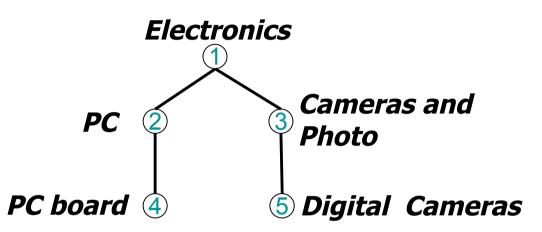
Semantic matching in a nutshell

Semantic matching: Given two graphs G1 and G2, for any node $n_i \in G1$, find the strongest semantic relation R' holding with node $n_i \in G2$

Computed *R*'s, listed in the decreasing binding strength order:

In case no relation is found, 'I don't know' {idk} is returned

We compute semantic relations by analyzing the *meaning* (concepts, not labels) which is codified in the elements and the structures of ontologies


Technically, labels at nodes written in natural language are translated into propositional DL formulas which codify labels' intended meaning. This allows us to codify the matching problem into a propositional validity problem

Concept of a label & concept at a node

Concept of a label is a propositional DL formula which encodes the set of documents, one would classify under this label

Concept at a node is a propositional DL formula which encodes the set of documents, one would classify under this node, given its label and its position in the tree

Four macro steps

Given two labeled trees T1 and T2, do:

- **1. For all labels in T1 and T2 compute** *concepts at labels*
- **2.** For all nodes in T1 and T2 compute *concepts at nodes*
- 3. For all pairs of labels in T1 and T2 compute relations between concepts at labels (background knowledge)
- 4. For all pairs of nodes in T1 and T2 compute relations between concepts at nodes

Steps 1 and 2 constitute the preprocessing phase, and are executed once and each time after the ontology is changed (OFF- LINE part)

Steps 3 and 4 constitute the matching phase, and are executed every time two ontologies need to be matched (ON - LINE part)

Step 1: compute concepts at labels

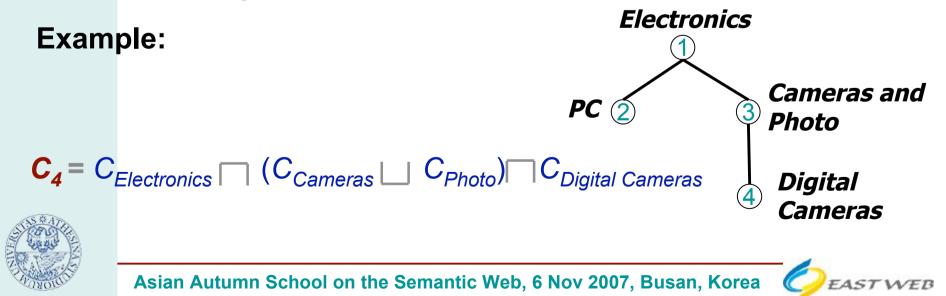
The idea

 Translate labels at nodes written in natural language into propositional DL formulas which codify labels' intended meaning

Preprocessing

- Tokenization. Labels (according to punctuation, spaces, etc.) are parsed into tokens. E.g., Photo and Cameras → <Photo, and, Cameras>
- ▶ Lemmatization. Tokens are morphologically analyzed in order to find all their possible basic forms. E.g., Cameras → Camera
- More NLP. Named entity locating, word sense disambiguation, and syntactic parsing are required for a more accurate translation
- Building atomic concepts. An oracle (WordNet) is used to extract senses of lemmas. E.g., Camera has 2 senses
- Building complex concepts. Prepositions, conjunctions are translated into logical connectives and used to build complex concepts out of the atomic concepts

E.g., C_{Cameras_and_Photo} = <Cameras, {WN_{Camera}} > <a>Cameras_And_Photo

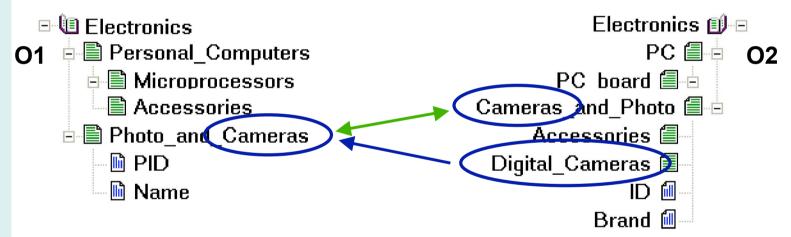

Step 2: compute concepts at nodes

The idea

Extend concepts at labels by capturing the knowledge encoded in the structure of the ontology tree in order to define the context in which the given concept at a label occurs

Computation

Concept at a node for some node *n* **is computed as the conjunction of concepts at labels located above the given node**, including the node itself



Step 3: compute relations between (atomic) concepts at labels

The idea

• Exploit a priori knowledge, e.g., lexical, domain knowledge, with help of element level semantic matchers

cLabsMatrix (result of Step 3)

	Cameras ₂	Photo ₂	Digital_Cameras ₂
Photo ₁	idk	=	idk
Cameras ₁	=	idk	⊇

Step 3: Element level semantic matchers

Sense-based matchers have two WordNet senses in input and produce semantic relations exploiting (direct) lexical relations of WordNet

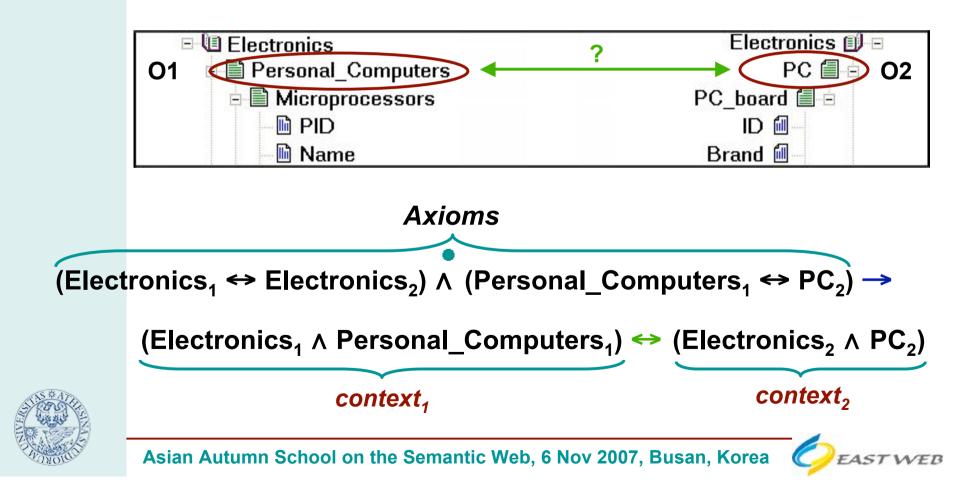
String-based matchers have two labels in input and produce semantic relations exploiting string comparison techniques

Matcher name	Execution order	Approximation level	Matcher type	Schema info
WordNet	1	1	Sense-based	WordNet senses
Prefix	2	2	String-based	Labels
Suffix	3	2	String-based	Labels
Edit distance	4	2	String-based	Labels
Ngram	5	2	String-based	Labels

Step 4: compute relations between concepts at nodes

The idea

- Decompose the tree matching problem into the set of node matching problems
- Translate each node matching problem, namely pairs of nodes with possible relations between them, into a propositional formula
- Check the propositional formula for validity



Step 4: **Example of a node matching task**

Axioms \rightarrow rel(context₁, context₂)

Outline

Part I: The matching problem
Part II: State of the art in ontology matching
Part III: Schema-based semantic matching

Semantic matching
Iterative semantic matching

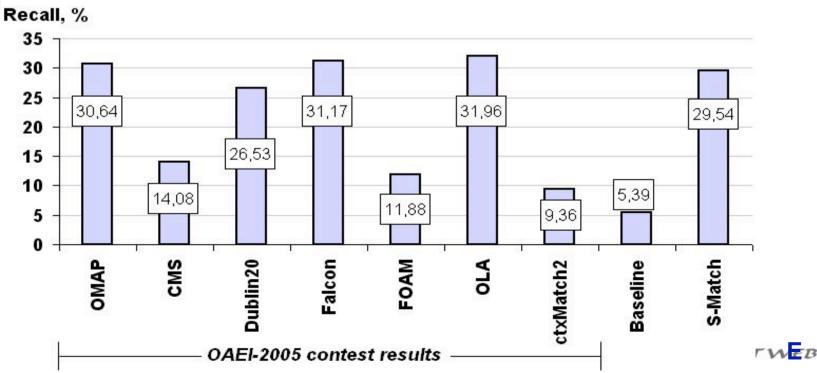
Part IV: Evaluation (technology showcase)
Part V: Conclusions

Motivation: Problem of low recall (incompletness) - I

Facts

- Matching (usually) has two components: element level matching and structure level matching
- Contrarily to many other systems, the semantic matching structure level algorithm is correct and complete
- Still, the quality of results is not very good

Why? ... the problem of lack of knowledge



Motivation: Problem of low recall (incompletness) - II

Preliminary (analytical) evaluation

Matching tasks	#nodes	max depth	#labels per tree	
Google vs Looksmart	706/1081	11/16	1040/1/10	Dataset
Google vs Yahoo	561/665	11/11	722/945	[P. Avesani et al., ISWC'05]
Yahoo vs Looksmart	74/140	8/10	101/222	

On increasing the recall: an overview

Multiple strategies

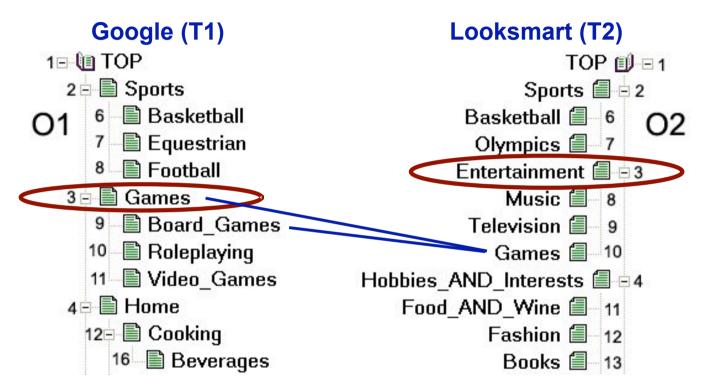
- Add new element level matchers
- Reuse of previous match results from the same domain of interest
 - PO = Purchase Order
- Use general knowledge sources (unlikely to help)
 - WWW
- Use, if available (!), domain specific sources of knowledge
 - UMLS, FMA

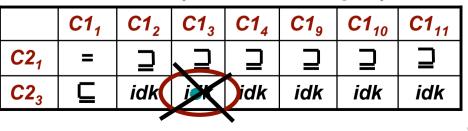
Iterative semantic matching (ISM)

The idea

Repeat Step 3 and Step 4 of the matching algorithm for some critical (hard) matching tasks

ISM macro steps


- Discover *critical points* in the matching process
- Generate candidate *missing axiom(s)*
- Re-run SAT solver on a critical task taking into account the new axiom(s)
- If SAT returns false, save the newly discovered axiom(s) for future reuse


Discovering critical points - example

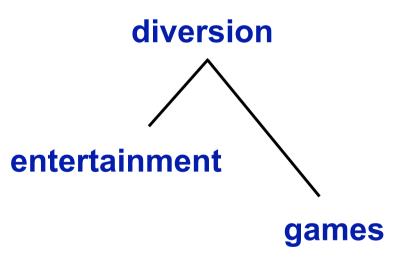
cLabsMatrix (result of Step 3)

	TOP ₁	Games ₁	Board_Games ₁
TOP	=	idk	idk
Entertainment ₂	idk	X	idk
Games ₂	idk	=	

cNodesMatrix (result of Step 4)

ISM: Generating candidate axioms

- Sense-based matchers have two WordNet senses in input and produce semantic relations exploiting structural properties of WordNet hierarchies
 - Hierarchy Distance (HD)
- Gloss-based matchers have two WordNet senses as input and produce relations exploiting gloss comparison techniques
 - WordNet Gloss (WNG)
 - Extended WordNet Gloss (EWNG)
 - Gloss Comparison (GC)



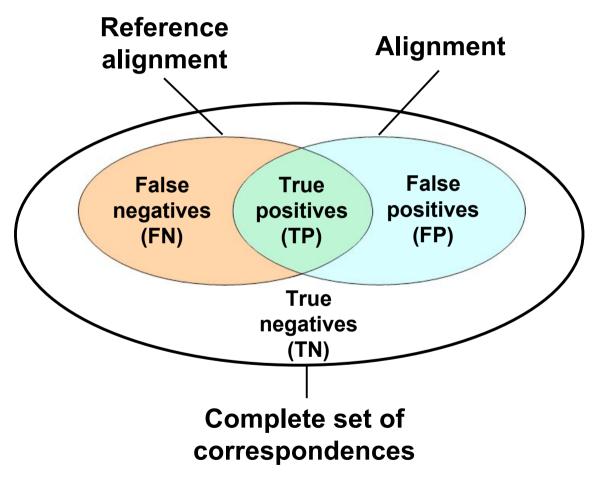
ISM: generating candidate axioms Hierarchy Distance

Hierarchy distance returns the equivalence relation if the distance between two input senses in WordNet hierarchy is less than a given threshold value (e.g., 3) and *idk* otherwise

There is no direct relation between games and entertainment in WordNet

Distance between these concepts is 2 (1 more general link and 1 less general). Thus, we can conclude that games and entertainment are close in their meaning and return the equivalence relation

Outline


Part I: The matching problem
Part II: State of the art in ontology matching
Part III: Schema-based semantic matching
Part IV: Evaluation (technology showcase)
Evaluation setup
Evaluation results
Part V: Conclusions

Evaluation (quality) measures

Test cases

#	Matching task	#nodes	max depth	#labels per tree
1	Images vs Europe	4/5	2/2	6/5
2	Product schemas	13/14	4/4	14/15
3	Yahoo Finance vs Standard	10/16	2/2	22/45
4	Cornell vs Washington	34/39	3/3	62/64
5	CIDX vs Excel	34/39	3/3	56/58
6	Google vs Looksmart	706/1081	11/16	1048/1715
7	Google vs Yahoo	561/665	11/11	722/945
8	Yahoo vs Looksmart	74/140	8/10	101/222
9	Iconclass vs Aria	999/553	9/3	2688/835

Matching systems

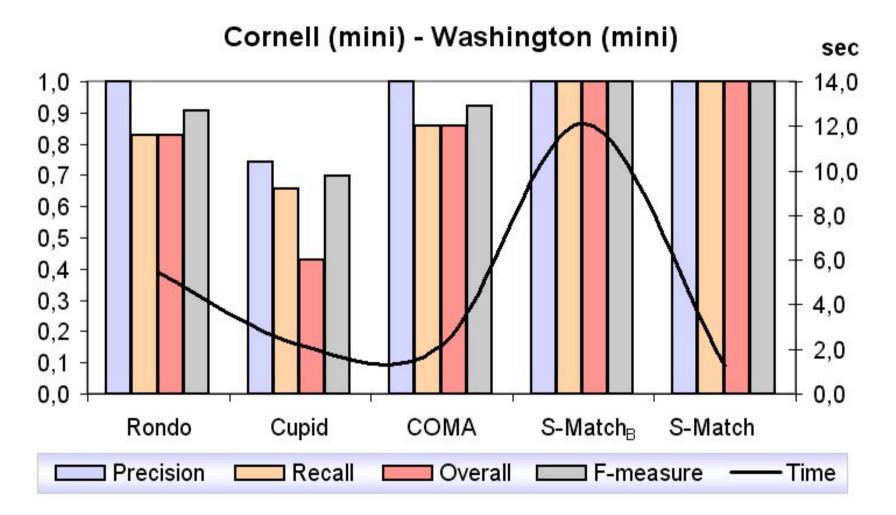
Schema-based systems

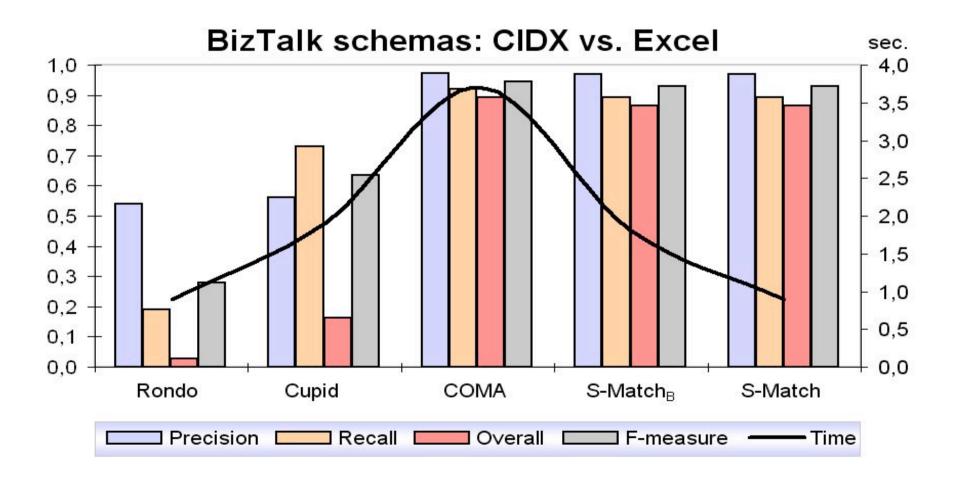
- S-Match
- Cupid
- COMA
- Similarity Flooding as implemented in Rondo
- OAEI-2005 and OAEI-2006 participants

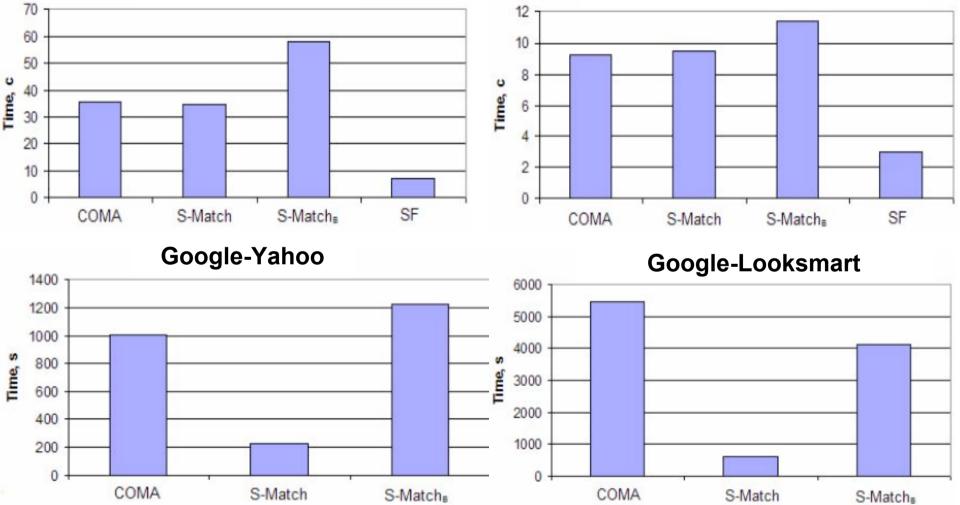
Systems were used in default configurations

PC: PIV 1,7Ghz; 512Mb. RAM; Win XP

Outline


- Part I: The matching problem
- •Part II: State of the art in ontology matching
- Part III: Schema-based semantic matching
- Part IV: Evaluation (technology showcase)
 - Evaluation setup
 - Evaluation results
- Part V: Conclusions

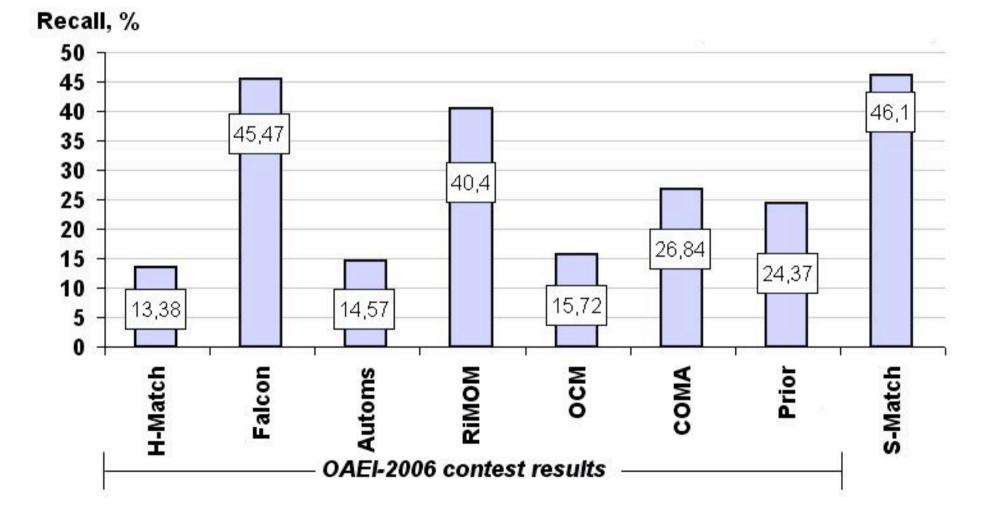

Experimental results, test case #4


Experimental results, test case #5

Experimental results, #3,6,7,8: efficiency

Yahoo-Standard

45


Looksmart -Yahoo

Experimental results, #6,7,8: incompleteness

47 Experimental results, #6,7,8: incompleteness (OAEI-2006 comparison)

Outline

- Thesis contributions
- •Part I: The matching problem
- •Part II: State of the art in ontology matching
- Part III: Schema-based semantic matching
- Part IV: Evaluation (technology showcase)
- •Part V: Conclusions

EASTWEB

Summary

- Ontology matching applications and their requirements
- Overview of the state of the art, including classification of matching techniques and systems
- Semantic matching approach, including algorithms for basic and iterative semantic matching
- Evaluation of the approach on various data sets with encouraging results

Summary (cont'd)

- Automated reasoning techniques (e.g., SAT) provide good performance for industrial-strength matching tasks
- The issue is not efficiency but rather missing domain knowledge
 - This problem on the industrial size matching tasks is very hard
 - We have investigated it by examples of lightweight ontologies, such as Google and Yahoo
 - A partial solution is applying semantic matching iteratively

Future challenges

- Missing background knowledge
- Natural language processing
- Interactive approaches
- Explanations of matching results
- Social and collaborative ontology matching
- Large-scale evaluation
- Infrastructures

Future challenges: scalability of visualization

👪 BizTalk Mapper - ARIAvsIconClassNature_expe	Match1.xml *	
<u>Eile E</u> dit <u>V</u> iew <u>T</u> ools <u>H</u> elp		
🗅 🚅 🖬 🖃 🛃 🔛 🗡 🚏 🏪 😫	+ Ex	
Source Specification		Destination Specification
Gardens_parks Fields_meadows Ships Trees_forests Mountains Water_ice_and_snow Beach_dunes Towns_villages Towns_villages Juildings_in_landscapes Medals Insignia1 Gommemorative_medals Commemorative_medals Religious_sculpture Reliefs Low_reliefs Horses2 Medallions Figures_men_ Allegories2 Figures_groups_1 High_reliefs Jewellery1 Military_pieces Cavalry1 Battles Naval_battles1		mountains_in_polar_regions \$ glacier_in_polar_regions \$ tundra_country_with_vegetation \$ ravine_in_polar_regions \$ valley_in_polar_regions \$ coast_in_polar_regions \$ island_in_polar_regions \$ iceberg \$ oasis \$ animals \$ anima

52

(Some) references

- Project website KNOWDIVE: <u>http://www.dit.unitn.it/~knowdive/</u>
- Ontology Matching website: <u>http://www.OntologyMatching.org</u>
- F. Giunchiglia, M. Yatskevich, P. Shvaiko: Semantic matching: algorithms and implementation. Journal on Data Semantics, IX, 2007.
- F. Giunchiglia, P. Shvaiko, M. Yatskevich: Discovering missing background knowledge in ontology matching. In Proceedings of *ECAI'06*.
- I. Zaihrayeu, L. Sun, F. Giunchiglia, W. Pan, Q. Ju, M. Chi, and X. Huang: From Web Directories To Ontologies: Natural Language Processing Challenges. In Proceedings of ISWC'07
- P. Shvaiko and J. Euzenat: A survey of schema-based matching approaches. Journal on Data Semantics, IV, 2005.
- P. Shvaiko, J. Euzenat, N. Noy, H. Stuckenschmidt, R. Benjamins, M. Uschold. Proceedings of the ISWC International Workshop on Ontology Matching, 2006.
- P. Avesani, F. Giunchiglia, M. Yatskevich: A large scale taxonomy mapping evaluation. In Proceedings of *ISWC'05*.
- **B. Magnini, M. Speranza, C. Girardi. A** semantic-based approach to interoperability of classification hierarchies: Evaluation of linguistic techniques. In Proceedings of *COLING'04*.
- P. Bouquet, L. Serafini, S. Zanobini: Semantic coordination: a new approach and an application. In Proceedings of *ISWC'03*.

C. Ghidini, F. Giunchiglia: Local models semantics, or contextual reasoning = locality + compatibility. Artificial Intelligence Journal, 127(3), 2001.

You are welcome to attend (11 Nov): Ontology Matching @ ISWC'07+ASWC'07 <u>http://om2007.OntologyMatching.org</u> 8/26 technical papers to be presented

Ontology Alignment Evaluation Initiative OAEI–2007 campaign

http://oaei.OntologyMatching.org/2007

Evalution of 17 systems to be presented

Jérôme Euzenat Pavel Shvaiko

Ontology Matching

55

Thank you for your attention and interest!

