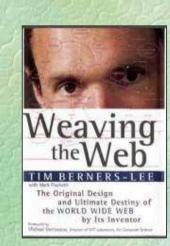
Fundamental Research challenges generated by the Semantic Web


Frank van Harmelen Vrije Universiteit Amsterdam

or:
two dozen Ph.D. topics
in a single talk
(at least:-)

This is NOT a Semantic Web evangelization talk

(Lassume you are already converted)

Outline

- What's up in the Semantic Web
- Fundamental Research challenges generated by the Semantic Web ("two dozen Ph.D. topics")
- Three example topics in some more detail

What's up in the Semantic Web? 0

Science:

- ✓ steady progress on many fronts
- ✓ increasing contributions from DB, NL, ML, IR, KE
- emphasis on light-weight semantics:
 - ✓ RDF(S), OWL Lite/DLP
- Too much "old wine in new bottles"
 - *not enough "SemWeb causes radical rethink"

What's up in the Semantic Web?@ The 4 hard questions:

- Q1: "where does the meta-data come from?"
- ✓ NL technology is delivering on concept-extraction
- Q2: "where do the ontologies come from?"
- many handcrafted ontologies
- ontology learning remains hard
- relation extraction remains hard
- Q3: "what to do with many ontologies?"
- ontology mapping/aligning remains VERY hard
- Q4: "where's the 'Web' in the Semantic Web?"
- ✓ more attention to social aspects (P2P, FOAF)
- non-textual media remains hard

What's up in the Semantic Web? 8 Applications:

- healthy uptake in some areas:
 - √ knowledge management / intranets
 - √ data-integration (Boeing)
 - ✓ life-sciences (e-Science)
 - convergence with Semantic Grid
 - ✓ cultural heritage
- emerging applications in search & browse
 - ✓ Elsevier, Ilse, MagPie, KIM
- very few applications in
 - personalisation
 - mobility/context awareness
- Most applications for companies, few applications for the public

The Semantic Web is an integrator of many different CS fields

- Databases
- Natural Language Processing
- Knowledge Representation
- Machine Learning
- Information Retrieval
- Agents
- HCI

....

Methodological challenges

- Need >1 branch of the ACM Topic Hierarchy
- More "empirical" Computer Science
 - evaluation
 - besides theory and engineering
- Traditional metrics need reconsideration
 - e.g. precision and recall
 - "big-O" complexity mostly irrelevant
 - metrics from different fields:
 - databases
 - IR
 - HCI

Opportunities of the Semantic Web

- Content rich environment
- Standardisation, syntactic convergence
- Many hands/free labour "millions of knowledge engineers"
- ■tested availability, an "on-line lab"
- partial solutions work

Outline

- What's up in the Semantic Web
- Fundamental Research challenges generated by the Semantic Web ("two dozen Ph.D. topics")
- Three example topics in some more detail

Take-home message

■ This talk:

The Semantic Web

■ The Semantic Web is mostly phrased as a technology challenge: "Intelligent" things

we can't do today

- **Search engines**
 - concepts, not keywords
 - semantic narrowing/widening of queries
- **Shopbots**
 - semantic interchange, not screenscraping
- **E-commerce**
 - Negotiation, catalogue mapping, personalisation
- **Web Services**
 - · Need semantic characterisations to find them
- **Navigation**
 - by semantic proximity, not hardwired links
- **....**

(slide often used by me)

- radically breaks some of the assumptions underlying many current CS results,
- and thus generates many
 new fundamental research questions

Semantic Web Challenges for KR

■ it's large

- It's even larger
- Current RDF/OWL: 100k pages large usage, but ≈ 0.01% of the Web
- Anytime/good-enough inference

no referential integrity

Semantic equivalent of "404 page not found"

many authors

- distributed authority
- trust

high variety in quality of knowledge

- Yahoo OpenCyc
- **■** Unpredictable use of knowledge

Semantic Web Challenges for KR

diverse vocabularies

- Ontology mapping
- Hardest and most urgent problem

Decentralised

- Inference may be cheaper then lookup!
- Distributed querying, peer-to-peer

high change rate

time-dependent content

local containment of inconsistencies

- Modularisation
- Unbreakable inferencing

justifications as first order citizens

Important for trust

Note: not just for KR

- Databases
- Natural Language Processing
- Machine Learning
- Information Retrieval
- Agents
- **HCI**

Challenges for DB research

- · metadata management
- storage, viewing, querying, updating, cleaning, warehousing
- heterogeneous schema integration
- · partial schema's
- on-the-fly source mediation (P2P)
- semantic similarity for retrieval
- data integration of surface & deep web

(by Dimitris Plexousakis, ICS/FORTH)

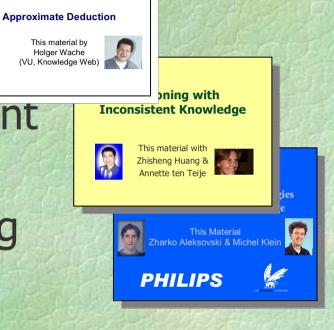
Challenges for ML research

- · curse of the representation language
- semi-automatic ontology construction
- scalability
- · learning from multi-modal resources
- probabilistic knowledge on the Semantic Web
- non-stationary data ("streams")
- learning/predicting ontological drift

(by Marco Grobelnik, Lubljana)

Outline

- What's up in the Semantic Web
- Fundamental Research challenges generated by the Semantic Web ("two dozen Ph.D. topics")
- Three example topics in some more detail



Three of these in more detail

■ It's large: approximation

■ It's inconsistent: containment

■ It's heterogeneous: mapping

- Note:
 - these are all foundational questions, important without the Semantic Web
 - this could have been done for any item on the previous lists

Remember the Take-home message

The Semantic Web is mostly phrased as a technology challenge: "Intelligent" things we can't do today

- **Search engines**
 - concepts, not keywords
 - semantic narrowing/widening of queries
- Shopbots
- semantic interchange, not screenscraping
- **E-commerce**
 - Negotiation, catalogue mapping, personalisation
- **Web Services**
 - Need semantic characterisations to find them
- Navigation
- by semantic proximity, not hardwired links
-

■ This talk:

- The Semantic Web
 radically breaks some of the assumptions
 underlying many current CS results,
- and thus generates many
 new fundamental research questions

