Reasoning with Inconsistent Knowledge

This material with Zhisheng Huang & Annette ten Teije

Knowledge will be inconsistent

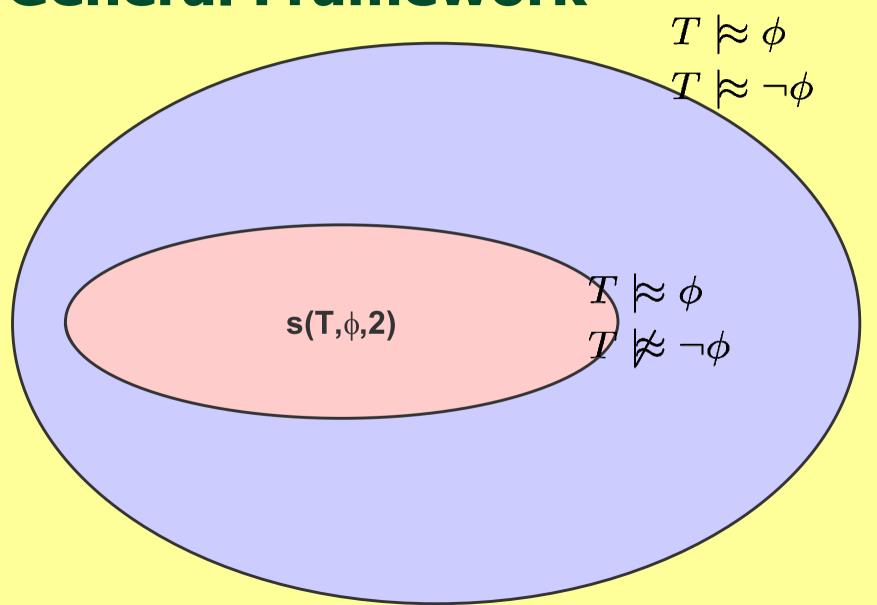
Because of:

- mistreatment of defaults
- polysemy
- migration from another formalism
- integration of multiple sources

("Semantic Web as a wake-up call for KR")

New formal notions are needed

■ New notions:


- Accepted: $T \bowtie \phi$ and $T \bowtie \neg \phi$
- Rejected: $T \not\approx \phi$ and $T \approx \neg \phi$
- Overdetermined: $T \bowtie \phi$ and $T \bowtie \neg \phi$
- Undetermined: $T \not\approx \phi$ and $T \not\approx \neg \phi$
- Soundness: (only classically justified results) $T \approx \phi \Rightarrow (\exists T' \subseteq T)(T' \not\models \bot \text{ and } T' \models \phi)$
- Meaningfull: (sound & never overdetermined) soundness + $T \approx \phi \Rightarrow T \not\approx \neg \phi$

General framework

Use selection function $s(T,\phi,k)$, with $s(T,\phi,k) \subseteq s(T,\phi,k+1)$

- 1. Start with k=0: $s(T,\phi,0) \mid \approx \phi \text{ or } s(T,\phi,0) \mid \approx \neg \phi ?$
- 2. Increase k, until $s(T,\phi,k) \approx \phi$ or $s(T,\phi,k) \approx \neg \phi$
- 3. Abort when
 - undetermined at maximal k
 - overdetermined at some k

General Framework

Nice general framework, but...

- which selection function $s(T,\phi,k)$ to use?
- Simple option: syntactic distance
 - put all formulae in clausal form:
 a₁ Ç a₂ Ç ... Ç a_n
 - distance k=1 if some clausal letters overlap
 a₁ Ç X Ç ... Ç a_n, b₁ Ç ... X Ç b_n
 - distance k if chain of k overlapping clauses are needed

$$a_1$$
 Ç X Ç ... X_1 Ç a_n b_1 Ç X_1 Ç ... X_2 Ç b_n , C_1 Ç C_1 Ç C_1

Works surprisingly well

Allmost all answers are "intuitive"

- Not well understood why
- Hypothesis:
 - due to local structure of knowledge
- Currently experimenting with more informed selection function $s(T,\phi,k)$

Other approaches:

- Debugging a knowledge base ("don't live with it, but find the cause")
 - finding the "cause" of the inconsisteny
 - = find the smallest set of axioms that, when removed, fix the inconsistency
- Applying belief revision ("don't' just find the cause, but repair it")